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ROBUSTNESS TO INCORRECT PRIORS AND CONTROLLED
FILTER STABILITY IN PARTIALLY OBSERVED STOCHASTIC

CONTROL\ast 

CURTIS McDONALD\dagger AND SERDAR Y\"UKSEL\ddagger 

Abstract. We study controlled filter stability and its effects on the robustness properties of
optimal control policies designed for systems with incorrect priors applied to a true system. Filter
stability refers to the correction of an incorrectly initialized filter for a partially observed stochastic
dynamical system (controlled or control-free) with increasing measurements. This problem has been
studied extensively in the control-free context, and except for the standard machinery for linear
Gaussian systems involving the Kalman filter, few studies exist for the controlled setup. One of the
main differences between control-free and controlled partially observed Markov chains is that the
filter is always Markovian under the former, whereas under a controlled model the filter process may
not be Markovian since the control policy may depend on past measurements in an arbitrary (measur-
able) fashion. This complicates the dependency structure and therefore results from the control-free
literature do not directly apply to the controlled setup. In this paper, we study the filter stability
problem for controlled stochastic dynamical systems and provide sufficient conditions for when a
falsely initialized filter merges with the correctly initialized filter over time. These stability results
are applied to robust stochastic control problems: under filter stability, we bound the difference in
the expected cost incurred for implementing an incorrectly designed control policy compared to an
optimal policy. A conclusion is that filter stability leads to stronger robustness results to incorrect
priors (compared with results in [A. D. Kara and S. Y\"uksel, SIAM J. Control Optim., 57 (2019),
pp. 1929--1964] without controlled filter stability). Furthermore, if the optimum cost is the same for
each prior, the cost of mismatch between the true prior and the assumed prior is zero.

Key words. partially observed Markov decision processes (POMDPs), robustness, nonlinear
filtering
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1. Introduction. In this paper we study partially observed Markov decision
problems (POMDPs) where a controller/decision maker (DM) has an incorrect prior
on the initial state of the system. (i) We first study (controlled) filter stability: the
effect this incorrect prior has on the sequence of conditional probabilities on the state
variable given the measurements, and when the increasingly available measurement
data over time leads the filter to correct itself. (ii) Then we study robustness, when
the controller selects a control policy for some cost minimization criterion based on
this incorrect prior. We investigate the performance loss due to the mismatch error,
that is, the difference in expected cost induced by this policy under the true prior
compared to that induced by an optimal control policy.

As we note below, neither of these evidently much-related problems has been con-
sidered in the literature in the generality considered in this paper. Filter stability has

\ast Received by the editors May 4, 2021; accepted for publication (in revised form) December 21,
2021; published electronically April 4, 2022. A preliminary version of some of the results was reported
in Proceedings of the 58th Annual IEEE Conference on Decision and Control [34].

https://doi.org/10.1137/21M1417442
Funding: This research was supported in part by the Natural Sciences and Engineering Research

Council (NSERC) of Canada.
\dagger Department of Statistics and Data Science, Yale University, New Haven, CT 06511 USA

(curtis.mcdonald@yale.edu).
\ddagger Department of Mathematics and Statistics, Queen's University, Kingston, ON, K7L 3N6 Canada,

(yuksel@mast.queensu.ca).

842

D
ow

nl
oa

de
d 

06
/2

3/
22

 to
 1

39
.1

79
.2

42
.1

69
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1417442
mailto:curtis.mcdonald@yale.edu
mailto:yuksel@mast.queensu.ca


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST CONTROL AND CONTROLLED FILTER STABILITY 843

Table 1.1
Some notation for random variables, measures, and sigma fields.

Notation
Y[0,n] A finite collection of random variables

\{ Y0, Y1, . . . , Yn\} .
Y[0,\infty ) An infinite sequence of random variables Y0, Y1, . . . .

\scrP (\scrX ) The space of probability measures on the space \scrX 
with Borel sigma field \scrB (\scrX ).

\mu \ll \nu The measure \mu is absolutely continuous with respect
to \nu .

\scrF \scrX 
a,b The sigma field generated by (Xa, . . . , Xb).

\scrF \scrX 
n The sigma field generated by Xn.

\scrF \scrX 
0,\infty \vee \scrF \scrY 

0,\infty The sigma field generated by all state and measure-
ment sequences.

P\mu ,\gamma The strategic measure on the full sigma field \scrF \scrX 
0,\infty \vee 

\scrF \scrY 
0,\infty .

P\mu ,\gamma (X[0,n]) \equiv P\mu ,\gamma | \scrF \scrX 
0,n

The measure P\mu ,\gamma restricted to the sigma field \scrF \scrX 
0,n.

P\mu ,\gamma (X[0,\infty ), Y[0,\infty )| Y[0,n]) \equiv P\mu ,\gamma | \scrF \scrY 
0,n The conditional measure of P\mu ,\gamma with respect to the

sigma field \scrF \scrY 
0,n.

primarily been studied for control-free systems, and robustness (to incorrect priors)
has been studied without the consideration of filter stability.

We now describe the probabilistic setup in more detail; see Table 1.1 for specific
notation used to describe random variables, measures, and sigma fields. Let \scrX ,\scrY ,\scrU 
be Polish spaces (that is, complete, separable, and metric spaces) equipped with
their Borel sigma fields \scrB (\scrX ),\scrB (\scrY ),\scrB (\scrU ); \scrX will be called the state space, \scrY the
measurement space, and \scrU the control action space. We also assume that \scrX is \sigma -
compact.

Define the transition kernel T and observation kernel Q as the mappings

T :\scrX \times \scrU \rightarrow \scrP (\scrX ), Q : \scrX \rightarrow \scrP (\scrY ),

(x, u) \mapsto \rightarrow T (dx\prime | x, u), x \mapsto \rightarrow Q(dy| x).

The POMDP is initialized with a state X0 distributed according to a prior \mu \in \scrP (\scrX ).
However, the DM does not have access to the state realizations, but instead sees
Y0, Y1, . . . , Yn at time n. An admissible (deterministic) control policy \gamma = \{ \gamma n\} \infty n=0 is
a sequence of measurable mappings \gamma n : \scrY n\times \scrU n - 1 \rightarrow \scrU that maps past measurements
and control actions to a new control action. At each time stage, the DM uses its control
policy to apply a control action Un = \gamma n(Y[0,n], U[0,n - 1]) which affects the transition
kernel to the next state, Xn \sim T (dx| Xn - 1, Un - 1). A new observation is made and
the process repeats. Recursively, it follows that U0 is a function of Y0 and U1 is a
function of Y0, Y1, and U0. Yet since U0 is itself a function of Y0, we have that U1 is
essentially just a function of Y[0,1]. In other words, we can restrict ourselves to control
policies that are only functions of measurements Y[0,n], though explicit dependence
on past actions will be useful for some of our results to follow. We will denote the
collection of admissible control policies as \Gamma .

Consider the measurable space \Omega = \scrX \BbbZ + \times \scrY \BbbZ + , endowed with the product topol-
ogy (that is, \omega \in \Omega is a sequence of states and measurements \omega = \{ (xi, yi)\} \infty i=0).

Definition 1.1. For a fixed initial measure \mu \in \scrP (\scrX ) and a policy \gamma \in \Gamma , we
define the strategic measure P\mu ,\gamma as the probability measure on (\Omega ,\scrB (\Omega )) such that
we have the following:
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844 CURTIS McDONALD AND SERDAR Y\"UKSEL

(i) For all A \in \scrB (\scrX \times \scrY ) we have

P\mu ,\gamma ((X0, Y0) \in A) =

\int 
A

Q(dy| x)\mu (dx).(1.1)

(ii) For every n \geq 1, for all A \in \scrB (\scrX \times \scrY ), let un - 1 = \gamma n - 1(y[0,n - 1], u[0,n - 2]);
then we have

P\mu ,\gamma ((Xn, Yn) \in A| (X,Y )[0,n - 1] = (x, y)[0,n - 1])(1.2)

=

\int 
A

Q(dy| x)T (dx| xn - 1, un - 1).

Remark 1.1. Note that (X,Y )[0,\infty ) is, in general, not a Markov chain under P\mu ,\gamma 

as un - 1 depends on the past measurements in (1.2).

1.1. Filter stability. Given a prior \mu \in \scrP (\scrX ) and a policy \gamma \in \Gamma , we can then
define the filter and predictor for a POMDP using the strategic measure P\mu ,\gamma .

Definition 1.2.
(i) We define the one step predictor process as the sequence of conditional prob-

ability measures

\pi \mu ,\gamma 
n - (\cdot ) = P\mu ,\gamma (Xn \in \cdot | Y[0,n - 1], U[0,n - 1]) = P\mu ,\gamma (Xn \in \cdot | Y[0,n - 1]), n \in \BbbN .

(ii) We define the filter process as the sequence of conditional probability measures

\pi \mu ,\gamma 
n (\cdot ) = P\mu ,\gamma (Xn \in \cdot | Y[0,n], U[0,n - 1]) = P\mu ,\gamma (Xn \in \cdot | Y[0,n]), n \in \BbbZ +.

(1.3)

Remark 1.2. Recall that the U[0,n - 1] are all functions of the Y[0,n - 1], so condi-
tioning on the control actions is not necessary in the above definitions. Yet this
conditional probability would be policy dependent. If we condition on the past ac-
tions, this conditioning would be policy independent. This distinction is important
for some of our discussions to follow.

Remark 1.3. It will be useful to note that the filter is the strategic measure con-
ditioned on the sigma field \scrF \scrY 

0,n and restricted to the sigma field \scrF \scrX 
n .

\pi \mu ,\gamma 
n (\cdot ) = P\mu ,\gamma (Xn \in \cdot | Y[0,n]) = P\mu ,\gamma | \scrF \scrX 

n
| \scrF \scrY 

0,n.

Say a prior \mu \in \scrP (\scrX ) and a policy \gamma \in \Gamma are chosen; an observer sees measure-
ments Y[0,\infty ) generated via the strategic measure P\mu ,\gamma . The observer is aware that
the policy applied is \gamma , but incorrectly thinks the prior is \nu \not = \mu . The observer will
then compute the incorrectly initialized filter \pi \nu ,\gamma 

n while the true filter is \pi \mu ,\gamma 
n . The

filter stability problem is concerned with the merging of \pi \nu ,\gamma 
n and \pi \mu ,\gamma 

n as n goes to
infinity.

In the literature, there are a number of merging notions when one considers
stability which we enumerate here. Let Cb(\scrX ) represent the set of continuous and
bounded functions from \scrX \rightarrow \BbbR .

Definition 1.3. Two sequences of probability measures Pn, Qn merge weakly if
\forall f \in Cb(\scrX ) we have limn\rightarrow \infty 

\bigm| \bigm| \int fdPn  - 
\int 
fdQn

\bigm| \bigm| = 0.

Definition 1.4. For two probability measures P and Q we define the total varia-
tion norm as \| P  - Q\| TV = sup\| f\| \infty \leq 1

\bigm| \bigm| \int fdP  - 
\int 
fdQ

\bigm| \bigm| , where f is assumed measur-
able. We say two sequences of probability measures Pn, Qn merge in total variation
if \| Pn  - Qn\| TV \rightarrow 0 as n \rightarrow \infty .
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ROBUST CONTROL AND CONTROLLED FILTER STABILITY 845

Definition 1.5.
(i) For two probability measures P and Q we define the relative entropy as

D(P\| Q) =
\int 
log dP

dQdP =
\int 

dP
dQ log dP

dQdQ, where we assume P \ll Q and
dP
dQ denotes the Radon--Nikodym derivative of P with respect to Q.

(ii) Let X and Y be two random variables, and let P and Q be two different joint
measures for (X,Y ) with P \ll Q. Then we define the (conditional) relative
entropy between P (X| Y ) and Q(X| Y ) as

D(P (X| Y )\| Q(X| Y )) =

\int 
log

\biggl( 
dPX| Y

dQX| Y
(x, y)

\biggr) 
dP (x, y)

=

\int \biggl( \int 
log

\biggl( 
dPX| Y

dQX| Y
(x, y)

\biggr) 
dP (x| Y = y)

\biggr) 
dP (y).(1.4)

Total variation merging implies weak merging, and relative entropy merging (i.e.,
D(Pn\| Qn) \rightarrow 0) implies total variation merging via Pinsker's inequality [19].

As (1.4) shows, the relative entropy of two conditional measures is the expecta-
tion of the relative entropy of the conditional measures at a fixed conditional value
D(P (X| Y = y)\| Q(X| Y = y)), where the expectation is taken over the marginal of P
on Y . In the case of the filters, \pi \mu ,\gamma 

n and \pi \nu ,\gamma 
n play the role of the inner conditional

measures, and the strategic measure P\mu ,\gamma is the outer marginal measure over Y[0,n].
We write this as E\mu ,\gamma [D(\pi \mu ,\gamma 

n \| \pi \nu ,\gamma 
n )] where D(\pi \mu ,\gamma 

n \| \pi \nu ,\gamma 
n ) plays the role of the inner

integral in (1.4).

1.2. Control cost and robustness. In addition to filter stability the second,
and perhaps more operational, goal of this paper is to utilize stability to study robust-
ness of optimal control to incorrect priors. We will consider two optimal stochastic
control criteria:

1. The infinite horizon discounted cost

J\beta (\mu , \gamma ) = E\mu ,\gamma 

\Biggl[ \infty \sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
, \beta \in [0, 1).

2. The infinite horizon average cost

J\infty (\mu , \gamma ) = lim sup
N\rightarrow \infty 

1

N
E\mu ,\gamma 

\Biggl[ 
N - 1\sum 
i=0

c(Xi, Ui)

\Biggr] 
.

For a given prior \mu , we will also consider the optimal costs:

J\ast 
\beta (\mu ) = inf

\gamma \in \Gamma 
J\beta (\mu , \gamma ), J\ast 

\infty (\mu ) = inf
\gamma \in \Gamma 

J\infty (\mu , \gamma ).

An optimal control policy \gamma \mu for a given prior \mu is the control policy which
achieves the infimum of the expected cost over all admissible control policies,

J\beta (\mu , \gamma 
\mu ) = inf

\gamma \in \Gamma 
J\beta (\mu , \gamma ) = J\ast 

\beta (\mu ).

Consider then whether a controller falsely thinks the prior of a system is \nu , when
in reality the prior is \mu . Then the controller will implement the policy \gamma \nu which is
optimal with respect to \nu but incurs an expected cost of J\beta (\mu , \gamma 

\nu ). If the controller
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846 CURTIS McDONALD AND SERDAR Y\"UKSEL

had utilized the correctly designed policy, the cost could have been J\ast 
\beta (\mu ). In studying

robustness, we are interested in studying this difference:

J\beta (\mu , \gamma 
\nu ) - J\ast 

\beta (\mu ),(1.5)

J\infty (\mu , \gamma \nu ) - J\ast 
\infty (\mu )(1.6)

for the discounted cost problem and the average cost problem. We will show that
bounds can be derived by utilizing filter stability.

1.3. Relations between the two problems. We now present the connections
between filter stability and robustness (in the context of the discounted cost criterion,
this also applies to the average cost setup). Consider a prior \mu and a control policy
\gamma \nu which is optimal with respect to a different prior \nu . For any n \in \BbbN , we have

J\beta (\mu , \gamma 
\nu ) = E\mu ,\gamma \nu 

\biggl[ \infty \sum 
i=0

\beta ic(Xi, Ui)

\biggr] (1.7)

= E\mu ,\gamma \nu 

\biggl[ n - 1\sum 
i=0

\beta ic(Xi, Ui)

\biggr] 
+ E\mu ,\gamma \nu 

\Biggl[ 
E\mu ,\gamma \nu 

\Biggl[ \infty \sum 
i=n

\beta ic(Xi, Ui)| Y[0,n - 1]

\Biggr] \Biggr] 

= E\mu ,\gamma \nu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
+ (\beta n)E\mu ,\gamma \nu 

\Biggl[ 
E\mu ,\gamma \nu 

\Biggl[ \infty \sum 
i=0

\beta ic(Xn+i, Un+i)| Y[0,n - 1]

\Biggr] \Biggr] 
.

As will be discussed in more detail in the literature review, under mild regularity
conditions for a POMDP an optimal control policy \gamma \mu is a stationary function of
the filter realization at time n, \pi \mu ,\gamma \mu 

n . That is, consider some measurable mapping
\Phi : \scrP (\scrX ) \rightarrow \scrU that maps a probability measure to a control action. Recall an optimal
control policy \gamma \mu = \{ \gamma \mu 

n\} \infty n=0 is a sequence of mappings \gamma \mu 
n : \scrY n+1 \rightarrow \scrU . Then there

exists some operator \Phi such that each \gamma \mu 
n mapping is equivalent to this operator acting

on the filter realization at time n:

\gamma \mu 
n(y[0,n]) = \Phi (P\mu ,\gamma \mu 

(Xn \in \cdot \cdot \cdot | Y[0,n] = y[0,n])) = \Phi (\pi \mu ,\gamma \mu 

n ).

Consider the 0th time stage in the problem. X0 is distributed according to \mu , but the
DM thinks the initial prior is \nu . An observation Y0 is made, and the control action
u0 is a function of the filter realization believing the prior is \nu ,

u0 = \gamma \nu 
0 (y0) = \Phi (\pi \nu ,\gamma \nu 

0 ).

Now consider the nth time stage. Conditioned on Y[0,n - 1], Xn is distributed according

to \pi \mu ,\gamma \nu 

n - (the true predictor), but the DM thinks the distribution is the false predictor

\pi \nu ,\gamma \nu 

n - . An observation Yn is made, and the control action un is the same stationary
function of the filter realization believing the prior is \nu ,

un = \gamma \nu 
n(y[0,n]) = \Phi (\pi \nu ,\gamma \nu 

n ).

Therefore, the optimal policy under prior \nu at time n is the same as the optimal
policy under the prior \nu \prime = \pi \nu ,\gamma \nu 

n - at time 0 since it is a stationary function of the filter
realization:

\gamma \nu 
n(y[0,n]) = \Phi (\pi \nu ,\gamma \nu 

n ) = \Phi (\pi v\prime ,\gamma v\prime 

0 ) = \gamma v\prime 

0 (yn).
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We see that the true predictor at time n, Xn| Y[0,n - 1] \sim \pi \mu ,\gamma \nu 

n - , acts as a new prior
for a restarted control problem, and the control policy implemented is optimal with
respect to the false predictor \nu \prime = \pi \nu ,\gamma \nu 

n - . We then have

E\mu ,\gamma \nu 

\Biggl[ \infty \sum 
i=0

\beta ic(Xi+n, Ui+n)| Y[0,n - 1]

\Biggr] 
= J\beta (\pi 

\mu ,\gamma \nu 

n - , \gamma \nu \prime 
).

Therefore,

J\beta (\mu , \gamma 
\nu ) = E\mu ,\gamma \nu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
+ (\beta n)E\mu ,\gamma \nu 

\Bigl[ 
J\beta (\pi 

\mu ,\gamma \nu 

n - , \gamma \nu \prime 
)
\Bigr] 
.

If we instead apply the correctly designed policy \gamma \mu and let \mu \prime = \pi \mu ,\gamma \mu 

n - be the correctly
initialized predictor, we have

J\ast 
\beta (\mu ) = E\mu ,\gamma \mu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
+ (\beta n)E\mu ,\gamma \mu 

\Bigl[ 
J\beta (\pi 

\mu ,\gamma \mu 

n - , \gamma \mu \prime 
)
\Bigr] 

= E\mu ,\gamma \mu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
+ (\beta n)E\mu ,\gamma \mu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \mu 

n - )
\Bigr] 
.

The difference satisfies

J\beta (\mu , \gamma 
\nu ) - J\ast 

\beta (\mu )

=E\mu ,\gamma \nu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
+ \beta n

\Bigl( 
E\mu ,\gamma \nu 

\Bigl[ 
J\beta (\pi 

\mu ,\gamma \nu 

n - , \gamma \nu \prime 
)
\Bigr] 
 - E\mu ,\gamma \mu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \mu 

n - )
\Bigr] \Bigr) 

=E\mu ,\gamma \nu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
+ \beta n

\Bigl( 
E\mu ,\gamma \nu 

\Bigl[ 
J\beta (\pi 

\mu ,\gamma \nu 

n - , \gamma \nu \prime 
) + J\ast 

\beta (\pi 
\mu ,\gamma \nu 

n - ) - J\ast 
\beta (\pi 

\mu ,\gamma \nu 

n - )
\Bigr] 
 - E\mu ,\gamma \mu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \mu 

n - )
\Bigr] \Bigr) 

=E\mu ,\gamma \nu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(Xi, Ui)

\Biggr] (1.8)

+ \beta n
\Bigl( 
E\mu ,\gamma \nu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \nu 

n - )
\Bigr] 
 - E\mu ,\gamma \mu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \mu 

n - )
\Bigr] \Bigr) (1.9)

+ \beta n
\Bigl( 
E\mu ,\gamma \nu 

\Bigl[ 
J\beta (\pi 

\mu ,\gamma \nu 

n - , \gamma \nu \prime 
) - J\ast 

\beta (\pi 
\mu ,\gamma \nu 

n - )
\Bigr] \Bigr) 

.

(1.10)

Therefore, we see that there are, in general, three costs associated with applying
an incorrectly designed control policy to a control system. The first cost (1.8) can
be thought of as the ``transient"" cost. At time [0, n - 1] the control policy \gamma \nu makes
different control decisions than the optimal policy \gamma \mu . As such, the costs incurred
from time [0, n - 1] will be different for the optimal control policy and the incorrectly
designed policy. The second cost (1.9) is the ``strategic measure cost"": P\mu ,\gamma \nu 

and
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848 CURTIS McDONALD AND SERDAR Y\"UKSEL

P\mu ,\gamma \mu 

place different expected distributions on Xn, which acts as the new prior for
the system for future stages. Therefore, even if the DM implements optimal control
from time n onwards, the ``initial condition"" the DM finds itself in at time n may have
a poor optimal cost over the future time stages. The third cost (1.10) is the ``filter
approximation cost,"" which is the term related to filter stability. Under predictor
stability the falsely initialized predictor \pi \nu ,\gamma \nu 

n - and the true predictor \pi \mu ,\gamma \nu 

n - merge as
time goes on. These three costs form the fundamentals of studying the losses a DM
incurs for using an incorrectly designed policy.

The rest of this paper is organized as follows. In section 2, we review existing
literature related to filter stability, the existence and structure of optimal control
policies, and robustness for stochastic control problems. In section 3, we present our
main results for filter stability in control systems, as well as our results for robustness
derived from filter stability. Proofs and further discussion of the filter stability results
are in section 4, and proofs and discussion of the robustness results are in section 5.
Section 6 discusses generalizations, some extensions, and directions for future research.

2. Literature review.

2.1. Controlled filter stability and nonlinear observability. Observability
is one of the foundational concepts of modern linear systems theory [15, 1, 24, 29]. For
linear systems, exact recovery of any initial condition with measurements available un-
til some finite time is defined as observability and is characterized by an observability
rank condition in both continuous- and discrete-time [16]. For linear systems, such an
observability definition is global (as it applies for all initial states) and is universal in
the control policies applied, as the control policy does not affect the estimation errors
(known as the no-dual effect [3] property). For nonlinear systems, however, due to the
challenges in the analysis which prevent globality as well as control-dependence, more
modest and localized definitions are to be imposed: For deterministic continuous-time
nonlinear systems [22, 39] present local indistinguishability conditions with subtle dif-
ferences, and establish relations with Lie-theoretic characterizations which generalize
observability rank conditions for nonlinear systems defined locally. For discrete-time
deterministic models, observability has also been defined by invertibility or exact re-
covery of an initial state, locally, given measurements with finitely many observations.
Nijmeier [36] developed discrete-time analogues of the observability notions presented
in [22] (see also [39] for sampled continuous-time systems).

Such definitions, either with local or with exact invertibility, are often too restric-
tive for stochastic systems driven by noise. Liu and Bitmead [32, 31] introduced a
nonlinear stochastic observability definition through entropy, where the conditional
entropy of the hidden state given measurements not being the same as the uncon-
ditional entropy implies their observability notion. Ugrinovskii [42] also presents an
information-theoretic formulation, and defines observability as an informativeness,
but not invertibility, condition, which would lead to a mild notion of observability for
nonlinear systems.

In the filtering literature for control systems, the classical setup involves the lin-
ear Gaussian system. The filter in this case is the celebrated Kalman filter, where
the finite-dimensional Kalman filter is computed recursively using the Riccati equa-
tion. Under linear observability and controllability conditions, the Riccati equation
admits a unique solution [29, 30, 15], which is the unique limit of the Riccati recur-
sions regardless of the initialization. Thus, the Kalman filter is stable with respect to
incorrect, though still Gaussian, priors under the aforementioned conditions (we note
that partial convergence and robustness results on the asymptotic equivalence of con-
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ROBUST CONTROL AND CONTROLLED FILTER STABILITY 849

ditional expectations and linear estimates for non-Gaussian priors for linear systems
are reported in [40]). This concept of being insensitive to incorrect initializations is
called filter stability.

Aside from the above, much of the results on filter stability involves control-free
systems. Thus, results have considered partially observed Markov processes (POMPs)
as opposed to partially observed Markov decision processes (POMDPs). Since there
is no control in such systems, there is no past dependency in the system and the pair
(Xn, Yn)

\infty 
n=0 is always a Markov chain. For such control-free models, filter stability

has been studied extensively, and we refer the reader to [18] for a comprehensive re-
view and a collection of different approaches. As discussed in [18], filter stability may
arise via two separate mechanisms: (i) The transition kernel is in some sense suffi-
ciently ergodic, forgetting the initial measure and therefore passing this insensitivity
(to incorrect initializations) onto the filter process. (ii) The measurement channel
is sufficiently informative (or the system is sufficiently observable) about the under-
lying state. Much of the control-free literature has focused on the first of the two
mechanisms noted above.

For the second type of mechanisms noted above, Chigansky and Liptser [17] and
a series of papers by van Handel [43, 44, 46] have presented the first conditions, to the
best of our knowledge, where various observability/informativeness conditions lead to
filter stability for control-free systems (see also an earlier study, [41], for the linear
measurements setup). A related fundamental result which pairs with observability,
intrinsically connected with the analysis in the papers noted above, is that of Blackwell
and Dubins [7]: If P and Q are two measures on a fully observed stochastic process
\{ Xn\} \infty n=0 with P \ll Q, then the conditional distributions on the future based on
the past merge in total variation P almost surely (a.s.), that is, \| P (X[n+1,\infty ) \in 
\cdot | X[0,n]) - Q(X[n+1,\infty ) \in \cdot | X[0,n])\| TV \rightarrow 0 P a.s.. This result immediately shows that

\| P\mu ,\gamma (Yn| Y[0,n - 1]) - P \nu ,\gamma (Yn| Y[0,n - 1])\| TV \rightarrow 0 P\mu ,\gamma 

when \mu \ll \nu and when combined with uniform observability [44] results in predictor
stability. We refer the reader to [17, 44] for related results utilizing such a convergence
argument though [17] arrives at the convergence result without [7]. Van Handel also
provides a definition of observability for compact state spaces in [44]: A (control-free)
system is observable if every prior results in a unique probability measure on the mea-
surement sequences, P\mu (Y[0,\infty ) \in \cdot ) = P \nu (Y[0,\infty ) \in \cdot ) =\Rightarrow \mu = \nu . For noncompact
spaces, there are further characterizations [44], such as uniform observability.

Again, for control-free systems, [33] introduces an explicit notion of nonlinear
observability that we continue to work with in this paper. A control-free model is
called one step observable if for every f \in Cb(\scrX ) and every \epsilon > 0 there exists a
measurable and bounded function g such that\bigm\| \bigm\| \bigm\| \bigm\| f(\cdot ) - \int 

\scrY 
g(y)Q(dy| \cdot )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

< \epsilon .(2.1)

We will show one step observability has an identical application in control systems.
However, for control-free models [33] also has a notion of multiple step observability:
A POMP is N -step observable if for every f \in Cb(\scrX ) and every \epsilon > 0 there exists a
measurable and bounded function g such that\bigm\| \bigm\| \bigm\| \bigm\| f(\cdot ) - \int 

\scrY 
g(y[1,N ])Q(dy[1,N ]| X1 = \cdot )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

< \epsilon .(2.2)
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850 CURTIS McDONALD AND SERDAR Y\"UKSEL

A further notion is observability: A POMP is observable if for every f \in Cb(\scrX ) and
every \epsilon > 0 there exist N \in \BbbN and a measurable and bounded function g such that
(2.2) applies. We will show that such multistep definitions of observability are more
intricate in a controlled setup (POMDP); see section 6.1.

Building on a functional analytic duality result between controllability and ob-
servability, and along the same spirit as in [44] with respect to an analysis involving
the null space of an appropriate linear map, a recent work on nonlinear filter stability
is [28].

We outline the rigorous argument for controlled filter stability in section 4, but
here we summarize the main ideas. Blackwell and Dubins [7] ensure that the condi-
tional measures on the observed chains \{ Yn\} \infty n=0 merge as time goes to infinity. We
would like to trace this back to the unobserved variable, which is where a notion of
observability allows us to conclude the Xn| Y[0,n] conditionals merge as well. However,
in a control system the past reliance of control policies means \{ Xn, Yn\} \infty n=0 is not a
Markov chain as it is in the uncontrolled case. Nonetheless, the observation channel
Yn| Xn \sim Q is unaffected by control and is time invariant; thus with our notion of ``one
step"" observability we are able to recreate similar merging results in the controlled
setup.

For both control-free and controlled setups, [35] studied filter stability through
the use of Dobrushin's coefficient involving both of the kernels T and Q. Aside from
[35], we are not aware of studies which also consider the controlled setup; the following
from [35] will be utilized in our robustness analysis in the paper (for the discounted
cost criterion analysis).

Definition 2.1 (see [20, eq. 1.16]). For a kernel operator K : S1 \rightarrow \scrP (S2) (that
is a regular conditional probability from S1 to S2) for standard Borel spaces S1, S2,
we define the Dobrushin coefficient as

\delta (K) = inf

n\sum 
i=1

min(K(x,Ai),K(y,Ai))t,(2.3)

where the infimum is over all x, y \in S1 and all partitions \{ Ai\} ni=1 of S2.

Theorem 2.2 (see [35, Theorem 4.1]). Let \~\delta (T ) := infu\in \scrU \delta (T (\cdot | \cdot , u)). Assume
that for \mu , \nu \in \scrP (\scrX ), we have \mu \ll \nu . Then we have

E\mu ,\gamma 
\bigl[ 
\| \pi \mu ,\gamma 

n+1  - \pi \nu ,\gamma 
n+1\| TV

\bigr] 
\leq (1 - \~\delta (T ))(2 - \delta (Q))E\mu ,\gamma [\| \pi \mu ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV ] .

In particular, defining \alpha := (1 - \~\delta (T ))(2 - \delta (Q)), we have

E\mu ,\gamma [\| \pi \mu ,\gamma 
n  - \pi \nu ,\gamma 

n \| TV ] \leq 2\alpha n.

2.2. On regularity of POMDPs and optimal policies. It is known that
any POMDP can be reduced to a (completely observable) belief-MDP [47, 37], whose
states are the posterior state distributions or beliefs of the observer; that is, the state
at time t is the filter realization given in (1.3). We call the resulting MDP the belief-
MDP. If one reduces a POMDP to such a belief-MDP and if one can establish the
measurable selection criteria [23, Chap. 3] (e.g., via showing the weak Feller property),
existence of optimal solutions for discounted cost problems would follow. Indeed,
recently [21, 25] have established complementary conditions on when the kernel for
the belief-MDP is weakly continuous.

Thus, for the discounted cost criterion, existence of optimal solutions, which are
also stationary (in the belief state), follows. Existence also holds for the average cost
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ROBUST CONTROL AND CONTROLLED FILTER STABILITY 851

problem under some further technical conditions facilitating the vanishing discount
method [10, 13, 12, 14]. The convex analytic method of Borkar [11] can also be utilized
under the weak continuity conditions presented above (also see [23]); however, for the
average cost setup some restrictions may need to be imposed on the initial state [2].

Robustness in control refers to the property that a control policy operates well
under misspecified system dynamics or models, yet this concept does not have a
singular definition in the literature. Robustness problems often involve studies on
when a controller has an incorrect system model, or has some uncertainty about the
specifics of the actual system model. A common approach in the literature is to design
controllers that work with guaranteed performance bounds over a class of uncertain
systems under some structured constraints (see [5, 48]). However, these studies are
different from what we consider here in that the controller is aware that she may have
the wrong system specifications and has some limited idea of what the possible models
may be. In our problem, we start with two disparate priors \mu and \nu and show that
filter stability leads to robustness (and not just continuity as shown in [26]). Thus,
our paper provides some unification between controlled filter stability and optimal
robust stochastic control.

We also note that controlled filter stability (in total variation and weak conver-
gence/merging senses) has been utilized in rigorously establishing near-optimality of
finite memory (finite window) control policies recently in [27].

2.3. Contributions.
(i) Controlled filter stability. We study the filter stability problem for nonlinear

stochastic systems driven by control. Towards this goal, we present a defini-
tion of observability, inspired from a related definition from our prior work
for control-free systems. Using this definition, we provide sufficient conditions
for when a falsely initialized filter merges with the correctly initialized filter
over time. As noted, a primary difference between control-free and controlled
partially observed Markov chains is that the filter is always Markovian under
a control-free model but not so in a controlled setup as the control policy may
depend on past measurements in an arbitrary, measurable manner. We also
establish relations between various notions of stability for controlled nonlinear
filters.

(ii) Robustness to incorrect priors under filter stability. Building on our results
on filter stability, we study the robustness problem in terms of the mismatch
loss in the expected cost incurred for implementing an incorrectly designed
control policy (optimal for an incorrect initialization) compared to an optimal
policy (for a correct initialization), and relate filter stability and robustness.
In particular, we show that, unlike [26] where only continuity properties of
mismatch in the incorrect priors were established, under filter stability even
distant incorrect initial priors may lead to correct costs; and under mild con-
ditions, filter stability leads to insensitivity of mismatch to incorrect priors,
and not just continuity in them.

3. Statements of main results. We define here the different notions of stabil-
ity for the filter.

Definition 3.1.
(i) A filter process is said to be stable in the sense of weak merging with respect to

a policy \gamma P\mu ,\gamma a.s. if there exists a set of measurement sequences A \subset \scrY \BbbZ +

with P\mu ,\gamma probability 1 such that for any sequence in A, for any f \in Cb(\scrX )
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852 CURTIS McDONALD AND SERDAR Y\"UKSEL

and any prior \nu with \mu \ll \nu (i.e., for all Borel B \nu (B) = 0 =\Rightarrow \mu (B) = 0),
we have limn\rightarrow \infty 

\bigm| \bigm| \int fd\pi \mu ,\gamma 
n  - 

\int 
fd\pi \nu ,\gamma 

n

\bigm| \bigm| = 0.
(ii) A filter process is said to be stable in the sense of total variation in expec-

tation with respect to a policy \gamma if for any measure \nu with \mu \ll \nu we have
limn\rightarrow \infty E\mu ,\gamma [\| \pi \mu ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV ] = 0.

(iii) A filter process is said to be stable in the sense of total variation with respect
to a policy \gamma P\mu ,\gamma a.s. if there exists a set of measurement sequences A \subset \scrY \BbbZ +

with P\mu ,\gamma probability 1 such that for any sequence in A, for any measure \nu 
with \mu \ll \nu we have limn\rightarrow \infty \| \pi \mu ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV = 0 P\mu ,\gamma a.s.

(iv) A filter process is said to be stable in the sense of relative entropy with respect
to a policy \gamma if for any measure \nu with \mu \ll \nu we have limn\rightarrow \infty E\mu ,\gamma [D(\pi \mu ,\gamma 

n \| 
\pi \nu ,\gamma 
n )] = 0.

(v) The filter is said to be universally stable in one of the above notions if the
notion holds with respect to every admissible policy \gamma \in \Gamma .

Predictor stability is defined in an analogous fashion for each of the criteria above.
These notions of stability are asymptotic notions of stability; they do not imply a rate
of convergence. In some of the robustness results to be presented, we need a stronger
notion of stability (see Theorem 2.2).

Definition 3.2. A POMP is said to be universally exponentially stable in total
variation if there exists a coefficient 0 < \alpha < 1 such that for any \mu \ll \nu and any
policy \gamma we have

E\mu ,\gamma [\| \pi \mu ,\gamma 
n+1  - \pi \nu ,\gamma 

n+1\| TV ] \leq \alpha E\mu ,\gamma [\| \pi \mu ,\gamma 
n  - \pi \nu ,\gamma 

n \| TV ], n \in \{ 0, 1, . . .\} .

3.1. Controlled filter stability results. A key condition that will drive the
stability results is the following definition of observability.

Definition 3.3 (a definition of observability for controlled stochastic systems).
A POMDP is called one step observable (universal in admissible control policies) if
for every f \in Cb(\scrX ) and every \epsilon > 0 there exists a measurable and bounded function
g such that \bigm\| \bigm\| \bigm\| \bigm\| f(\cdot ) - \int 

\scrY 
g(y)Q(dy| \cdot )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

< \epsilon .(3.1)

Theorem 3.4. Assume that \mu \ll \nu and that the POMDP is one step observable.
Then the predictor is universally stable weakly a.s.

In section 6, we present some generalizations but also explain why the proof
method used for control-free systems does not apply for controlled systems for more
relaxed (in particular, anN -step generalization) definitions of observability. A number
of examples for measurement channels satisfying Definition 3.3 have been reported in
[33, section 3].

The observability notion defined above only results in stability of the predictor
in the weak sense P\mu ,\gamma a.s. We next extend this stability to total variation P\mu ,\gamma 

a.s. Let the measurement channel Q be dominated in the sense that there exists a
reference measure \lambda such that \forall x \in \scrX , Q(Y \in \cdot | xn = x) \ll \lambda (\cdot ). Then, we define the
Radon--Nikodym derivative

q(x, y) :=
dQ(Yn \in \cdot | xn = x)

d\lambda 
(y),(3.2)

which serves as a likelihood function (a conditional probability density function (pdf's)).
We will consider one of the following assumptions.
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Assumption 3.1.
(i) T (\cdot | x, u) is absolutely continuous with respect to a dominating measure \phi for

every x \in \scrX , u \in \scrU , so that t(x1, x, u) =
dT (\cdot | x,u)

d\phi (x1), where t is continuous
in x for every x1 \in \scrX and u \in \scrU .

(ii) q(x, y) is bounded and continuous in x for every fixed y. Furthermore, q(x, y) >
0 for all x \in \scrX , y \in \scrY .

Assumption 3.2. T (\cdot | x, u) is absolutely continuous with respect to a dominating

measure \phi for every x \in \scrX , u \in \scrU , so that t(x1, x, u) =
dT (\cdot | x,u)

d\phi (x1). The family of

(conditional densities) \{ t(\cdot , x, u)\} x\in \scrX ,u\in \scrU is uniformly bounded and equicontinuous.

Theorem 3.5. Let \mu \ll \nu . Let Assumption 3.1 or Assumption 3.2 hold. If the
predictor is universally stable in the weak sense a.s., then it is also universally stable
in total variation a.s.

One of the key steps in the proof of Theorem 3.4 is that P\mu ,\gamma (Yn \in \cdot | Y[0,n - 1])
and P \nu ,\gamma (Yn \in \cdot | Y[0,n - 1]) merge in total variation P\mu ,\gamma a.s. as n \rightarrow \infty . To achieve
this in a POMDP, we apply Blackwell and Dubins [7] to the measurement process
\{ Yn\} \infty n=0. However, [7] is fundamentally about predictive measures of the future given
the past, and hence only directly implies predictor stability results, not the filter.
Filter stability is studied next.

Assumption 3.3. The measurement channel Q is continuous in total variation.
That is, for any sequence an \rightarrow a \in \scrX we have \| Q(\cdot | an) - Q(\cdot | a)\| TV \rightarrow 0 or in other
words \| P (Y0 \in \cdot | X0 = an) - P (Y0 \in \cdot | X0 = a)\| TV \rightarrow 0.

Assumption 3.1(ii), together with the related domination condition (3.2), implies
Assumption 3.3 (see [25, section 2.3]); see also [25, Theorem 3] for a partial converse
result.

Theorem 3.6.
(i) Let Assumption 3.3 hold. If the predictor is universally stable in weak merging

a.s., then the filter is universally stable in weak merging in expectation.
(ii) The filter is universally stable in total variation in expectation if and only if

the predictor is universally stable in total variation in expectation.
(iii) The filter is universally stable in total variation in expectation if and only if

it is universally stable in total variation a.s.
(iv) Let \mu \ll \nu , and assume for any policy \gamma there exists some finite n such that

E\mu ,\gamma [D(\pi \mu ,\gamma 
n \| \pi \mu ,\gamma 

n )] < \infty and some m such that E\mu ,\gamma [D(P\mu ,\gamma | \scrF \scrY 
0,m

\| (P \nu ,\gamma | \scrF \scrY 
0,m

)]

< \infty . Then the filter is universally stable in relative entropy if and only if it
is universally stable in total variation in expectation.

The proofs are given in section 4.

3.2. Results on robustness to incorrect priors. Robustness and continuity
properties in incorrect priors have been studied in [26] for the single stage cost problem
and the infinite horizon discounted cost problem. This paper provides conditions for
when robustness difference in (1.6) goes to 0 as \nu \rightarrow \mu in either weak convergence or
total variation topologies. This paper provides the following useful result.

Theorem 3.7 (see [26, Theorem 3.2]). Assume the cost function c is bounded,
nonnegative, and measurable. Let \gamma \nu be the optimal control policy designed with respect
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to a prior \nu . Then we have

J\beta (\mu , \gamma 
\nu ) - J\ast 

\beta (\mu ) \leq 2
\| c\| \infty 
1 - \beta 

\| \mu  - \nu \| TV .(3.3)

While the average cost case is not studied in [26], we can adapt the technique to
achieve a similar result for the average cost problem (see the appendix for a proof).

Theorem 3.8. Assume the cost function c is bounded, nonnegative, and measur-
able. Let \gamma \nu be the optimal control policy designed with respect to a prior \nu . Then we
have

J\infty (\mu , \gamma \nu ) - J\ast 
\infty (\mu ) \leq 2\| c\| \infty \| \mu  - \nu \| TV .

However, in the following, we will refine these results by considering the effects
of filter stability on robustness to incorrect priors. Unlike [26], where continuity in
priors was studied, here we utilize filter stability to arrive at stronger insensitivity
and robustness results.

For the average cost case, asymptotic filter stability (without a rate of conver-
gence) may suffice for robustness, as we establish in the following.

Theorem 3.9. Assume the cost function c is bounded, nonnegative, and measur-
able and assume the predictor is universally stable in total variation in expectation.
Consider the span seminorm \| \cdot \| sp:

\| J\ast 
\infty \| sp := sup

\mu 1\in \scrP (\scrX )

J\ast 
\infty (\mu 1) - inf

\mu 2\in \scrP (\scrX )
J\ast 
\infty (\mu 2);

then we have

J\infty (\mu , \gamma \nu ) - J\ast 
\infty (\mu ) \leq \| J\ast 

\infty \| sp.

In particular, if \| J\ast 
\infty \| sp = 0, then the average cost optimization problem is com-

pletely robust to initialization errors (see [10, 13, 12, 14] for some setups where this
holds).

We next study the discounted cost problem. This result, due to the discounted
nature, is not as strong as the one above involving average cost control as it involves
exponential filter stability to mitigate the effects of transient costs (which are absent
in the average cost criterion setup).

Theorem 3.10. Assume the cost function c is bounded, nonnegative, and mea-
surable and assume the filter is universally exponentially stable in total variation in
expectation with coefficient \alpha . Let

\| J\ast 
\beta \| sp = sup

\mu 1\in \scrP (\scrX )

J\ast 
\beta (\mu 1) - inf

\mu 2\in \scrP (\scrX )
J\ast 
\beta (\mu 2),

\rho =

\biggl( 
\| c\| \infty 
1 - \beta 

 - \| J\ast 
\beta \| sp

\biggr) \biggl( 
\| c\| \infty 
1 - \beta 

\biggr)  - 1

,(3.4)

f(n) = \beta n(\rho  - 4\alpha n), n\ast =
ln
\Bigl( \bigl( 

\rho 
4

\bigr) \Bigl( ln(\beta )
ln(\alpha )+ln(\beta )

\Bigr) \Bigr) 
ln\alpha 

.(3.5)

For any priors \mu \ll \nu , we have

J\beta (\mu , \gamma 
\nu ) - J\ast 

\beta (\mu ) \leq 
\| c\| \infty 
1 - \beta 

(1 - max(f(\lfloor n\ast \rfloor ), f(\lceil n\ast \rceil ))).(3.6)
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This result may be considered a ``prior independent"" bound since the bound on the
robustness distance does not depend on the actual priors \mu and \nu being considered.
This is useful when we have no real knowledge of how ``close"" (in total variation
distance) \mu and \nu are; thus, if they are far apart the bound will not change. Comparing
(3.3) and (3.6), we see that when \| \mu  - \nu \| TV is small, i.e., our priors start close together
to begin with, the bound (3.3) is actually better than our prior independent bound.
However, when they are far apart it may be that

2\| \mu  - \nu \| TV > 1 - max(f(\lfloor n\ast \rfloor ), f(\lceil n\ast \rceil ))

and the prior independent bound is stronger.

4. Proofs on predictor and filter stability results.

4.1. Predictor stability results. Our approach to predictor stability is as
follows. By the result of Blackwell and Dubins [7] we have that the conditional
distributions on the measures merge in total variation almost surely for any control
policy. Given any measurable and bounded function g : \scrY N+1 \rightarrow \BbbR of multiple
measurements we have\int 

g(y[n,n+N ])P
\mu ,\gamma (dy[n,n+N ]| Y[0,n - 1]) - 

\int 
g(y[n,n+N ])P

\nu ,\gamma (dy[n,n+N ]| Y[0,n - 1])(4.1)

goes to zero P\mu ,\gamma almost surely as n \rightarrow \infty for any control policy \gamma . Consider some
continuous and bounded function f on the state space \scrX . In considering the weak
merging of the predictor we take the limit of the terms\bigm| \bigm| \bigm| \bigm| \int f(xn)P

\mu ,\gamma (dxn| y[0,n - 1]) - 
\int 

f(xn)P
\nu ,\gamma (dxn| y[0,n - 1])

\bigm| \bigm| \bigm| \bigm| .(4.2)

Now, if we could replace f with a function g : \scrY N+1 \rightarrow \BbbR integrated over a conditional
measure of P\mu ,\gamma (Y[0,N ] \in \cdot | X0 = x), then we would have\bigm| \bigm| \bigm| \bigm| \int \biggl( \int g(\~y[0,N ])P

\mu ,\gamma (d\~y[0,N ]| X0 = xn)

\biggr) 
P\mu ,\gamma (dxn| y[0,n - 1])

 - 
\int \biggl( \int 

g(\~y[0,N ])P
\mu ,\gamma (d\~y[0,N ]| X0 = xn)

\biggr) 
P \nu ,\gamma (dxn| y[0,n - 1])

\bigm| \bigm| \bigm| \bigm| .
If we can then show that this is the same as expression (4.1), then the weak stability
of the predictor follows. However, this will require some special properties of the
conditional measure of Y[n,n+N ]| Xn. Let us consider a level of abstraction higher
to better view these properties in more succinct notation. Consider three stochastic
processes A = \{ An\} \infty n=0, B = \{ Bn\} \infty n=0, C = \{ Cn\} \infty n=0 defined on the same measurable
space (\Omega ,\scrF ) mapping to spaces \scrA ,\scrB , \scrC with their respective Borel sigma fields. We
can think of A and C as the ``observed"" processes and B as some ``hidden"" process
whose realizations are not known by an observer. For possible measures P and P \ast on
(\Omega ,\scrF ) we have the following definitions.

Definition 4.1. For a measure P we say the process C only depends on the
process A through B if for every n \in \BbbN we have P a.s.

P (Cn \in \cdot | An = a,Bn = b) = P (Cn \in \cdot | Bn = b).
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856 CURTIS McDONALD AND SERDAR Y\"UKSEL

Definition 4.2. For a measure P we say the channel C| B is time homogeneous
if for every n \in \BbbN , P a.s.

P (Cn \in \cdot | Bn = b) = P (C0 \in \cdot | B0 = b).

Definition 4.3. For two measures P and P \ast we say the channel C| B is measure
equivalent if for all n \in \BbbN we have, P, P \ast a.s.

P (Cn \in \cdot | Bn = b) = P \ast (Cn \in \cdot | Bn = b).

Definition 4.4. For a measure P , the channel C| B is observable if for every
continuous and bounded function f : \scrB \rightarrow \BbbR and every \epsilon > 0 we can find a measurable
and bounded function g : \scrC \rightarrow \BbbR such that

sup
b\in \scrB 

\bigm| \bigm| \bigm| \bigm| f(b) - \int 
\scrC 
g(c0)P (dc0| B0 = b)

\bigm| \bigm| \bigm| \bigm| < \epsilon .

Lemma 4.5. Let A,B,C be stochastic processes as above and assume measures
P, P \ast satisfy Definitions 4.1--4.4. Assume that

lim
n\rightarrow \infty 

\| P (Cn| An) - P \ast (Cn| An)\| TV = 0 P a.s.;

then we have that P (Bn| An) and P \ast (Bn| An) merge weakly P a.s.

Proof. Consider any continuous and bounded function f : \scrB \rightarrow \BbbR . Pick any
\epsilon > 0; by observability (Definition 4.4) we can find a measurable and bounded function
g : \scrC \rightarrow \BbbR such that

\~f(b) =

\int 
\scrC 
g(c0)P (dc0| B0 = b), \| f  - \~f\| \infty <

\epsilon 

3
.

Now consider\bigm| \bigm| \bigm| \bigm| \int f(bn)P (dbn| an) - 
\int 

f(bn)P
\ast (dbn| an)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| \int \~f(bn)P (dbn| an) - 

\int 
\~f(bn)P

\ast (dbn| an)
\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int (f  - \~f)(bn)P (dbn| an)

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int (f  - \~f)(bn)P
\ast (dbn| an)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| \int \~f(bn)P (dbn| an) - 

\int 
\~f(bn)P

\ast (dbn| an)
\bigm| \bigm| \bigm| \bigm| + 2\| f  - \~f\| \infty 

\leq 
\bigm| \bigm| \bigm| \bigm| \int \~f(bn)P (dbn| an) - 

\int 
\~f(bn)P

\ast (dbn| an)
\bigm| \bigm| \bigm| \bigm| + 2

3
\epsilon .(4.3)

We then have\bigm| \bigm| \bigm| \bigm| \int 
\scrB 
\~f(bn)P (dbn| an) - 

\int 
\scrB 
\~f(bn)P

\ast (dbn| an)
\bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \int 
\scrB 

\int 
\scrC 
g(c0)P (dc0| B0 = bn)P (dbn| an) - 

\int 
\scrB 

\int 
\scrC 
g(c0)P (dc0| B0 = bn)P

\ast (dbn| an)
\bigm| \bigm| \bigm| \bigm| .D
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Furthermore, by measure equivalence (Definition 4.3) we can replace P (dc0| B0 = bn)
with P \ast (dc0| B0 = bn) in the second term. By time homogeneity (Definition 4.2), we
can replace P (dc0| B0 = bn) with P (dcn| Bn = bn) and the same for P \ast . We then have\bigm| \bigm| \bigm| \bigm| \int 

\scrB 

\int 
\scrC 
g(cn)P (dcn| Bn = bn)P (dbn| an) - 

\int 
\scrB 

\int 
\scrC 
g(cn)P

\ast (dcn| Bn = bn)P
\ast (dbn| an)

\bigm| \bigm| \bigm| \bigm| .
By assumption, C only depends on A through B (Definition 4.1), so we can write
P (dcn| Bn = bn) = P (dcn| Bn = bn, An = an) for any an. We finally apply the chain
rule for conditional probability, and we have

\bigm| \bigm| \bigm| \bigm| \int 
\scrC 
g(cn)P (dcn| an) - 

\int 
\scrC 
g(cn)P

\ast (dcn| an)
\bigm| \bigm| \bigm| \bigm| \leq \| g\| \infty \| P (Cn| An) - P \ast (Cn| An)\| TV .

(4.4)

By assumption, this goes to zero P a.s. as n \rightarrow \infty (where the set of convergence of
measure 1 applies for all g by total variation convergence) so we can find an N where
\forall n > N we have (4.4) is less than \epsilon 

3 , and therefore (4.3) is less than \epsilon .

Proof of Theorem 3.4. We apply Lemma 4.5 to our one step observable POMDP.
Denote the processes An = Y[0,n - 1], Bn = Xn, and Cn = Yn. Fix any control policy
\gamma . We must then check that for the measures P\mu ,\gamma and P \nu ,\gamma these processes satisfy
Definitions 4.1--4.4. The measurement channel Yn| Xn is unaffected by the presence
of control and independent of the policy chosen. The distribution of Yn is fully
determined by Q and the realization of Xn:

P\mu ,\gamma (Yn| Y[0,n - 1], Xn) = Q(Yn| Xn) = P \nu ,\gamma (Yn| Xn, Y[0,n - 1]).

Therefore, the process Yn only depends on Y[0,n - 1] through Xn (Definition 4.1). Fur-
thermore, the channel between Yn| Xn is Q regardless of the time index or the initial
measure. Therefore, the channel is time homogeneous (Definition 4.2) and measure
equivalent (Definition 4.3). The process is observable (Definition 4.4) by assumption
of being one step observable. The assumption \mu \ll \nu implies P\mu ,\gamma | \scrF \scrY 

0,\infty 
\ll P \nu ,\gamma | \scrF \scrY 

0,\infty 
.

\{ Yn\} \infty n=0 is a fully observed stochastic process. Therefore, by Blackwell and Dubins
[7] we have that

\| P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Y[0,n - 1]) - P \nu ,\gamma (Y[n,n+N - 1] \in \cdot | Y[0,n - 1])\| TV \rightarrow 0.(4.5)

Therefore, we satisfy all the conditions of Lemma 4.5 and the weak merging of the
predictor follows. This holds for any \gamma , so we have universal stability.

We first state the following supporting results.

Lemma 4.6. The (measurement-update) map

(\pi \mu ,\gamma 
n - 

, yn) \mapsto \rightarrow \pi n : \pi \mu ,\gamma 
n (dxn) : =

q(yn| xn)\pi 
\mu ,\gamma 
n - (dxn)\int 

\scrX q(yn| xn)\pi 
\mu ,\gamma 
n - (dxn)

,

which maps from \scrP (\scrX ) \times \scrY to \scrP (\scrX ), is weakly continuous in \pi n - for almost every
y, provided that q(x, y) is positive, bounded, and continuous in x for every fixed y.

Proof. Consider a continuous and bounded f , and let \pi m
n - 

\rightarrow \pi n - weakly. Then,
P\mu ,\gamma a.s., \int 

f(xn)
q(xn, yn)\pi 

m
n - 

(dxn)\int 
\scrX q(xn, yn)\pi m

n - 
(dxn)

=

\int 
f(xn)q(xn, yn)\pi 

m
n - 

(dxn)\int 
\scrX q(xn, yn)\pi m

n - 
(dxn)

.

Since q is bounded continuous, both the numerator and the denominator converge.
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858 CURTIS McDONALD AND SERDAR Y\"UKSEL

Lemma 4.7. Let T (dx1| x, u) = t(x1, x, u)\phi (dx1), where t is continuous in x for
every x1 and u. Then, for any policy \gamma the (time-update) map

(\pi \mu ,\gamma 
n , un) \mapsto \rightarrow \pi \mu ,\gamma 

n+1 - : \pi \mu ,\gamma 
n+1 - 

(dxn+1) :=

\int 
\scrX 
T (xn+1| xn, un)\pi 

\mu ,\gamma 
n (dxn),

which maps from \scrP (\scrX )\times \scrU to \scrP (\scrX ), is such that if \pi \nu ,\gamma 
n \rightarrow \pi \mu ,\gamma 

n weakly, then \pi \nu ,\gamma 
n+1 - \rightarrow 

\pi \mu ,\gamma 
n+1 - in total variation.

Proof. We will build on Scheff\'e's lemma [6]. For every given history and action,
we have

\pi \nu ,\gamma 
n+1 - 

(dxn+1) =

\int 
T (dxn+1| xn, un)\pi 

\nu ,\gamma 
n (dxn).

Now,
\int 
T (dxn+1| xn, un) is such that for every fixed un, as \pi 

m
n \rightarrow \pi n weakly\int 

xn+1\in \cdot 

\int 
xn\in \scrX 

t(xn+1, xn, un)\phi (dxn+1)\pi 
m
n (dxn)

\rightarrow 
\int 
xn+1\in \cdot 

\int 
xn\in \scrX 

t(xn+1, xn, un)\phi (dxn+1)\pi n(dxn)

in total variation since for every fixed z, the Radon--Nikodym derivative with respect
to \phi ,

d
\int 
t(xn+1, xn, un)\phi (\cdot )\pi m

n (dxn)

d\phi 
(z) =

\int 
t(z, xn, un)\pi 

m
n (dxn),

satisfies pointwise convergence
\int 
t(z, xn, un)\pi 

m
n (dxn) \rightarrow 

\int 
t(z, xn, un)\pi n(dxn) (as \pi 

m
n

\rightarrow \pi n weakly), and Scheff\'e's lemma implies that convergence is in total variation. We
apply this result to the sequence \pi \nu ,\gamma 

n converging to \pi \mu ,\gamma 
n .

Proof of Theorem 3.5.
(i) Under Assumption 3.1, the proof follows from Lemmas 4.6 and 4.7. While in

Lemmas 4.6 and 4.7 we consider convergence (and not merging), we note that the
proof of Lemma 4.6 also implies weak merging of the posteriors as the priors weakly
merge, and by considering the signed measure \pi \nu ,\gamma 

n  - \pi \mu ,\gamma 
n in the proof of Lemma 4.7,

total variation merging is a result of a generalized Scheff\'e's lemma [8, Theorem 2.8.9].
(ii) Under Assumption 3.2, the proof technique follows the approach taken in

[33, Theorem 2.10], which we will briefly recap and refer the reader to for a full
consideration. Under Assumption 3.2, both predictors \pi \mu 

n - and \pi \nu 
n - admit pdf's f\mu 

n - 
and f\nu 

n - with respect to the dominating measure. Define the difference of the pdf's
fn - = f\mu 

n -  - f\nu 
n - , which is then P\mu ,\gamma a.s. a uniformly bounded and equicontinuous

family. We can then apply the Arzel\`a--Ascoli theorem [38] to show over a compact set
every subsequence of \{ fn - \} \infty n=0 admits a further subsequence that converges uniformly
to 0. Due to the assumed \sigma -compactness, the analysis carries over to the entire
state space pointwise. Since the measures merge weakly, by [9, Theorem 8.6.2] total
variation merging P\mu ,\gamma a.s. follows.

4.2. Filter stability results. We will present the proof of each of the results
in Theorem 3.6 separately.

Proof of Theorem 3.6 (i). The proof is the same as [33, Theorem 2.9] with slight
notational changes.

We now present some supporting results on the Radon--Nikodym derivatives.
These results are proven in [33] for the control-free case (building in part on [45]), but
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carry over with some additional work to the controlled environment. A sketch of the
proof of the following lemma is given in the appendix.

Lemma 4.8 (see [33, Lemma 4.8]). Assume \mu \ll \nu , and fix any control policy \gamma .
For any two sigma fields \scrG 1,\scrG 2 \subset \scrF \scrX 

0,\infty \vee \scrF \scrY 
0,\infty we have

\| P\mu ,\gamma | \scrG 1 | \scrG 2  - P \nu ,\gamma | \scrG 1 | \scrG 2\| TV

=
E\nu ,\gamma 

\Bigl[ \bigm| \bigm| \bigm| E\nu ,\gamma 
\Bigl[ 
d\mu 
d\nu (X0)| \scrG 1 \vee \scrG 2

\Bigr] 
 - E\nu ,\gamma 

\Bigl[ 
d\mu 
d\nu (X0)| \scrG 2

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrG 2

\Bigr] 
E\nu ,\gamma 

\Bigl[ 
d\mu 
d\nu (X0)| \scrG 2

\Bigr] P\mu ,\gamma a.s.

Theorem 4.9. Assume \mu \ll \nu and fix any control policy \gamma . The predictor is
stable in the sense of total variation in expectation with respect to the policy \gamma if and
only if

E\nu ,\gamma 

\left[  d\mu 

d\nu 
(X0)

\bigm| \bigm| \bigm| \bigm| \bigcap 
n\geq 1

\scrF \scrY 
0,\infty \vee \scrF \scrX 

n,\infty 

\right]  = E\nu ,\gamma 

\biggl[ 
d\mu 

d\nu 
(X0)

\bigm| \bigm| \bigm| \bigm| F\scrY 
0,\infty 

\biggr] 
P \nu ,\gamma a.s.(4.6)

Proof. Begin with the form laid out in Lemma 4.8. We recognize that for the
predictor, \scrG 1 = \sigma (Xn) and \scrG 2 = \sigma (Y[0,n - 1]), we have

\| \pi \mu ,\gamma 
n -  - \pi \nu ,\gamma 

n - \| TV =
E\nu ,\gamma 

\Bigl[ \bigm| \bigm| \bigm| E\nu ,\gamma [d\mu d\nu (X0)| Y[0,n - 1], Xn] - E\nu ,\gamma [d\mu d\nu (X0)| Y[0,n - 1]]
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Y[0,n - 1]

\Bigr] 
E\nu ,\gamma 

\Bigl[ 
d\mu 
d\nu (X0)

\bigm| \bigm| \bigm| Y[0,n - 1]

\Bigr] 
Applying Lemma 8.1 leads to

E\mu ,\gamma 
\bigl[ 
\| \pi \mu ,\gamma 

n -  - \pi \nu ,\gamma 
n - \| TV

\bigr] 
= E\nu ,\gamma 

\Biggl[ 
dP\mu ,\gamma | \scrF \scrY 

0,n - 1

dP \nu ,\gamma | \scrF \scrY 
0,n - 1

\| \pi \mu ,\gamma 
n -  - \pi \nu ,\gamma 

n - \| TV

\Biggr] 

= E\nu ,\gamma 

\biggl[ 
E\nu ,\gamma 

\biggl[ 
d\mu 

d\nu 
(X0)

\bigm| \bigm| \bigm| \bigm| Y[0,n - 1]

\biggr] 
\| \pi \mu ,\gamma 

n -  - \pi \nu ,\gamma 
n - \| TV

\biggr] 
= E\nu ,\gamma 

\biggl[ 
E\nu ,\gamma 

\biggl[ \bigm| \bigm| \bigm| E\nu ,\gamma 
\Bigl[ d\mu 
d\nu 

(X0)| Y[0,n - 1], Xn

\Bigr] 
 - E\nu ,\gamma 

\Bigl[ d\mu 
d\nu 

(X0)| Y[0,n - 1]

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Y[0,n - 1]

\biggr] \biggr] 
= E\nu ,\gamma 

\biggl[ \bigm| \bigm| \bigm| E\nu ,\gamma 
\Bigl[ d\mu 
d\nu 

(X0)| Y[0,n - 1], Xn

\Bigr] 
 - E\nu ,\gamma 

\Bigl[ d\mu 
d\nu 

(X0)| Y[0,n - 1]

\Bigr] \bigm| \bigm| \bigm| \biggr] .
We now want to show that

E\nu ,\gamma 
\Bigl[ d\mu 
d\nu 

(X0)| Y[0,n - 1], Xn

\Bigr] 
= E\nu ,\gamma 

\Bigl[ d\mu 
d\nu 

(X0)| Y[0,\infty ], X[n,\infty )

\Bigr] 
.(4.7)

Consider the diagram in Figure 4.1 which outlines the dependency structure in
a POMDP. Say we are conditioning on X2, Y0, Y1. Since the control policy is known
to us, we also know the realizations of U0 and U1. If we focus on these nodes on the
diagram, we see that they cordon off X0 from X[3,\infty ), Y[2,\infty ). That, if we follow back
any line from a node Xn, n > 2, or Yn, n > 1, to X0, we must go through one of these
nodes, and hence these future nodes do not add anything useful to the conditioning.
Therefore, (4.7) holds and we have

E\mu ,\gamma [\| \pi \mu ,\gamma 
n -  - \pi \nu ,\gamma 

n - \| TV ](4.8)

= E\nu ,\gamma 

\biggl[ \bigm| \bigm| \bigm| \bigm| E\nu ,\gamma 
\Bigl[ d\mu 
d\nu 

(X0)| Y[0,\infty ), X[n,\infty )

\Bigr] 
 - E\nu ,\gamma 

\Bigl[ d\mu 
d\nu 

(X0)| Y[0,n - 1]

\Bigr] \bigm| \bigm| \bigm| \bigm| \biggr] .D
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X0 X1 X2 X3

Y0 Y1 Y2 Y3U0

U1

U2

U3

\mu \cdot \cdot \cdot 

Fig. 4.1. Diagram of dependence in a POMDP. When X0 is conditioned on X2, Y[0,1], then
X[3,\infty ), Y[2,\infty ) do not add new information to the conditioning.

We then see that An = E\nu [d\mu d\nu (X0)| Y[0,n - 1]] is a nonnegative uniformly integrable
martingale (with respect to the measure P \nu ) adapted to the increasing filtration
\scrF \scrY 

0,n - 1. Hence, the limit as n \rightarrow \infty in L1(P \nu ) is E\nu [d\mu d\nu (X0)| \scrF \scrY 
0,\infty ]. Similarly, we

can view Bn = E\nu [d\mu d\nu (X0)| Y[0,\infty ), X[n,\infty )] as a backwards nonnegative uniformly inte-
grable martingale (with respect to the measure P \nu ) adapted to the decreasing sequence
of filtrations \scrF \scrY 

0,\infty \vee \scrF \scrX 
n,\infty . Then by the backwards martingale convergence theorem,

the limit as n \rightarrow \infty in L1(P \nu ) is E\nu [d\mu d\nu (X0)| 
\bigcap \infty 

n=1 \scrF 
\scrY 
0,\infty \vee \scrF \scrX 

n,\infty ].

Theorem 4.10. Assume \mu \ll \nu and fix any control policy \gamma . The filter is stable
in the sense of total variation in expectation with respect to the policy \gamma if and only if

E\nu ,\gamma 

\left[  d\mu 

d\nu 
(X0)

\bigm| \bigm| \bigm| \bigm| \bigcap 
n\geq 0

\scrF \scrY 
0,\infty \vee \scrF \scrX 

n,\infty 

\right]  = E\nu ,\gamma 

\biggl[ 
d\mu 

d\nu 
(X0)

\bigm| \bigm| \bigm| \bigm| F\scrY 
0,\infty 

\biggr] 
P \nu ,\gamma a.s.(4.9)

Proof of Theorem 3.6 (ii). The sigma fields \scrF \scrX 
n,\infty \vee \scrF \scrY 

0,\infty are a decreasing se-

quence, that is, \scrF \scrX 
n+1,\infty \vee \scrF \scrY 

0,\infty \subset \scrF \scrX 
n,\infty \vee \scrF \scrY 

0,\infty . Therefore, when we take their

intersection, removing the first or largest sigma field \scrF \scrX 
0,\infty \vee \scrF \scrY 

0,\infty from the intersec-
tion of a decreasing set of sigma fields does not change the overall intersection. Fix
any control policy \gamma . The conditions in Theorems 4.9 and 4.10 are the same for each
policy \gamma . Therefore, if either the filter or the predictor is universally stable in total
variation in expectation, then the other is as well.

Proof of Theorem 3.6 (iii). Via Fatou's lemma for the limit supremum, it is clear
that almost sure stability implies stability in expectation. We focus on the other
direction.

Assume the filter is universally stable in total variation in expectation. Consider
the measure \rho = \mu +\nu 

2 . We have that \mu \ll \rho and \nu \ll \rho and \| d\mu 
d\rho \| \infty \leq 2, \| d\nu 

d\rho \| \infty \leq 2.
By Lemma 4.8 and the analysis in the proof of Theorem 4.9 but applied to the filter,

\| \pi \mu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV =
E\rho ,\gamma 

\Bigl[ \bigm| \bigm| \bigm| E\rho ,\gamma [d\mu d\rho (X0)| Y[0,\infty ), X[n,\infty )] - E\rho ,\gamma [d\mu d\rho (X0)| Y[0,n]]
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Y[0,n]

\Bigr] 
E\rho ,\gamma 

\Bigl[ 
d\mu 
d\rho (X0)

\bigm| \bigm| \bigm| Y[0,n]

\Bigr] ,

\| \pi \nu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV =
E\rho ,\gamma 

\Bigl[ \bigm| \bigm| \bigm| E\rho ,\gamma [d\nu d\rho (X0)| Y[0,\infty ), X[n,\infty )] - E\rho ,\gamma [d\nu d\rho (X0)| Y[0,n]]
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Y[0,n]

\Bigr] 
E\rho ,\gamma 

\Bigl[ 
d\nu 
d\rho (X0)

\bigm| \bigm| \bigm| Y[0,n]

\Bigr] .

Since the Radon--Nikodym derivatives are finite, the expressions in the denomi-
nators and numerators above are uniformly integrable martingales with respect to the
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ROBUST CONTROL AND CONTROLLED FILTER STABILITY 861

measure P \rho ,\gamma and hence admit limits P \rho ,\gamma a.s. This implies that they admit limits
P\mu ,\gamma a.s. Therefore, \| \pi \mu ,\gamma 

n  - \pi \rho ,\gamma 
n \| TV and \| \pi \nu ,\gamma 

n  - \pi \rho ,\gamma 
n \| TV admit limits P\mu ,\gamma a.s. By

the dominated convergence theorem,

E\mu [ lim
n\rightarrow \infty 

\| \pi \mu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV ] = lim
n\rightarrow \infty 

E\mu [\| \pi \mu .\gamma 
n  - \pi \rho ,\gamma 

n \| TV ] = 0

since we assume the filter is universally stable in expectation by assumption. Total
variation is always nonnegative. Therefore, limn\rightarrow \infty \| \pi \mu ,\gamma 

n  - \pi \rho ,\gamma 
n \| TV must be zero a.s.

Similarly,

E\mu [ lim
n\rightarrow \infty 

\| \pi \nu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV ] = lim
n\rightarrow \infty 

E\mu [\| \pi \nu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV ]

\leq lim
n\rightarrow \infty 

E\mu [\| \pi \nu ,\gamma 
n  - \pi \mu ,\gamma 

n \| TV ] + lim
n\rightarrow \infty 

E\mu [\| \pi \mu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV ] = 0

so limn\rightarrow \infty \| \pi \nu ,\gamma 
n  - \pi \rho ,\gamma 

n \| TV must be 0 a.s. Then we have

lim sup
n\rightarrow \infty 

\| \pi \mu ,\gamma 
n  - \pi \nu ,\gamma 

n \| TV \leq lim sup
n\rightarrow \infty 

\biggl( 
\| \pi \mu ,\gamma 

n  - \pi \rho ,\gamma 
n \| TV + \| \pi \rho ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV

\biggr) 
\leq lim sup

n\rightarrow \infty 
\| \pi \mu ,\gamma 

n  - \pi \rho ,\gamma 
n \| TV + lim sup

n\rightarrow \infty 
\| \pi \rho ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV = 0

since the limit supremum of the sum of two nonnegative sequences is less than the
sum of the limit supremum of the sequences. Therefore, the limit supremum of \| \pi \mu 

n  - 
\pi \nu 
n\| TV = 0 P\mu ,\gamma a.s. Thus the limit exists and is 0.

Proof of Theorem 3.6 (iv). First, assume the filter is universally stable in relative
entropy and fix some policy \gamma . Since the square root function is continuous and convex,
we have

0 = lim
n\rightarrow \infty 

\sqrt{} 
2

log(e)
E\mu ,\gamma [D(\pi \mu ,\gamma 

n \| \pi \nu ,\gamma 
n )] \geq lim

n\rightarrow \infty 
E\mu ,\gamma 

\Biggl[ \sqrt{} 
2

log(e)
D(\pi \mu ,\gamma 

n \| \pi \nu ,\gamma 
n )

\Biggr] 
,

where we have applied Jensen's inequality. We then apply Pinsker's inequality and
have limn\rightarrow \infty E\mu ,\gamma [\| \pi \mu ,\gamma 

n  - \pi \nu ,\gamma 
n \| TV ] = 0.

For the converse direction, assume the filter is universally stable in total variation
in expectation and fix a policy \gamma . If we apply the chain rule for relative entropy, we
have

E\mu ,\gamma [D(\pi \mu ,\gamma 
n \| \pi \nu ,\gamma 

n )] = D(P\mu ,\gamma (Xn| Y[0,n])\| P \nu ,\gamma (Xn| Y[0,n]))

= D(P\mu ,\gamma (Xn, Y[0,n])\| P \nu ,\gamma (Xn, Y[0,n]))

 - D(P\mu ,\gamma (Y[0,n])\| P \nu ,\gamma (Y[0,n])).

We also have by the chain rule that

D(P\mu ,\gamma (Xn, Y[0,n])\| P \nu ,\gamma (Xn, Y[0,n])) = D(P\mu ,\gamma (X[n,\infty ), Y[0,\infty ])\| P \nu ,\gamma (X[n,\infty ), Y[0,\infty )))

 - D(P\mu ,\gamma ((X,Y )[n+1,\infty )| Xn, Y[0,n])\| P \nu ,\gamma ((X,Y )[n+1,\infty )| Xn, Y[0,n])).

Consider now Figure 4.1. If we fix X2, Y[0,2], then we also know the control actions
U[0,2]. Then the distribution of X3 is fully determined by X2, U2 and the transition
kernel; it is independent of the prior measure. Then the distribution of Y3 is deter-
mined by X3 and Q, and U3 and X4 and so on. Therefore, the conditional measures
P\mu ,\gamma ((X,Y )[n+1,\infty )| Xn, Y[0,n]) and P \nu ,\gamma ((X,Y )[n+1,\infty )| Xn, Y[0,n]) are the same even
though the priors are different, and therefore the relative entropy is zero.
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862 CURTIS McDONALD AND SERDAR Y\"UKSEL

We then have

E\mu ,\gamma [D(\pi \mu ,\gamma 
n \| \pi \nu ,\gamma 

n )] = D(P\mu ,\gamma (X[n,\infty ), Y[0,\infty ))\| P \nu ,\gamma (X[n,\infty ), Y[0,\infty )))

 - D(P\mu ,\gamma (Y[0,n])\| P \nu ,\gamma (Y[0,n]))

= D(P\mu ,\gamma | \scrF \scrX 
n,\infty \vee \scrF \scrY 

0,\infty 
\| P \nu ,\gamma | \scrF \scrX 

n,\infty \vee \scrF \scrY 
0,\infty 

)

 - D(P\mu ,\gamma | \scrF \scrY 
[0,n]

\| P \nu ,\gamma | \scrF \scrY 
[0,n]

).

For each of these, building on [4, Theorem 3], we have that the convergence to zero
follows the arguments presented in [33, Theorem 2.12].

5. Proofs on robustness results.

Proof of Theorem 3.9. Fixing some finite n, we have

J\infty (\mu , \gamma \nu ) = lim sup
T\rightarrow \infty 

1

T

\Biggl( 
n - 1\sum 
i=0

E\mu ,\gamma \nu 

[c(Xi, Ui)] +

T - 1\sum 
i=n

E\mu ,\gamma \nu 

[c(Xi, Ui)]

\Biggr) 

\leq lim sup
T\rightarrow \infty 

1

T

n - 1\sum 
i=0

E\mu ,\gamma \nu 

[c(Xi, Ui)] + lim sup
T\rightarrow \infty 

1

T
E\mu ,\gamma \nu 

\Biggl[ 
T - 1\sum 
i=n

c(Xi, Ui)

\Biggr] 

\leq lim sup
T\rightarrow \infty 

n\| c\| \infty 
T

+ lim sup
T\rightarrow \infty 

1

T
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 

= lim sup
T\rightarrow \infty 

1

T
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 
.

Therefore, we see that no matter what decision the DM makes in the first n time
stage, since n is finite and c bounded this cost will eventually be dominated by the
denominator as T \rightarrow \infty and there will be no transient cost associated with this
robustness problem. We then claim that

lim sup
T\rightarrow \infty 

1

T
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 
= lim sup

T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 
.

All terms in the two limsup expressions are positive and bounded since c is a nonneg-
ative bounded function. Therefore, we have in the following that (i) the difference of
the limsups is less than or equal to the limsup of the difference, and (ii) the limsup
of a product is less than or equal to the product of the limsups. Using these results,

lim sup
T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 
 - lim sup

T\rightarrow \infty 

1

T
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 

\leq lim sup
T\rightarrow \infty 

\biggl( 
1

T  - n
 - 1

T

\biggr) 
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 

\leq 
\biggl( 
lim sup
T\rightarrow \infty 

n

T

\biggr) \Biggl( 
lim sup
T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] \Biggr) 
= 0.
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We then apply iterated expectations and Fatou's lemma, and we have

lim sup
T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)

\Biggr] 

= lim sup
T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)| Y[0,n - 1]

\Biggr] \Biggr] 

\leq E\mu ,\gamma \nu 

\Biggl[ 
lim sup
T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)| Y[0,n - 1]

\Biggr] \Biggr] 
.

The optimal control policy is a time invariant function of the filter realization so the
predictor at time n acts as a new prior for the control problem. We then have

E\mu ,\gamma \nu 

\Biggl[ 
lim sup
T\rightarrow \infty 

1

T  - n
E\mu ,\gamma \nu 

\Biggl[ 
T - n - 1\sum 

i=0

c(Xn+i, Un+i)| Y[0,n - 1]

\Biggr] \Biggr] 
= E\mu ,\gamma \nu 

\Bigl[ 
J\infty (\pi \mu ,\gamma \nu 

n - , \gamma \pi \nu ,\gamma \nu 

n - )
\Bigr] 
.

With this established, we can now move on to our robustness problem:

J\infty (\mu , \gamma \nu ) - J\ast 
\infty (\mu ) \leq E\mu ,\gamma \nu 

[J\infty (\pi \mu ,\gamma \nu 

n - , \gamma \pi \nu ,\gamma \nu 

n - )] - inf
\~\mu \in \scrP (\scrX )

J\ast 
\infty (\~\mu )

= E\mu ,\gamma \nu 

[J\infty (\pi \mu ,\gamma \nu 

n - , \gamma \pi \nu ,\gamma \nu 

n - ) + J\ast 
\infty (\pi \mu ,\gamma \nu 

n - ) - J\ast 
\infty (\pi \mu ,\gamma \nu 

n - )] - inf
\~\mu \in \scrP (\scrX )

J\ast 
\infty (\~\mu )

= E\mu ,\gamma \nu 

[J\infty (\pi \mu ,\gamma \mu 

n - , \gamma \pi \nu ,\gamma \nu 

n - ) - J\ast 
\infty (\pi \mu ,\gamma \nu 

n - )] + E\mu ,\gamma \nu 

[J\ast 
\infty (\pi \mu ,\gamma \nu 

n - )] - inf
\~\mu \in \scrP (\scrX )

J\ast 
\infty (\~\mu )(5.1)

\leq E\mu ,\gamma \nu 

[J\infty (\pi \mu ,\gamma \nu 

n - , \gamma \pi \nu ,\gamma \nu 

n - ) - J\ast 
\infty (\pi \mu ,\gamma \nu 

n - )] + sup
\~\mu \in \scrP (\scrX )

J\ast 
\infty (\~\mu ) - inf

\~\mu \in \scrP (\scrX )
J\ast 
\infty (\~\mu )

= E\mu ,\gamma \nu 

[J\infty (\pi \mu ,\gamma \nu 

n - , \gamma \pi \nu ,\gamma \nu 

n - ) - J\ast 
\infty (\pi \mu ,\gamma \nu 

n - )] + \| J\ast 
\infty \| sp.(5.2)

By Theorem 3.8 we have

J\infty (\mu , \gamma \nu ) - J\ast 
\infty (\mu ) \leq 2\| c\| \infty E\mu ,\gamma \nu 

[\| \pi \mu ,\gamma \nu 

n -  - \pi \nu ,\gamma \nu 

n - \| TV ] + \| J\ast 
\infty \| sp,(5.3)

and this result holds for any n since our choice of n was arbitrary. By assumption,
the predictor is universally stable in total variation in expectation. Therefore, for any
\epsilon > 0 there exists an N such that for all n > N we have E\mu ,\gamma \nu 

[\| \pi \mu ,\gamma \nu 

n -  - \pi \nu ,\gamma \nu 

n - \| TV ] \leq 
\epsilon 

2\| c\| \infty 
. Therefore, since (5.3) holds for every n, J\infty (\mu , \gamma \nu ) - J\ast 

\infty (\mu ) \leq \| J\ast 
\infty \| sp + \epsilon for

any \epsilon > 0, yielding our result.

Proof of Theorem 3.10. Pick any n \in \BbbN . Starting from expressions (1.8), (1.9),
and (1.10) we will consider the three costs. The transient cost is upper bound by

E\mu ,\gamma \nu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(xi, ui)

\Biggr] 
 - E\mu ,\gamma \mu 

\Biggl[ 
n - 1\sum 
i=0

\beta ic(xi, ui)

\Biggr] 
\leq \| c\| \infty 

n - 1\sum 
i=0

\beta i = \| c\| \infty 
\biggl( 
1 - \beta n

1 - \beta 

\biggr) 
,

the strategic measure cost is upper bound by

\beta n
\Bigl( 
E\mu ,\gamma \nu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \nu 

n - )
\Bigr] 
 - E\mu ,\gamma \mu 

\Bigl[ 
J\ast 
\beta (\pi 

\mu ,\gamma \mu 

n - )
\Bigr] \Bigr) 

\leq \beta n\| J\ast 
\beta \| sp,
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864 CURTIS McDONALD AND SERDAR Y\"UKSEL

and the approximation cost satisfies

\beta n
\Bigl( 
E\mu ,\gamma \nu 

\Bigl[ 
J\beta (\pi 

\mu ,\gamma \nu 

n - , \gamma \pi \nu ,\gamma \nu 

n - ) - J\ast 
\beta (\pi 

\mu ,\gamma \nu 

n - )
\Bigr] \Bigr) 

\leq 4
\| c\| \infty 
1 - \beta 

(\alpha \beta )n.

Putting these together,

J\beta (\mu , \gamma 
\nu ) - J\ast 

\beta (\mu ) \leq \| c\| \infty 
\biggl( 
1 - \beta n

1 - \beta 

\biggr) 
+ \beta n\| J\ast 

\beta \| sp + 4
\| c\| \infty 
1 - \beta 

(\alpha \beta )n

=
\| c\| \infty 
1 - \beta 

+ \beta n

\biggl( 
\| J\ast 

\beta \| sp + 4
\| c\| \infty 
1 - \beta 

\alpha n  - \| c\| \infty 
1 - \beta 

\biggr) 
=

\| c\| \infty 
1 - \beta 

(1 + \beta n(4\alpha n  - \rho )) =
\| c\| \infty 
1 - \beta 

(1 - f(n)).

This holds for any n. Taking the derivative in n, at n\ast , it follows that this will be
maximized at some n\ast \in \BbbR +,

\alpha n\ast 
=
\Bigl( \rho 
4

\Bigr) \biggl( ln(\beta )

ln(\alpha ) + ln(\beta )

\biggr) 
, n\ast =

ln
\Bigl( \bigl( 

\rho 
4

\bigr) \Bigl( ln(\beta )
ln(\alpha )+ln(\beta )

\Bigr) \Bigr) 
ln\alpha 

,

and it can be shown that the maximum among the natural numbers n \in \BbbN will occur
at the ceiling or floor of n\ast .

6. Generalizations and discussion. In this section, we present a number of
generalizations and discussions which will be summarized briefly with the purpose of
making the paper more concise and accessible.

6.1. \bfitN -step observability and its limitations due to policy dependence.
Given the definition of one step observability in Definition 3.3, one could conceive of
a definition of multiple step observability: for a policy \gamma , the POMDP could be called
N step observable if for every f \in Cb(\scrX ) and every \epsilon > 0 there exists a measurable
and bounded function g of N measurements such that\bigm\| \bigm\| \bigm\| \bigm\| f(\cdot ) - \int 

\scrY N

g(y[1,N ])P
\mu ,\gamma (dy[1,N ]| X1 = \cdot )

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

< \epsilon ,

adopting (2.2) (note that N can also depend on f, \epsilon if we replace N -step observ-
ability with observability), which was shown to be an appropriate and consequential
observability definition for control-free systems in [33].

However, this approach cannot be used to prove stability due to the past de-
pendency of the control policy. In the following, we explain why the proof method
we present is not applicable for such systems unless one restricts the control policies
considered. To apply the general process Lemma 4.5 we need the following:

1. Y[n,n+N - 1] can only depend on Y[0,n - 1] through Xn:

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn, Y[0,n - 1]) = P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn).(6.1)

2. The channel Y[n,n+N - 1]| Xn is measure equivalent for P\mu ,\gamma and P \nu ,\gamma :

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn) = P \nu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn).(6.2)

3. The channel Y[n,n+N - 1]| Xn is time homogeneous:

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn) = P\mu ,\gamma (Y[0,N - 1] \in \cdot | X0) \forall n \in \BbbN .(6.3)

D
ow

nl
oa

de
d 

06
/2

3/
22

 to
 1

39
.1

79
.2

42
.1

69
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST CONTROL AND CONTROLLED FILTER STABILITY 865

If we take the left-hand side of (6.1), we have

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn, Y[0,n - 1])

=

\int 
\scrU N - 1

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn, Y[0,n - 1], U[n,n+N - 2])P
\mu ,\gamma (du[n,n+N - 2]| Xn, Y[0,n - 1])

by chain rule of conditional probability. Now it is true that Y[n,n+N - 1]| Xn, U[n,n+N - 2]

is independent of Y[0,n - 1] so we can stop conditioning on the past measurements in
the inner argument. However, in the outer conditional measure the U[n,n+N - 2] may
still depend on the past and we have\int 

\scrU N - 1

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn, U[n,n+N - 2])P
\mu ,\gamma (du[n,n+N - 2]| Xn, Y[0,n - 1]).(6.4)

If we take the right-hand side of (6.1), we have

P\mu ,\gamma (Y[n,n+N - 1] \in \cdot | Xn) =

\int 
\scrU N - 1

P\mu ,\gamma (Y[n,n+N - 1]

\in \cdot | Xn, U[n,n+N - 2])P
\mu ,\gamma (du[n,n+N - 2]| Xn).

These two equations are not equal for a general control policy. Therefore, the process
fails Definition 4.1 and Y[n,n+N - 1] does not depend on Y[0,n - 1] through Xn. As a
result, a definition ofN > 1 step observability is incompatible with the proof technique
outlined in Lemma 4.5 and we cannot utilize N > 1 step observability in a controlled
environment to prove stability unless control policies are restricted, e.g., to open-loop
control policies where past dependence is avoided, such as sampled control policies
where the control is open-loop in between sampling periods, effectively making the
measurement a multistep one. This discussion reveals a further, but not surprising
[3], layer of complexity for the theory of nonlinear controlled stochastic systems.

6.2. Localized definition of observability. As in the control-free case con-
sidered in [33], our observability definition can be generalized further to make its
applicability for noncompact domains more general. While the definition of observ-
ability that we introduced is valid for both compact and noncompact state spaces,
it is, in general, difficult to satisfy the definition in a noncompact state space; the
concern is that when we have a noncompact space and consider functions f which are
not bounded Lipschitz, it may, in general, be difficult to find a bounded function g
which will approximate f through (3.1) sufficiently well over the entire state space.
See [33, section 3] for some examples of observable and locally observable channels.

Definition 6.1. A POMDP is called locally predictable (universal in control poli-
cies) if there exists a sequence of \scrF \scrY 

[0,n - 1] measurable mappings an : \scrY n \rightarrow \scrX such

that, for any \gamma \in \Gamma , the family of measures

\~\pi \nu ,\gamma 
n - (\cdot ) := \pi \nu ,\gamma 

n - (\cdot + an)

for every \mu \ll \nu is a uniformly tight family of measures.

Definition 6.2. A POMDP is called locally observable (universal in control poli-
cies) if for every continuous and bounded function f , every compact set K, every se-
quence of numbers an, and every \epsilon > 0, there exists a sequence of uniformly bounded
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measurable functions gn such that

sup
x\in K+an

\bigm| \bigm| \bigm| \bigm| f(x) - \int 
\scrY 
gn(y)Q(dy| x)

\bigm| \bigm| \bigm| \bigm| \leq \epsilon \forall n \in \BbbN ,

sup
x \not \in K+an

\bigm| \bigm| \bigm| \bigm| \int 
\scrY 
gn(y)Q(dy| x)

\bigm| \bigm| \bigm| \bigm| \leq 2\| f\| \infty \forall n \in \BbbN .

Then, we can state the following generalization of Theorem 3.4 (whose proof
follows similarly).

Theorem 6.3. Assume \mu \ll \nu and that the POMDP is locally predictable and
locally observable (universal in control policies). Then the predictor is universally
stable weakly a.s.

6.3. Robustness under weak merging of priors. Our robustness result is
also applicable under weak convergence of priors, provided that the channel is con-
tinuous under total variation, and the filter is stable subject to a modest rate of
convergence condition. These would build on [26, Theorem 3.3] and the analysis
presented in section 3.2.

7. Conclusion. Filter stability has been studied extensively in control-free con-
texts. In this paper, we studied the filter stability problem, developed new methods
and results for controlled stochastic dynamical systems, and studied the implications
of filter stability on robustness of optimal solutions for partially observed stochastic
control problems.

8. Appendix.

8.1. Proof of Theorem 3.8. Consider the robustness difference

J\infty (\mu , \gamma \nu ) - J\ast 
\infty (\mu ) = J\ast 

\infty (\nu ) - J\ast 
\infty (\mu ) + J\infty (\mu , \gamma \nu ) - J\ast 

\infty (\nu )

\leq | J\ast 
\infty (\nu ) - J\ast 

\infty (\mu )| + J\infty (\mu , \gamma \nu ) - J\infty (\nu , \gamma \nu ).(8.1)

Consider now the difference | J\ast 
\infty (\mu )  - J\ast 

\infty (\nu )| . If J\ast 
\infty (\mu ) < J\ast 

\infty (\nu ), then the absolute
value of their difference is the larger value J\ast 

\infty (\nu ) minus the smaller value J\ast 
\infty (\mu ).

Then since J\ast 
\infty (\nu ) = J\infty (\nu , \gamma \nu ), if we replace \gamma \nu with \gamma \mu , we have J\infty (\nu , \gamma \mu ) > J\ast 

\infty (\nu )
and the difference is even greater. Therefore, when J\ast 

\infty (\mu ) < J\ast 
\infty (\nu ) we have

| J\ast 
\infty (\mu ) - J\ast 

\infty (\nu )| = J\ast 
\infty (\nu ) - J\ast 

\infty (\mu )

= J\infty (\nu , \gamma \nu ) - J\infty (\mu , \gamma \mu )

\leq J\infty (\nu , \gamma \mu ) - J\infty (\mu , \gamma \mu ).

By a symmetric argument for the other direction in the inequality, we arrive at

| J\ast 
\infty (\mu ) - J\ast 

\infty (\nu )| \leq max (J\infty (\mu , \gamma \nu ) - J\infty (\nu , \gamma \nu ), J\infty (\nu , \gamma \mu ) - J\infty (\mu , \gamma \mu )) ,

and we can ultimately determine the robustness bound by studying the expected cost
operator J\infty (\cdot , \gamma \nu ) under different priors but the same control policy. By the same
control policy, we mean \gamma \nu is the optimal control policy designed with respect to the
prior \nu . This means the DM sees observations y[0,n] and computes the filter believing
the prior is \nu (the mapping from measurements to control actions is the same for each
POMDP with different priors).

Note that for two nonnegative bounded sequences 0 < an < m < \infty and 0 <
bn < k < \infty , we have that the difference of their limsups is less than the limsup of the
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difference lim supn\rightarrow \infty an  - lim supn\rightarrow \infty bn \leq lim supn\rightarrow \infty (an  - bn). Therefore, since
c is nonnegative and bounded, we have

J\infty (\mu , \gamma \nu ) - J\infty (\nu , \gamma \nu )

= lim sup
T\rightarrow \infty 

1

T

\Biggl( 
T - 1\sum 
i=0

E\mu ,\gamma \nu 

[c(Xi, Ui)]

\Biggr) 
 - lim sup

T\rightarrow \infty 

1

T

\Biggl( 
T - 1\sum 
i=0

E\nu ,\gamma \nu 

[c(Xi, Ui)]

\Biggr) 

\leq lim sup
T\rightarrow \infty 

1

T

T - 1\sum 
i=0

\Bigl( 
E\mu ,\gamma \nu 

[c(Xi, Ui)] - E\nu ,\gamma \nu 

[c(Xi, Ui)]
\Bigr) 

\leq lim sup
T\rightarrow \infty 

\| c\| \infty 
T

\Biggl( 
T - 1\sum 
i=0

\| P\mu ,\gamma \nu 

((Xi, Ui) \in \cdot ) - P \nu ,\gamma \nu 

((Xi, Ui) \in \cdot )\| TV

\Biggr) 
;

then we see that

\| P\mu ,\gamma \nu 

((Xi, Ui) \in \cdot ) - P \nu ,\gamma \nu 

((Xi, Ui) \in \cdot )\| TV

= sup
\| f\| \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int 
\scrX \times \scrU 

f(x, u)P\mu ,\gamma \nu 

(dxi, dui) - 
\int 
\scrX \times \scrU 

f(x, u)P \nu ,\gamma \nu 

(dxi, dui)

\bigm| \bigm| \bigm| \bigm| 
= sup

\| f\| \infty \leq 1

\bigm| \bigm| \bigm| \bigm| \int 
\scrX 

\int 
\scrX \times \scrU 

f(x, u)P\mu ,\gamma \nu 

(dxi, dui| X0)\mu (dx0)

 - 
\int 
\scrX 

\int 
\scrX \times \scrU 

f(x, u)P \nu ,\gamma \nu 

(dxi, dui| X0)\nu (dx0)

\bigm| \bigm| \bigm| \bigm| .(8.2)

As was discussed, both POMDP use the same control policy, which maps measure-
ments to control actions in the same way. Once we fix the realization of X0 = x in
either case, the distribution on Y0 is the same, hence the distribution on U0 is the
same, and hence X1, Y1, U1 and so on. Therefore, in the above the two inner integrals
are the same function of x and we can upper bound by \| \mu  - \nu \| TV .

Thus, J\infty (\mu , \gamma \nu )  - J\infty (\nu , \gamma \nu ) \leq \| c\| \infty \| \mu  - \nu \| TV . Both terms in (8.1) have this
bound and the overall bound is multiplied by a factor of 2.

8.2. Proof of Lemma 4.8.

Lemma 8.1 (see [33, Lemma 4.6]). Assume \mu \ll \nu and fix any control policy \gamma .
For any sigma field \scrG \subseteq \scrF \scrX 

0,\infty \vee \scrF \scrY 
0,\infty we have

dP\mu ,\gamma | \scrG 
dP \nu ,\gamma | \scrG 

= E\nu ,\gamma 

\biggl[ 
d\mu 

d\nu 
(X0)

\bigm| \bigm| \bigm| \bigm| \scrG \biggr] P\mu ,\gamma a.s.

Proof. Note that conditioned on the value of X0, knowledge of the prior is irrel-
evant so for any set A \in \scrG we have

E\mu [1A] = E\nu 

\biggl[ 
1A

d\mu 

d\nu 
(X0)

\biggr] 
;

then we can apply law iterated expectations, condition internally on \scrG , and move the
indicator out in the inner expectation since it is \scrG measurable. This shows

E\mu [1A] = E\nu 

\biggl[ 
1AE

\nu 

\biggl[ 
d\mu 

d\nu 
(X0)| \scrG 

\biggr] \biggr] 
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Lemma 8.2 (see [33, Lemma 4.7]). Assume \mu \ll \nu and fix any control policy \gamma .
For any two sigma fields \scrG 1,\scrG 2 \subset \scrF \scrX 

0,\infty \vee \scrF \scrY 
0,\infty , let P\mu ,\gamma | \scrG 1

| \scrG 2 represent the probability
measure P\mu ,\gamma restricted to \scrG 1, conditioned on field \scrG 2. We then have

dP\mu ,\gamma | \scrG 1
| \scrG 2

dP \nu ,\gamma | \scrG 1 | \scrG 2
=

E\nu ,\gamma [d\mu d\nu (X0)| \scrG 1 \vee \scrG 2]

E\nu ,\gamma [d\mu d\nu (X0)| \scrG 2]
P\mu ,\gamma a.s.

Proof. Note for any set A \in \scrG 1 we can write E\mu [1A] in two ways:

E\mu [1A] = E\nu 
\Bigl[ 
E\mu 
\Bigl[ 
1A

dP\mu | \scrG 2

dP \nu | \scrG 2

| \scrG 2

\Bigr] \Bigr] 
\leq E\mu [1A] = E\nu 

\Bigl[ 
1AE

\nu 
\Bigl[ dP\mu 

dP \nu 
| \scrG 1 \vee \scrG 2

\Bigr] \Bigr] 
.

Applying Lemma 8.1,

E\mu [1A] = E\nu 
\Bigl[ 
E\mu 
\Bigl[ 
1AE

\nu 
\Bigl[ d\mu 
d\nu 

(X0)| \scrG 2

\Bigr] 
| \scrG 2

\Bigr] \Bigr] 
,

E\mu [1A] = E\nu 
\Bigl[ 
E\nu 
\Bigl[ 
1A

d\mu 

d\nu 
(X0)| \scrG 1 \vee \scrG 2

\Bigr] \Bigr] 
.

By definition, the Radon--Nikodym derivative
dP\mu | \scrG 1

| \scrG 2

dP \nu | \scrG 1
| \scrG 2

= f is the function that

satisfies

E\nu 
\Bigl[ 
E\nu 
\Bigl[ 
1AfE

\nu 
\Bigl[ d\mu 
d\nu 

(X0)| \scrG 2

\Bigr] 
| \scrG 2

\Bigr] \Bigr] 
= E\mu [1A] = E\nu 

\Bigl[ 
E\nu 
\Bigl[ 
1A

d\mu 

d\nu 
(X0)| \scrG 1 \vee \scrG 2

\Bigr] \Bigr] 
.

One can show that substituting f for the function in the theorem has this
property.

Proof of Lemma 4.8. For two measures \mu 1 and \mu 2 with \mu 1 \ll \mu 2, note that total
variation can be written as

\| \mu 1  - \mu 2\| TV = E\mu 2

\biggl[ \bigm| \bigm| \bigm| \bigm| d\mu 1

d\mu 2
 - 1

\bigm| \bigm| \bigm| \bigm| \biggr] .
Applying Lemma 8.2 and cross multiplying to get a single fraction in the absolute
value leads to the result.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs,
NJ, 1979.

[2] A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh, and S. I.
Marcus, Discrete-time controlled Markov processes with average cost criterion: A survey,
SIAM J. Control Optim., 31 (1993), pp. 282--344, https://doi.org/10.1137/0331018.

[3] Y. Bar-Shalom and E. Tse, Dual effect, certainty equivalence, and separation in stochastic
control, IEEE Trans. Automat. Control, 19 (1974), pp. 494--500.

[4] A. R. Barron, Limits of information, Markov chains, and projections, in Proceedings of the
IEEE International Symposium on Information Theory, Sorrento, Italy, 2000, 25.

[5] T. Ba\c sar and P. Bernhard, H-infinity Optimal Control and Related Minimax Design Prob-
lems: A Dynamic Game Approach, Birkh\"auser, Boston, 1995.

[6] P. Billingsley, Probability and Measure, 2nd ed., John Wiley \& Sons, New York, 1986.
[7] D. Blackwell and L. Dubins, Merging of opinions with increasing information, Ann. Math.

Statist., 33 (1962), pp. 882--886.
[8] V. I. Bogachev, Measure Theory, Vol. I, Springer-Verlag, Berlin, 2007.

D
ow

nl
oa

de
d 

06
/2

3/
22

 to
 1

39
.1

79
.2

42
.1

69
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/0331018


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST CONTROL AND CONTROLLED FILTER STABILITY 869

[9] V. I. Bogachev, Measure Theory, Vol. II, Springer-Verlag, Berlin, 2007.
[10] V. S. Borkar, Average cost dynamic programming equations for controlled Markov chains

with partial observations, SIAM J. Control Optim., 39 (2000), pp. 673--681, https://doi.
org/10.1137/S0363012998345172.

[11] V. S. Borkar, Convex analytic methods in Markov decision processes, in Handbook of Markov
Decision Processes, Internat. Ser. Oper. Res. Management Sci. 40, Kluwer Academic Pub-
lishers, Boston, 2002, pp. 347--375.

[12] V. S. Borkar, Dynamic programming for ergodic control with partial observations, Stochastic
Process. Appl., 103 (2003), pp. 293--310.

[13] V. S. Borkar, Dynamic programming for ergodic control of Markov chains under partial
observations: A correction, SIAM J. Control Optim., 45 (2007), pp. 2299--2304, https:
//doi.org/10.1137/05064610X.

[14] V. S. Borkar and A. Budhiraja, A further remark on dynamic programming for partially
observed Markov processes, Stochastic Process. Appl., 112 (2004), pp. 79--93.

[15] P. E. Caines, Linear Stochastic Systems, John Wiley \& Sons, New York, 1988.
[16] C. T. Chen, Linear Systems Theory and Design, Oxford University Press, Oxford, 1999.
[17] P. Chigansky and R. Liptser, On a role of predictor in the filtering stability, Electron. Comm.

Probab., 11 (2006), pp. 129--140.
[18] P. Chigansky, R. Liptser, and R. van Handel, Intrinsic methods in filter stability, in Hand-

book of Nonlinear Filtering, Oxford University Press, Oxford, 2009, pp. 319--351.
[19] I. Csisz\'ar, Information-type measures of difference of probability distributions and indirect

observation, Studia Sci. Math. Hungar., 2 (1967), pp. 229--318.
[20] R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. I, Theory Probab.

Appl., 1 (1956), pp. 65--80, https://doi.org/10.1137/1101006.
[21] E. A. Feinberg, P. O. Kasyanov, and M. Z. Zgurovsky, Partially observable total-cost

Markov decision process with weakly continuous transition probabilities, Math. Oper. Res.,
41 (2016), pp. 656--681.

[22] R. Hermann and A. Krener, Nonlinear controllability and observability, IEEE Trans. Au-
tomat. Control, 22 (1977), pp. 728--740.

[23] O. Hern\'andez-Lerma and J. B. Lasserre, Discrete-Time Markov Control Processes: Basic
Optimality Criteria, Springer, New York, 1996.

[24] R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME Ser.
D. J. Basic Engrg., 82 (1960), pp. 35--45.

[25] A. D. Kara, N. Saldi, and S. Y\"uksel, Weak Feller property of non-linear filters, Systems
Control Lett., 134 (2019), 104512.

[26] A. D. Kara and S. Y\"uksel, Robustness to incorrect priors in partially observed stochas-
tic control, SIAM J. Control Optim., 57 (2019), pp. 1929--1964, https://doi.org/10.1137/
17M1157660.

[27] A. D. Kara and S. Y\"uksel, Near optimality of finite memory feedback policies in partially
observed Markov decision processes, J. Mach. Learn. Res., 23 (2022), pp. 1--46.

[28] J.-W. Kim, P. G. Mehta, and S. P. Meyn, What is the Lagrangian for nonlinear filtering?,
in Proceedings of the IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019,
pp. 1607--1614.

[29] H. J. Kushner, Introduction to Stochastic Control Theory, Holt, Rinehart and Winston, New
York, 1972.

[30] H. J. Kushner, A partial history of the early development of continuous-time nonlinear sto-
chastic systems theory, Automatica J. IFAC, 50 (2014), pp. 303--334.

[31] A. R. Liu and R. R. Bitmead, Observability and reconstructibility of hidden Markov models:
Implications for control and network congestion control, in Proceedings of the 49th IEEE
Conference on Decision and Control (CDC), IEEE, 2010, pp. 918--923.

[32] A. R. Liu and R. R. Bitmead, Stochastic observability in network state estimation and control,
Automatica J. IFAC, 47 (2011), pp. 65--78.

[33] C. McDonald and S. Y\"uksel, Converse Results on Filter Stability Criteria and Stochastic
Non-Linear Observability, preprint, https://arxiv.org/abs/1812.01772, 2018.

[34] C. McDonald and S. Y\"uksel, Observability and filter stability for partially observed Markov
processes, in Proceedings of the 58th Annual IEEE Conference on Decision and Control
(CDC), IEEE, 2019, pp. 1623--1628.

[35] C. McDonald and S. Y\"uksel, Exponential filter stability via Dobrushin's coefficient, Electron.
Commun. Probab., 25 (2020), 53.

[36] H. Nijmeijer, Observability of autonomous discrete time non-linear systems: A geometric
approach, Internat. J. Control, 36 (1982), pp. 867--874.

[37] D. Rhenius, Incomplete information in Markovian decision models, Ann. Statist., 2 (1974),

D
ow

nl
oa

de
d 

06
/2

3/
22

 to
 1

39
.1

79
.2

42
.1

69
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/S0363012998345172
https://doi.org/10.1137/S0363012998345172
https://doi.org/10.1137/05064610X
https://doi.org/10.1137/05064610X
https://doi.org/10.1137/1101006
https://doi.org/10.1137/17M1157660
https://doi.org/10.1137/17M1157660
https://arxiv.org/abs/1812.01772


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

870 CURTIS McDONALD AND SERDAR Y\"UKSEL

pp. 1327--1334.
[38] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Education, 2006.
[39] E. D. Sontag, A concept of local observability, Systems Control Lett., 5 (1984), pp. 41--47.
[40] R. B. Sowers and A. M. Makowski, Discrete-time filtering for linear systems with non-

Gaussian initial conditions: Asymptotic behavior of the difference between the MMSE and
LMSE estimates, IEEE Trans. Automat. Control, 37 (1992), pp. 114--120.

[41] W. Stannat, Stability of the filter equation for a time-dependent signal on \BbbR d, Appl. Math.
Optim., 52 (2005), pp. 39--71.

[42] V. A. Ugrinovskii, Observability of linear stochastic uncertain systems, IEEE Trans. Automat.
Control, 48 (2003), pp. 2264--2269.

[43] R. van Handel, Discrete time nonlinear filters with informative observations are stable, Elec-
tron. Commun. Probab., 13 (2008), pp. 562--575.

[44] R. van Handel, Observability and nonlinear filtering, Probab. Theory Related Fields, 145
(2009), pp. 35--74.

[45] R. van Handel, The stability of conditional Markov processes and Markov chains in random
environments, Ann. Probab., 37 (2009), pp. 1876--1925.

[46] R. van Handel, Uniform observability of hidden Markov models and filter stability for unstable
signals, Ann. Appl. Probab., 19 (2009), pp. 1172--1199.

[47] A. A. Yushkevich, Reduction of a controlled Markov model with incomplete data to a problem
with complete information in the case of Borel state and control spaces, Theory Probab.
Appl., 21 (1976), pp. 153--158.

[48] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, 1996.

D
ow

nl
oa

de
d 

06
/2

3/
22

 to
 1

39
.1

79
.2

42
.1

69
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y


	Introduction
	Filter stability
	Control cost and robustness
	Relations between the two problems

	Literature review
	Controlled filter stability and nonlinear observability
	On regularity of POMDPs and optimal policies
	Contributions

	Statements of main results
	Controlled filter stability results
	Results on robustness to incorrect priors

	Proofs on predictor and filter stability results
	Predictor stability results
	Filter stability results

	Proofs on robustness results
	Generalizations and discussion
	N-step observability and its limitations due to policy dependence
	Localized definition of observability
	Robustness under weak merging of priors

	Conclusion
	Appendix
	Proof of Theorem 3.8
	Proof of Lemma 4.8

	References

