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Abstract

In this project we study the channel capacity for communication systems when a feed-

back exists from the channel output to the encoder. More specifically, we study the

feedback capacity of a discrete binary-input non-binary output channel with memory

recently introduced in [15] to model soft-decision demodulated time-correlated fading

channels. The channel, whose output process can be explicitly expressed in terms of

its binary input process and a non-binary noise process, encompasses modulo-additive

noise binary channels as a special case (realized when hard-decision demodulation is

used on the underlying fading channel). We show that, even though the channel has

memory, feedback does not increase its capacity when the noise process is stationary

ergodic. We also note the validity of the result for arbitrary noise processes.
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Chapter 1

Introduction

In this chapter, we present some prior results on the feedback problem for channel

capacity. We then specify the main contribution of this project. Following that, we

give the outline of the project.

1.1 Literature Overview

The effects of feedback on the channel capacity where the channel encapsulates mem-

ory has taken a lot of attention especially in the last several years. Therefore, the

literature on the feedback capacity is vast. In this project, we only state some of these

results that are more closely related to our research. In earlier works, Shannon [18]

showed that feedback does not increase the capacity of discrete memoryless channels.

Cover and Pombra [9] and others considered additive channels with Gaussian noise

and showed that feedback can increase the capacity at most half a bit and later it has

been shown that [9] feedback at most doubles the capacity of a nonwhite Gaussian

channel (the later result is originally due to Pinsker [16] and Ebert [10]). Alajaji
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CHAPTER 1. INTRODUCTION 2

[1] showed that feedback does not increase the capacity of discrete modulo additive

channels with arbitrary noise.

1.2 Contributions

Based on these available results, it is known that for some types of channels, e.g.,

symmetric channels with identical input and output alphabet sizes, feedback does not

increase capacity [1, 4]. Inspired by this result, we investigate the feedback capacity of

a discrete binary-input 2q-ary output communication channel, which has recently been

proposed in [15] to model soft-decision demodulated fading channels with memory.

The channel, which we refer to by the non-binary noise discrete channel (NBNDC), is

explicitly described in terms of a non-binary noise process that is independent of the

channel input. We show that, in spite of the NBNDC’s memory structure, feedback

does not help to increase its capacity. It should be noted that the non-binary channel

is still symmetric [12], however in contrast with the additive noise channel model the

cardinality of the channel output is not the same as that of the input. Moreover, a

uniform input does not yield a uniform output which brings a hope that by using

feedback capacity can be increased. This is mainly an indication that there is still

some room for the capacity to be increased as capacity without feedback is smaller

than log2 2q = q. However, as we show later, even though the output distribution is

not uniform, it is still not possible to get a higher capacity via feedback. Although

the result is proved under the assumption of stationary ergodic non-binary noise, we

remark that it also holds for arbitrary (not necessarily stationary ergodic) noise.

This result generalizes in some sense the work in [1], where it is also shown that

feedback does not increase capacity for discrete modulo-k additive channels with
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arbitrary noise with memory. Furthermore, when q = 1, the result intersects exactly

with the result for k = 2 in [1], since the NBNDC reduces to the modulo-2 additive

noise channel.

1.3 Organization of Thesis

We proceed by introducing some basic notations and definitions for memoryless chan-

nels. We continue with discussing information theoretic concepts when the channel

encompasses memory. We follow this by introducing the channel model proposed in

[15]. We make a deeper investigation on the non-feedback capacity for this channel.

Next, we discuss the feedback capacity and state our main results. In the last chapter,

we present a summary of the project.



Chapter 2

Memoryless Channels

In this section we give some basic definitions and theorems mainly on capacity for

channels without memory.

2.1 Definitions

In the most general sense, a communication system consists of three parts: (1) The

source, which generates messages at the transmitting end of the system, (2) The

destination, which tries to estimate the message within a certain accuracy, and (3)

The channel which consists of a noisy (in general) transmission medium to transfer

the signal from the source to the destination.

In parallel to this definition, let us define what a discrete channel is.

Definition 2.1.1. A discrete communication channel, denoted by (X , p(y|x),Y) is

a system consisting of two finite sets X and Y and a collection of probability mass

functions, p(y|x), one for each x ∈ X , such that for every x and y, p(y|x) ≥ 0 and for

every x,
∑

y p(y|x) = 1, where X is the input alphabet and Y is the output alphabet.

4



CHAPTER 2. MEMORYLESS CHANNELS 5

Definition 2.1.2. The nth extension of a discrete memoryless channel (DMC) is the

channel which is denoted by (X n, p(yn|xn),Yn) where

p(yk|xk, xk−1) = p(yk|xk) k = 1, · · · , n. (2.1)

We should note that, when there is no feedback in the channel, i.e., if the input

symbols are independent of past output symbols, then

p(y|x) =
n∏
i=1

p(yi|xi). (2.2)

Definition 2.1.3. An (M,n) block code for the channel given by (X , p(y|x),Y) con-

sists of the following;

• An index set {1, 2, · · · ,M}.

• An encoding function Xn : {1, 2, · · · ,M} → X n.

Definition 2.1.4. One important definition in communication theory is the Condi-

tional Probability of Error which is given as follows:

λi = Pr(g(Y n) 6= i|Xn = xn(i)) =
∑
yn

p(yn|xn(i))I(g(yn) 6= i) (2.3)

where I(·) is the indicator function and the definition stands for the conditional prob-

ability of error given that the index i was sent.

Definition 2.1.5. The Average Probability of Error P n
e for an (M,n) code is given

as follows;

P n
e =

1

M

M∑
i=1

λi. (2.4)

Definition 2.1.6. The rate R of an (M,n) code is

R =
log2M

n
bits per transmission. (2.5)
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Definition 2.1.7. A rate R is called achievable if there exists a sequence of (d2nRe, n)

codes such that the average probability of error, P n
e , tends to 0 as n→∞.

Definition 2.1.8. The capacity of a channel is the supremum of all achievable rates.

In other words, capacity characterizes the maximum amount of reliable informa-

tion that the channel can transmit.

To further study the channel capacity, we need to define two related concepts.

We first introduce the concept of entropy, which is a measure of the uncertainty of a

random variable.

Definition 2.1.9. The entropy H(X) of a discrete random variable X is given by

H(X) =
∑
x∈X

p(x) log p(x) (2.6)

Similarly, the joint entropy and conditional entropy of two random variables are

defined as follows:

Definition 2.1.10. The joint entropy H(X, Y ) of a pair of discrete random variables

(X, Y ) with a joint distribution p(x, y) is given by

H(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.7)

Definition 2.1.11. The conditional entropy H(Y |X) of a pair of discrete random

variables (X, Y ) with a joint distribution p(x, y) is given as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −E log p(Y |X)
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where E denotes the expectation.

We now define mutual information, which is a measure of the amount of infor-

mation that one random variable contains about another random variable. It is the

reduction in the uncertainty of one random variable due to the knowledge of the other.

Definition 2.1.12. For a pair of discrete random variables X, Y with a joint prob-

ability mass function p(x, y) and marginal probability mass functions p(x) and p(y),

the mutual information, I(X;Y ), is the relative entropy between the joint distribution

and the product distribution p(x)p(y):

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= Ep(x,y) log
p(x, y)

p(x)p(y)
.

Definition 2.1.13. (Information Channel Capacity) For a DMC, the information

channel capacity is given by

C = max
p(x)

I(X;Y ) (2.8)

where the maximization is taken over all possible source distributions p(x) and I(X;Y )

is the mutual information between the input and the channel output.

Additionally, the operational meaning of channel capacity can be given as the

highest rate in bits per channel use that the information can be transmitted with

arbitrary low probability of error. However, as proven in Shannon’s Second Coding

theorem, the operational capacity and the information capacity are equal.

We can now state some of the properties of channel capacity:

(a) C ≥ 0, since I(X;Y ) ≥ 0.
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(b) C ≤ log2 |X |, since C = maxp(x) I(X;Y ) ≤ H(X) = log2 |X |.

(c) C ≤ log2 |Y|.

(d) I(X;Y ) is a continuous function of p(x).

(e) I(X;Y ) is a concave function of p(x).

Throughout the project, we frequently refer to some specific class of channels

where they mainly carry some sense of symmetry. This symmetry is characterized

by looking at the channel transition matrix and it is very helpful in calculating the

channel capacity. Therefore, before discussing channels with memory, we first make

definitions for these symmetric channels.

2.2 Symmetric Channels

Typically, a discrete channel which is defined above, is characterized by a matrix,

called channel transition matrix, which is a |X | × |Y| matrix whose entries are com-

posed of p(y|x) values. In some situations, the structure of this matrix is quite helpful

to compute the channel capacity. We now define some of these structures and follow-

ing them we state how we can compute the capacity for these channels.

Definition 2.2.1. A channel is said to be strongly symmetric if the rows of its tran-

sition matrix Q = [p(y|x)] are permutations of each other and also the columns are

permutations of each other.

A channel is said to be weakly symmetric if the rows of its transition matrix

Q = [p(y|x)] are permutations of each other and all the column sums
∑

x p(y|x) are

equal for every y [8].
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For example, the channel with transition matrix

Q =

 1
3

1
6

1
2

1
3

1
2

1
6


is weakly symmetric but not strongly symmetric.

In computing the channel capacity these symmetry conditions are quite helpful

and as such we can state a theorem on the channel capacity of weakly symmetric

channels.

Theorem 2.2.1. (Capacity for Weakly-Symmetric Channels) [8] For a weakly sym-

metric channel

C = log |Y| −H(row of transition matrix) (2.9)

where H(·) denotes entropy and the capacity is achieved by a uniform input distribu-

tion.

Proof of Theorem 2.2.1.

I(X;Y ) = H(Y )−H(Y |X) (2.10)

= H(Y )−
∑
x

p(x)H(Y |X = x) (2.11)

where H(Y |X = x) =
∑

y p(y|x) log(p(y|x)).

Since every row of Q is a permutation of every other row, then H(Y |X = x) is

independent of x. Therefore,

H(Y |X = x) = H(q1, q2, · · · , q|Y|) ∀x ∈ X (2.12)
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where (q1, q2, · · · , qY ) is any row in Q. This implies that

I(X;Y ) = H(Y )−H(q1, q2, · · · , q|Y|) (2.13)

≤ log |Y| −H(q1, q2, · · · , q|Y|). (2.14)

A uniform input distribution yields a uniform distribution for the output Y since

p(y) =
∑
x∈ X

p(y|x)p(x) (2.15)

=
1

|X |
∑
x∈ X

p(y|x) (2.16)

=
K

|X |
∀y ∈ Y , (2.17)

where K =
∑

x p(y|x) is a constant. Since
∑

x p(y) = 1, we obtain that K = |X |
|Y| and

thus p(y) = 1
|Y| , ∀y ∈ Y .

Although this notion of symmetry includes many channel types such as the binary

symmetric channel (BSC), the binary erasure channel, the modulo addition channel

etc., it is possible to define a more general class of symmetric class which is called the

quasi-symmetric channel.

Definition 2.2.2. A DMC with input alphabet X , output alphabet Y and channel

transition matrix Q = [p(y|x)] is quasi-symmetric if Q can be partitioned along its

columns into weakly-symmetric sub-arrays Q1, Q2, . . . , Qn, with each Qi having size

|X | × |Yi| where Y1 ∪ · · · ∪ Yn = Y and Yi ∩ Yj = ∅ ∀i 6= j [3].

We should note that, the class of quasi-symmetric channels includes the classes of

strongly and weakly symmetric channels as well as the class of symmetric channels

defined by Gallager [12].
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Theorem 2.2.2. (Capacity for Quasi-Symmetric Channels)[3] The capacity C for a

quasi-symmetric channel is given by

C =
n∑
i=1

aiCi (2.18)

where

ai =
∑
y∈ Yi

p(y|x) = sum of any row in Qi (2.19)

and

Ci = log |Yi| − H

(
any row in the matrix

1

ai
Qi

)
for i = 1, · · · , n

Proof of Theorem 2.2.2. We first observe that for each i = 1, · · · , n, ai is indepen-

dent of the input value x, since sub-array i is weakly symmetric (so any row in Qi is

a permutation of any other row); and hence ai is the sum of any row in Qi.

For each i = 1, · · · , n, define

pi(y|x) =


p(y|x)
ai

y ∈ Yi

0 otherwise

It can be easily verified that pi(y|x) is a legitimate conditional distribution. Thus

[pi(y|x)] = 1
ai
Qi is the transition matrix of the weakly-symmetric sub-channel i with

input alphabet X and output alphabet Yi. Let Ii(X;Y ) denote its mutual informa-

tion. Since each such sub-channel i is weakly-symmetric, we know that its capacity

Ci is given by

Ci = max
p(x)

Ii(X;Y ) = log |Yi| − H

(
any row in the matrix

1

ai
Qi

)
(2.20)

where the maximum is achieved by a uniform input distribution.

Now, the mutual information between the input and the output of channel Q can
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be written as

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x)p(y|x) log2

p(y|x)∑
x′∈X p(y|x

′)p(x′)
(2.21)

=
n∑
i=1

∑
y∈Yi

∑
x∈X

aip(x)
p(y|x)

ai
log2

p(y|x)
ai∑

x′∈X
p(y|x′ )
ai

p(x′)
(2.22)

=
n∑
i=1

ai
∑
y∈Yi

∑
x∈X

p(x)pi(y|x) log2

pi(y|x)∑
x′∈X pi(y|x

′)p(x′)
(2.23)

=
n∑
i=1

aiIi(X;Y ). (2.24)

Therefore, the channel capacity of channel Q is

C = max
p(x)

I(X;Y )

= max
p(x)

n∑
i=1

aiIi(X;Y )

=
n∑
i=1

ai max
p(x)

Ii(X;Y ) (since each Ii(X;Y ) is maximized by the same uniform p(x))

=
n∑
i=1

aiCi. (2.25)

The definitions and theorems that we stated so far are mainly for communication

systems when there is no memory in the channel. In the next chapter, we extend the

notions that we have been discussing to communication systems with memory.



Chapter 3

Channels With Memory

In the previous chapter we discussed main concepts on the channel capacity for mem-

oryless channels. Channels with memory are however more interesting as their noise

process exhibits statistical dependency. Furthermore, for feedback capacity problems,

memory is crucial since Shannon already showed that feedback does not increase ca-

pacity of memoryless channels [18]. Therefore, in this chapter we present some further

information theoretic aspects of channels with memory.

3.1 Information Sources

We begin by a classification of sources with memory. In the rest of this chapter,

by a ”random source” we mean a stochastic process X = {Xi}∞i=1. In general we

say that a source has a memory if there exists a dependence between the random

variables of the source. Consider a discrete source {Xi}∞i=1 with finite alphabet X

characterized by the joint n-dimensional probability mass functions (pmfs); P [X1 =

x1, X2 = x2, · · · , Xn = xn] := p(x1, x2, · · · , xn) for all xn ∈ X n where p(xn) satisfies

13



CHAPTER 3. CHANNELS WITH MEMORY 14

the compatibility condition;∑
xn∈X

p(x1, x2, · · · , xn) = p(x1, x2, · · · , xn−1)

and it should be noted that p(xn) = p(x1)
∏n

i=2 p(xi|xi−1, · · · , x1). Therefore, if p(x1)

and conditional distribution p(xi|xi−1, · · · , x1) are given p(xn) can be recursively de-

termined.

Definition 3.1.1. A stochastic process is stationary if

P [X1 = x1, X2 = x2, · · · , Xn = xn] = P [X1+τ = x1, X2+τ = x2, · · · , Xn+τ = xn]

∀n, τ and ∀xn ∈ X n.

The main idea in this definition is that joint distribution is invariant under time

shifts. In practice, many sources are well modeled using stationary sources.

Another important point that should be noted is that stationarity implies identical

distribution for a source and we can easily show that an (i.i.d) discrete memoryless

source is stationary since;

P [X1 = x1, X2 = x2, · · · , Xn = xn] =
n∏
i=1

P [Xi = xi] by independence

=
n∏
i=1

P [Xi+τ = xi] by identical distribution

= P [X1+τ = x1, X2+τ = x2, · · · , Xn+τ = xn]

One of the interesting sources that embeds memory is the Markov source.

Definition 3.1.2. A discrete process {Xi}∞i=1 with finite alphabet X is said to be a

Markov chain (MC) (or Markov source) if for n = 1, 2, · · ·

P [Xn = xn|Xn−1 = xn−1, · · · , X1 = x1] = P [Xn = xn|Xn−1 = xn−1], ∀xn ∈ X n.

In this case, p(xn) = p(x1)
∏n

i=2 p(xi|xi−1).
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Furthermore, a process is a Markov chain of memory order M if

P [Xn = xn|Xn−1 = xn−1, · · · , X1 = x1] = P [Xn = xn|Xn−1 = xn−1, · · ·Xn−M = xn−M ]

∀n ≥M,xn ∈ X n.

Definition 3.1.3. A Markov chain is time-invariant or homogenous if p(xn|xn−1)

does not change with n, i.e., if

P [Xn = a|Xn−1 = b] = P [X2 = a|X1 = b], ∀n,∀a, b ∈ X .

The widest class of sources that we have defined so far is the class of stationary

sources and this property implies that two source sequences with the same pattern,

even if they are far away from each other in time, occur with the same probability.

In addition to stationarity, another property (which we do not explicitly define) that

is important in information theory is the following:

Stationary sources that cannot be separated into different persisting (asymptotic)

modes of behavior are known as ergodic sources. A stationary ergodic source has

the property that the statistical average of a function defined on its random variable

sequence is arbitrarily close to its time average with probability close one as the

sequence length approaches infinity.

Although throughout this thesis we mainly consider stationary-ergodic sources it

is worth to note that any nonergodic stationary stochastic process can be decomposed

into ergodic components (the ergodic decomposition of a stationary source) [13]. The

following theorem concerning stationary ergodic sources is called the individual ergodic

theorem by G.D Birkhoff [14].

Theorem 3.1.1. Let X = {Xi}∞i=1 be an arbitrary stationary source. Then, X is a

stationary ergodic if and only if, for any natural number k and any integrable function
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f on X k,

lim
n→∞

1

n

n−1∑
i=0

f(Xi+1, Xi+2, · · · , Xi+k) = E[f(X1, X2, · · · , Xk)] (3.1)

with probability one, where E denotes expectation.

The left- and right-hand side of equation (3.1) are called the time-average and

ensemble average of f respectively.

To study the characteristics of a stationary stochastic process X = (X1, X2, · · · )

as a model of an information source, it is necessary to know how the entropy of its

finite blocks, Xn = (X1, X2, · · · , Xn), grows with length n. In the previous chapter,

we showed that it is enough to know the entropy of input, output and noise processes

to find the capacity of memoryless channels. However, while working with channels

with memory, we need to find the entropy-rate of these processes.

Definition 3.1.4. The entropy rate of a source {Xi}∞i=1 with alphabet X is denoted

by H(X ) or H∞(X) and defined by;

H(X ) := lim
n→∞

1

n
H(X1, X2, · · · , Xn)

provided the limit exists.

By the definition, one can see that for a DMS H(X ) = H(X1). For a stationary

source, the limit actually exists and it coincides with the limit of conditional entropy

conditioned on the previous data, i.e., we have the following result

Theorem 3.1.2. [8] For a stationary discrete source X = (X1, X2, · · · ) satisfying

H(X1) <∞, the entropy rate exists and is expressed by

H(X ) ≡ lim
n→∞

Hn(X ) = lim
n→∞

H(Xn|X1, X2, · · · , Xn−1). (3.2)

We state Cesàro’s theorem which we use in the proof of the above theorem.
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Theorem 3.1.3. If a sequence of numbers (αn) converges to α as n → ∞, the

sequence

(βn =
1

n

n∑
i=1

αi)

converges to the same value α as n→∞.

Proof of Theorem 3.1.2. The sequence of conditional entropies αn=H(Xn|X1, · · · , Xn−1)

is non-increasing since

H(Xn|X1, X2, · · · , Xn−1) = H(Xn+1|X2, · · · , Xn) (3.3)

≥ H(Xn+1|X1, X2, · · · , Xn) (3.4)

where (3.3) follows from stationarity and (3.4) is valid since conditioning reduces en-

tropy and H(Xn+1|X1, X2, · · · , Xn) ≥ 0. Thus by the monotone convergence theorem,

the sequence (αn) converges to a value α. From the chain rule of entropy, we have

βn =
1

n
H(X1, X2, · · · , Xn) =

1

n

n∑
i=1

H(Xi|X1, X2, · · · , Xi−1)

=
1

n

n∑
i=1

αi

Therefore, from Cesàro’s theorem, βn converges to α. The common limit α of these

two sequences αn and βn converges to H(X ).

In the rest of this chapter, we derive a more general capacity formulation [21] that

covers arbitrary classes of channels with memory. To achieve this objective, we need

to define so-called information spectrum measures which will be playing a key role

in the general channel capacity theorem. The material described in the remainder of

this chapter is synthesized from [7, 6, 21, 20].
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3.2 Information Spectrum Measures

Consider a general source with memory (not necessarily stationary, ergodic) taking

values in a finite alphabet X . This general source may exhibit distinct statistics for

each block length n:

n = 1 : X1
1

n = 2 : X2
1 , X

2
2

n = 3 : X3
1 , X

3
2 , X

3
3

...

In other words, the source consists of a triangular array of random variables. Let us

denote it by

X := {Xn = (X
(n)
1 , X

(n)
2 , · · · , X(n)

n )}∞n=1.

This general source, which models a wide class of real-time varying sources, does not

need to satisfy the consistency condition which is defined as follows.

From a physical point of view, the most fundamental characteristic of a random

process is the set

FXt1 ,Xt2 ,··· ,Xtn (xt1 , xt2 , · · · , xtn) = P (Xt1 ≤ xt1 , Xt2 ≤ xt2 , · · · , Xtn ≤ xtn) (3.5)

defined for all sets t1, · · · , tn such that t1 < t2 < · · · < tn. We see from (3.5) that for

each set t1, · · · , tn with t1 < t2 < · · · < tn, the functions FXt1 ,Xt2 ,··· ,Xtn (xt1 , xt2 , · · · , xtn)

are n-dimensional distribution functions and that the collection

{FXt1 ,Xt2 ,··· ,Xtn (xt1 , xt2 , · · · , xtn)}

is said to be consistent if the following condition is satisfied

FXt1 ,Xt2 ,··· ,Xtn (xt1 , xt2 , · · · , xtn) = FXt1 ,Xt2 ,··· ,Xtn ,Xtn+1
(xt1 , xt2 , · · · , xtn ,∞).
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Sources satisfying this consistency condition are usually called processes and let

us denote them {Xn = (X1, X2, · · · , Xn)}∞n=1 . However, for the rest of this section

we consider general, not necessarily consistent, sources.

Definition 3.2.1. Liminf in probability: For an arbitrary real-valued sequence

of random variables {An = (A
(n)
1 , A

(n)
2 , · · · , A(n)

n )}∞n=1, the liminf in probability U of

a sequence of random variables {An} is defined as the largest extended real number

(u ∈ R ∪ {−∞,+∞}) such that

∀ε > 0, lim
n→∞

P [An ≤ U − ε] = 0.

Equivalently

U := p− lim inf
n→∞

An := sup{β : lim
n→∞

P [An < β] = 0}.

Limsup in probability: Similarly, the limsup in probability U of a sequence of

random variables {An} is defined as the smallest extended real number such that

∀ε > 0, lim
n→∞

P [An ≥ U + ε] = 0.

Equivalently,

U := p− lim sup
n→∞

An := inf{α : lim
n→∞

P [An > α] = 0}.

Let us now look at some properties of lim inf/lim sup in probability.

• U := p−lim infn→∞An and U := p−lim supn→∞An always exists. Furthermore,

p− lim inf
n→∞

An = p− lim sup
n→∞

An = C ⇔ p− lim
n→∞

An = C
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means that An converges in probability to a constant C since

An n→∞−−−−→ C in probability

⇔ lim
n→∞

P [|An − C| > ε] = 0∀ε > 0

⇔ lim
n→∞

P [An > C + ε] = 0 and lim
n→∞

P [An < C − ε] = 0∀ ε > 0.

• p− liminf and p− limsup are extended notions of lim inf and lim sup when An

is a deterministic real-valued sequence. They indeed have properties that are

similar to lim inf and lim sup operations as follows.

(a)

p− lim inf
n→∞

An + p− lim inf
n→∞

Bn ≤ p− lim inf
n→∞

(An +Bn)

≤ p− lim inf
n→∞

An + p− lim sup
n→∞

Bn

≤ p− lim sup
n→∞

(An +Bn)

≤ p− lim sup
n→∞

An + p− lim sup
n→∞

Bn.

(b) p− limn→∞ sup(−An) = −p− limn→∞ inf(An).

These quantities can be better understood by examining two related definitions.

Definition 3.2.2. If {An}∞n=1 is a sequence of random variables, then its inf-spectrum

u(·) and its sup-spectrum u(·) are defined by

u(θ) := lim inf
n→∞

P (An ≤ θ),

and

u(θ) := lim sup
n→∞

P (An ≤ θ),

where θ ∈ R. In other words, u(·) and u(·) are respectively the liminf and the limsup

of the cumulative distribution function (CDF) of An [6].



CHAPTER 3. CHANNELS WITH MEMORY 21

It should be noted that by the definition of CDF both u(.) and u(.) are non-

decreasing functions. From the definition of U , we have

U := sup{β : lim
n→∞

P [An < β] = 0}

= sup{β : lim
n→∞

supP [An < β] = 0}.

However, it can be shown that

sup{β : lim sup
n→∞

P [An < β] = 0} = sup{β : lim sup
n→∞

P [An ≤ β] = 0},

therefore, we obtain that U = sup{β : u(β) = 0}. In other words, U is the largest

extended real number for which the sup-spectrum of An vanishes. Furthermore, from

the definition of U , we have

U := inf{α : lim
n→∞

P [An > α] = 0}

= inf{α : lim sup
n→∞

P [An > α] = 0}

= inf{α : lim inf
n→∞

P [An ≤ α] = 1}

= inf{α : u(α) = 1}

= sup{α : u(α) < 1} (3.6)

where (3.6) is due to that u is non-decreasing. In other words,

U = inf{α : u(α) = 1} = sup{α : u(α) < 1}.

The above Han and Verdú quantities given in [21] and were generalized by Chen and

Alajaji in [6] in terms of ”quantiles” of information spectrum which enabled the latter

authors to establish ”optimistic” source and channel coding operational quantities [7].

Definition 3.2.3. Consider a general source X := {Xn = (X
(n)
1 , X

(n)
2 , · · · , X(n)

n )}

with alphabet X . Then, the random variable −1
n

logPXn(Xn) is called the normalized

entropy density of the source and is usually denoted by 1
n
hXn(Xn). Note that the
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expectation EXn [ 1
n
hXn(Xn)] = 1

n
H(Xn), which is the normalized entropy of Xn.

Definition 3.2.4. The inf-entropy rate (or the spectral inf-entropy rate) of the source,

denoted by H(X ), is defined as,

H(X) := p− lim
n→∞

inf
1

n
log

1

PXn(Xn)

= sup

{
β : lim sup

n→∞
P

[
1

n
log

1

PXn(Xn)
≤ β

]
= 0

}
Similarly, the sup-entropy rate of the source, denoted by H(X ), is defined as,

H(X) := p− lim
n→∞

sup
1

n
log

1

PXn(Xn)

= sup

{
β : lim inf

n→∞
P

[
1

n
log

1

PXn(Xn)
≤ β

]
< 1

}
Another important definition given in [21] which plays a key role in proving gen-

eralized source/channel coding theorems is so called inf/sup information rate. Before

defining this, we first define a related information density quantity.

Definition 3.2.5. Let X := {Xn}∞n=1 be a general input source with finite alphabet

X and let

Y := {Y n := (Y
(n)
1 , Y

(n)
2 , · · · , Y (n)

n )}

be the corresponding output source with alphabet Y induced by source X via the channel

W := {W n = PY n|Xn : X n → Yn}∞n=1

which is an arbitrary sequence of n-dimensional conditional distributions from X n to

Yn satisfying ∑
yn∈Yn

W n(yn|xn) = 1, ∀xn ∈ X n, ∀n = 1, 2 · · · .

Then the random variable

1

n
log

W n(Y n|Xn)

PY n(Y n)
=

1

n
log

PXn,Y n(Xn, Y n)

PXn(Xn)PY n(Y n)
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is called the normalized information density of the channel and is usually denoted by

1
n
iXnWn(Xn, Y n). It should be noted that

EXnWn [
1

n
iXnWn(Xn, Y n)] =

1

n
I(Xn;Y n),

which is the normalized mutual information between Xn and Y n.

Definition 3.2.6. The inf-information rate (or spectral inf-information rate), de-

noted by I(X;Y) is defined as

I(X;Y) := p− lim
n→∞

inf
1

n
iXnWn(Xn, Y n)

= sup

{
β : lim sup

n→∞
P

[
1

n
iXnWn(Xn, Y n) ≤ β

]
= 0

}
.

The sup-information rate (or spectral sup-information rate), denoted by I(X;Y) is

defined as

I(X;Y) := p− lim
n→∞

sup
1

n
log

W n(Y n|Xn)

PY n(Y n)
.

Before stating the generalized channel capacity theorem, we first discuss some

important properties of inf-information rate. Many of the familiar properties that

mutual information satisfies turn out to be inherited by the inf-information rate.

Those properties are particularly useful in the computation of supX I(X; Y) for some

specific channels. In deriving these properties one of the frequently used properties

is the non-negativity of divergence. Therefore, let us first define the divergence.

Definition 3.2.7. The divergence (also called relative entropy) between two pmfs p(.)

and q(.) given over the same alphabet X is defined as

D(p‖q) :=
∑
x∈X

p(x) log2

p(x)

q(x)
= Ep

[
log2

p(x)

q(x)

]
.

Divergence is a measure of ”distance” between distributions p and q; it is a measure

of the inefficiency of assuming that the distribution of a random variable X is q(.)
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when its true distribution is p(.)

Lemma 3.2.1. D(p‖q) ≥ 0 with equality if and only if p = q (p(x) = q(x),∀x ∈ X ).

The proof of this lemma directly follows the definition. In a similar way, we can

also define inf-divergence rate for two arbitrary processes U and V.

Definition 3.2.8. The inf-divergence rate for two arbitrary processes U and V,

D(U‖V), is given as the liminf in probability of the sequence of the log-likelihood

ratios 1
n

log PUn (Un)
PV n (V n)

[21].

In the next theorem, we state the properties of inf-information rate. Their proof

is available in [21].

Theorem 3.2.1. An arbitrary sequence of joint distributions (X,Y) satisfies

(a) D(X‖Y) ≥ 0.

(b) I(X;Y) = I(Y;X).

(c) I(X;Y) ≥ 0.

(d)

I(X;Y) ≤ H(Y)−H(Y|X)

I(X;Y) ≤ H(Y)−H(Y|X)

I(X;Y) ≥ H(Y)−H(Y|X).

(e) 0 ≤ H(Y) < log |Y|.

(f) I(X,Y;Z) ≥ I(X;Z).

(g) If I(X;Y) = I(X;Y) and the input alphabet is finite, then I(X;Y) = limn→∞
1
n
I(Xn;Y n).
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(h) I(X;Y) ≤ lim infn→∞
1
n
I(Xn;Y n).

Using these properties, we can define an important theorem the analogue of which

is also defined on standard mutual information.

Theorem 3.2.2 (Data Processing Theorem for Inf-Information Rate). Suppose that

for every n, Xn
1 and Xn

3 are conditionally independent given Xn
2 . Then,

I(X1;X3) ≤ I(X1;X2). (3.7)

Proof. By Theorem 3.2.1, we get

I(X1; X3) ≤ I(X1; X2,X3)

= I(X1; X2) (3.8)

where the equality holds because I(X1; X2,X3) is the liminf in probability of

1

n
log

PXn
1 |Xn

2 X
n
3
(Xn

1 |Xn
2 , X

n
3 )

PXn
1
(Xn

1 )
=

1

n
log

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

PXn
1
(Xn

1 )
+

1

n
log

PXn
1 |Xn

2 X
n
3
(Xn

1 |Xn
2 , X

n
3 )

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

=
1

n
log

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

PXn
1
(Xn

1 )
. (3.9)

3.3 General Channel Coding Theorem

Let us consider a general channel with memory described by W := {W n = PY n|Xn :

X n → Yn}∞n=1 which is an arbitrary sequence of n-dimensional distributions from X n

to Yn, where both X and Y are finite alphabet, such that∑
yn∈Yn

W n(yn|xn) = 1, ∀xn ∈ X n,∀n = 1, 2 · · · .

Let X = {Xi}∞i=1 and Y = {Yi}∞i=1 denote the input and output sources of the channel,

respectively.
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Definition 3.3.1 (Channel Block Code). An (M,n) block code for the channel W :=

{W n = PY n|Xn}∞n=1 consists of:

• Encoder: fn :M := {1, 2, · · · ,M} → X n.

• Decoder: gn : Yn →M.

The codebook is given by

Cn = {fn(1), · · · , fn(M)} = {xn(1), · · · , xn(M)} ⊆ X n.

The code rate R(Cn) = 1
n

log2M message bits/channel symbols and the average prob-

ability of error is

Pe(Cn) :=
1

M

M∑
i=1

∑
yn:gn(yn)6=i

PY n|Xn(yn|fn(i))

= P [I 6= Î],

where I ∈M is uniform and Î is the decoder output.

Although we defined channel capacity in the previous chapter we herein restate it

for the channels with memory.

Definition 3.3.2 ((Operational) Channel Capacity). R ≥ 0 is said to be achievable

channel coding rate for the channel W if there exists a sequence of {Cn = (M,n)}∞n=1

block codes for W such that

lim inf
n→∞

1

n
logM ≥ R and lim sup

n→∞
Pe(Cn) = 0.

The supremum of all achievable channel coding rates for W is denoted by C and

called the (operational) channel capacity:

C := sup{R ≥ 0 : R is achievable for channel W}.

Next, we state two lemma’s on the average probability of error.
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Lemma 3.3.1 (Feinstein’s Lemma). Fix a positive integer n. For every γ > 0 and

input distribution PXn on X n, there exists an (M,n) block code Cn for Wn = PY n|Xn

such that its average error probability satisfies

Pe(Cn) < P [
1

n
iXnWn(Xn;Y n) <

1

n
logM + γ] + exp(−nγ)

where iXnWn(Xn;Y n) := 1
n

log
PY n|Xn (Y n|xn)

PY n (Y n)
is the normalized information density

[11].

Lemma 3.3.2 (Verdú - Poor Channel Coding Lemma). Every (Mn, n) block code Cn

for channel Wn = PY n|Xn satisfies

Pe(Cn) ≥ (1− exp(−nγ))P [
1

n
iXnWn(Xn;Y n) <

1

n
logM − γ]

for every γ > 0, where Xn places probability 1
M

on each codeword of Cn [22].

Lemmas 3.3.1 and 3.3.2 gives a lower and upper bound on the average probability

of error in terms of the normalized density function. We can now state the general

channel coding theorem of Verdú and Han.

Theorem 3.3.1 (General Channel Coding Theorem). [21] For any channel given by

W := {W n = PY n|Xn}∞n=1,

C = sup
X
I(X;Y)

In other words, for any arbitrary channel W, the capacity is given by the supremum

over all input sources of the inf-information rate I(X;Y) [21].

3.4 Application to Information Stable Channels

Let us start with a modification on the definition of information stability from sources

to channels [2].
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Definition 3.4.1 (Information Stable Channel). A channel W := {W n = PY n|Xn}∞n=1

is said to be information stable if there exists an input source X = {Xn}∞n=1 such that

O < Cn <∞ for n sufficiently large and

lim sup
n→∞

P

[
|

1
n
iXnWn(Xn;Y n)

Cn
− 1| > γ

]
= 0, ∀γ > 0

where Cn := supP (Xn)
1
n
I(Xn;Y n).

Remark.

• DMC’s are information stable.

• More generally, stationary ergodic channels are information stable. It should

be noted that, a channel is called stationary (respectively ergodic) if for every

stationary input source (respectively ergodic), the resulting joint input-output

process is stationary (respectively ergodic).

• A channel with (modulo) additive stationary ergodic noise is information stable.

• A channel with non-stationary independent (modulo) additive noise is informa-

tion stable.

Theorem 3.4.1. [21] Every information stable channel W := {W n = PY n|Xn}∞n=1

satisfies

C = lim inf
n→∞

Cn = lim inf
n→∞

sup
P (Xn)

1

n
I(Xn;Y n).

In the next two section, we will be using this theorem while computing the channel

capacity.



Chapter 4

A Discrete Non-Binary Noise

Channel

In this chapter, we consider a new binary-input non-binary output channel with mem-

ory recently introduced in [15] to model soft-decision demodulated time-correlated

fading channels. We first study the non-feedback capacity of this channel.

4.1 Channel Model

In this section, we first define the communication system model considered in [15]

and next we state an equivalent discrete channel model to this fading channel.

29
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4.1.1 A Discrete Fading Channel with Soft-Decision Infor-

mation

Wireless communication channels undergo time-varying fading which can be modeled

as a time-correlated random process. Moreover, since each fading statistically depends

on the previous one, this stochastic process exhibits memory. Considering this mem-

ory embedded in the process, a discrete binary-input 2q-ary output communication

channel with memory is introduced [15] where the objective is to capture both the sta-

tistical memory and the soft-decision information of time-correlated fading channels

modulated by binary phase-shift keying (BPSK) and coherently demodulated with an

output quantizer of resolution q. The main motivation of this channel model is that it

may be used in designing new coding/decoding schemes for soft-decision demodulated

channels with memory that result in superior performance over systems that ignore

the channel’s memory (via interleaving) and/or soft-decision information (via hard

demodulation)[15]. Additionally, the receivers operating with 1-3 bit quantization

have potential applications in ultrawideband and millimeter wave communication.

The discrete fading channel (DFC) is composed of a BPSK modulator, a time-

correlated flat fading channel and a q-bit soft-quantized coherent demodulator [15].

The complex envelope of the fading process, G̃(t), is a zero-mean stationary Gaus-

sian noise process with known covariance. Let, {Xk} ∈ X , k = 1, 2, · · · , be the input

process to the discrete channel. The sample of the fading envelope at the kth interval,

Ak = |G̃(kT )|, where T is symbol interval, has the Rayleigh density function with a

unit second moment. At the kth signaling interval, the symbol received at the output

of the matched filter is written as;

Rk =
√
EsAkSk +Nk k = 1, 2, · · · ,
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where Sk = 2Xk − 1, Es is the energy of the transmitted signal, Nk is a sequence of

i.i.d zero-mean Gaussian random variables with variance N0/2 and Ak is a stationary

time-correlated Rayleigh process. The processes {Ak} and {Nk} are independent of

each other and also of the input process. The channel output,Yk ∈ Y is obtained with

demodulating the random variable Rk via a q-bit uniform scalar quantizer as follows;

Yk = j if Rk ∈ (T
′

j−1, T
′

j )

for j ∈ Y . The thresholds T
′
j are uniformly spaced with step size ∆, satisfying [5]

T
′

j =


−∞ if j = −1

(j + 1− 2q−1)4 if j = 0, 1, · · · , 2q − 1

∞ if j = 2q − 1

To normalize step size and thresholds let δ = ∆
√
Es and Tj = T

′
j/
√
Es. Then,

Tj = (j + 1− 2q−1)δ for j = 0, 1, · · · , 2q − 1.

We can now determine the conditional probability, qi,j(ak) = Pr(Yk = j|Xk =

i, Ak = ak), where i ∈ X , j ∈ Y and ak ∈ [0,∞), as follows;

qi,j(ak) = Pr(T
′

j−1 < Rk < T
′

j |Xk = i, Ak = ak)

= Pr(Tj−1 − (2i− 1)ak <
Nk√
Es

< Tj − (2i− 1)ak)

= Q(
√

2γ(Tj−1 − (2i− 1)ak))−Q(
√

2γ(Tj − (2i− 1)ak)) (4.1)

where γ = Es/N0 is the signal-to-noise ratio (SNR) andQ(x) = 1/
√

2π
∫∞
x

exp (−t2/2)dt

is the Gaussian Q-function. Due to the symmetry of the BPSK constellation and the

quantizer thresholds, we observe from (4.1) that qi,j(ak) = q1−i,2q−1−j(ak). This can

also be written as;

qi,j(ak) = q
0,
j−(2q−1)

(−1)i
(ak)

for i ∈ X and j ∈ Y . For integer n ≥ 1, let Pr(yn|xn, an) denote the n-fold probability
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distribution. Then,

Pr(yn|xn, an) =
n∏
k=1

qxk,yk(ak) =
n∏
k=1

q
0,
yk−(2q−1)xk

(−1)x
k

(ak) (4.2)

Thus, the DFC is specified in terms of the channel block conditional probability

P
(n)
DFC(yn|xn) = Pr(Y n = yn|Xn = xn)

= EA1...An

[ n∏
k=1

q
0,
yk−(2q−1)xk

(−1)xk

(Ak)

]
(4.3)

where yn = (y1, · · · , yn) and EX [.] denotes the expectation over X. For n = 1, a

closed form expression for P
(j)
DFC , j ∈ Y , is given by [19]

P
(j)
DFC = m(−Tj−1)−m(−Tj) (4.4)

where

m(Tj) = 1−Q(Tj
√

2γ)−
[1−Q(

Tj
√

2γ√
1
γ
+1

)]e
−

T2
j

( 1
γ+1)√

1
γ

+ 1
(4.5)

The expected value in (4.3) can be directly calculated for n ≤ 3 and for n > 3 it can

be determined via simulations.

4.2 An Alternative Model to DFC

In general, it is convenient to express the channel output process as an explicit func-

tion of input and noise processes. Pimentel and Alajaji in [15] developed an alterna-

tive model to the above soft-demodulated discrete fading channel. In this subsection,

we state this equivalent model and in the next section we consider this model with

feedback and show that feedback does not increase the capacity for this channel.

Consider the following non-binary noise discrete channel (NBNDC)

Yk = (2q − 1)Xk + (−1)XkZk (4.6)
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for k = 1, 2, · · · , where {Xk} is the input process, {Yk} is the output process and

{Zk} is the noise process. Here the input Xk ∈ X = {0, 1} is binary, and both noise

and output symbols, Zk and Yk, take values from the same 2q-ary alphabet given by

Z = Y = {0, 1, · · · , 2q− 1}. It is also assumed that the noise and input processes are

independent of each other.

The noise process is governed by the n-fold distribution

P n
NBNDC(zn) := P n

NBNDC(z1, · · · , zn)

where zk ∈ Y . Since the input and noise processes are independent of each other,

looking at (4.6) it can be seen that

P n
NBNDC(yn|xn) = P n

NBNDC(zn) (4.7)

where zk =
yk − (2q − 1)xk

(−1)xk
, k = 1, · · · , n. (4.8)

Now, it should be noted that if the distribution of noise process {Zk} in (4.8) is

given by (4.3) for each n, then the discrete fading channel and NBNDC have the

same channel block conditional probability. Thus, NBNDC provides an alternative

representation of the DFC. It can also be seen that when q = 1 (hard-decision de-

modulation), then the NBNDC expression in (4.6) gives us a familiar expression

Yk = Xk ⊕ Zk

where ⊕ denotes modulo-2 addition. In other words, when q = 1, the NBNDC reduces

to the binary (modulo-2) additive noise discrete channel with memory. Furthermore,

when {Zk} is memoryless, we obtain the memoryless BSC which fully represents the

fully interleaved discrete fading channel.

We now state some properties of channel which will be used frequently. The

NBNDC, as described by Yk = f(Xk, Zk), where f(·, ·) is given in (4.6), satisfies the
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following “invertibility” properties:

(a) For any fixed input x ∈ X , f(x, ·) : Z → Y is invertible.

(b) Every output symbol is the image of exactly two distinct input-noise pairs; i.e.,

for any y ∈ Y , there are exactly two pairs (x1, z1) and (x2, z2) in X × Z such

that x1 6= x2, z1 6= z2 and y = f(x1, z1) = f(x2, z2).

It should be noted that, when the input alphabet is binary property (b) implies

property (a). We continue our analysis by computing the channel capacity for this

model when the noise process is stationary ergodic.

4.3 Capacity Without Feedback

Consider the NBNDC given by (4.6), where the noise process is stationary ergodic.

For this information stable channel, its non-feedback capacity, in bits per channel use,

is given by (see Theorem 3.3.1)

C = lim inf
n→∞

C(n) = lim
n→∞

C(n) (4.9)

where

C(n) = max
p(xn)

1

n
I(Xn;Y n)

where maximum is taken with respect to all input distributions and I(Xn;Y n) is the

block mutual information. Since {Xk} and {Zk} are independent of each other, the

block mutual information can be rewritten as;

I(Xn;Y n) = H(Y n)−H(Y n|Xn) = H(Y n)−H(Zn)
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Therefore,

C(n) =
1

n

(
max
p(xn)

[H(Y n)−H(Zn)]

)
(4.10)

At this point, to find the capacity it is only required to find the distribution maxi-

mizing H(Y n). Let us look at this distribution.

Definition 4.3.1. Let W = {0, 1, · · · , 2q−1− 1} and let {Wk}, Wk ∈ W, be a process

with n-fold probability distribution

Pr(W n = wn) =
∑

xn∈ Xn
Pr

(
Zn =

wn − (2q − 1)xn

(−1)xn

)
(4.11)

where Zn = (wn−(2q−1)xn)

(−1)xn
denotes the tuple obtained from component-wise operations,

i.e., (Z1 = (w1−(2q−1)x1)
(−1)x1

, · · · , Zn = (wn−(2q−1)xn)
(−1)xn

).

It should be noted that, the mapping g :W ×X → Y given by

z = g(w, x) :=
w − (2q − 1)x

(−1)x

is invertible.

We can easily check that the probability assignment in (4.11) is valid since

1 =
∑

zn∈ Zn
Pr(Zn = zn)

=
∑

wn∈ Wn

∑
xn∈ Xn

Pr

(
Zn =

wn − (2q − 1)xn

(−1)xn

)
=

∑
wn∈ Wn

Pr(W n = wn) (4.12)

The process {Wk} is stationary since {Zk} is stationary when {Xk} is stationary: for
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any integer m > 0 wn ∈ Wn,

Pr(W1+m = w1, · · · ,Wn+m = wn)

=
∑

xn∈ Xn
Pr

(
Z1+m =

(w1 + (2q − 1)x1)

(−1)x1
, · · · , Zn+m =

(wn − (2q − 1)xn)

(−1)xn

)
=

∑
xn∈ Xn

Pr

(
Z1 =

(w1 + (2q − 1)x1)

(−1)x1
, · · · , Zn =

(wn − (2q − 1)xn)

(−1)xn

)
= Pr(W1 = w1, · · · ,Wn = wn).

Proposition 4.3.1. Consider the 2n×2qn channel transition probability matrix Qn =

[P n
NBNDC(yn|xn)] corresponding to n channel uses, where each row (respectively col-

umn) of Qn is indexed by a sequence xn (respectively yn). Then, Qn is quasi-

symmetric.

Proof. During the proof, we will be using the term ”weight” to mean that the input,

output and noise tuples are expressed in decimal form. Thus, xn = (x1, · · · , xn), yn =

(y1, · · · , yn) and zn = (z1, · · · , zn) can be expressed (in a one-to-one correspondence)

in terms of the decimal scalars

x̃ = x1 + x22 + · · ·+ xn2n−1

ỹ = y1 + y22
q + · · ·+ yn2q(n−1)

z̃ = z1 + z22
q + · · ·+ zn2q(n−1)

respectively.

Remark. Let Q̃n be a matrix such that its entries are composed of the weight of

noise tuples that is given by (4.8). It should be noted that, the entries of Qn are

P (zn) values and the entries of Q̃n are the weights of noise tuples zn. However, since

for each zn the weight is unique, to show that Qn is quasi-symmetric, it is sufficient

to show that Q̃n is quasi-symmetric. In the rest of the proof, we show that Q̃n is
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quasi-symmetric.

We observe that, from (4.6), there are exactly two pairs of (x, y), (xi, yi) and

(xj, yj), with xi 6= xj and yi 6= yj, that satisfy (4.6). We refer to this property by

property (c). Therefore, for the n-fold noise tuple zn, there are 2n possible combina-

tions of such (xn, yn) pairs that satisfy (4.6) component-wise. Moreover, considering

Q̃
n
, each specific weight of zn, z̃ ∈ {0, 1, 2, . . . , 2qn − 1}, appears exactly once in each

row by the property (a). In the rest of the proof, we will show the following:

(i) Pick any column from Q̃
n

and choose a specific entry in this column.

(ii) By the fact described above, this selected weight appears in another column (in

fact in 2n other columns).

(iii) Let us denote these two columns by yni and ynj , respectively. Then we claim

that, these two columns are permutations of each other.

(iv) By extending this idea to the other 2q(n−1) − 2 columns, we obtain a 2n × 2n

array such that its columns are permutations of each other. Furthermore, by

property (a), the rows of this array are also permutations of each other.
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Q̃
n

=



yni . . . ynj

z̃mi

xnt . . . z̃tj

↑ ... ↓ ...

z̃mj

xns . . . z̃si



(4.13)

The idea of the proof can be seen better in the matrix (4.13). First we select

column yni = (yi1 , yi2 , . . . , yin) and select an entry at row xns = (xs1 , xs2 , . . . , xsn) in

this column. Let the selected weight be z̃si and by (ii) we know that z̃si appears in

some other column ynj = (yj1 , yj2 , . . . , yjn) such that z̃si = z̃tj and t denotes the row

position of this weight. Then, we show that z̃mi, which is an another entry in the

column yni also appears in column ynj . Let us denote this equivalent weight in column

ynj by z̃mj.

Let znsi = (zsi1 , zsi2 , . . . , zsin) and znmj = (zmj1 , zmj2 , . . . , zmjn) be the noise tuple

corresponding to weights z̃si and z̃mj, respectively. Let us also assume that, there

are k bits differences between xns and the row corresponding to the entry z̃mi. Let us

denote the positions of these bits by c1, c2, . . . , ck. Then,

• if the bit xscl is toggled from 0 to 1, then

z̃si − z̃
′
=
(
2yicl − (2q − 1)

)
2q(cl−1)
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• if the bit xscl is toggled from 1 to 0, then

z̃si − z̃
′
=
(
(2q − 1)− 2yicl

)
2q(cl−1)

where l = 1, . . . , k and z̃
′

is the new noise weight due to toggling the bit xscl . Thus

the total difference in noise weight due toggling k bits in xns is,

z̃si − z̃mi =
k∑
l=1

(−1)xscl
(
2yicl − (2q − 1)

)
2q(cl−1). (4.14)

In the rest of the proof, we show that this new weight z̃mi also appears in column ynj .

Since z̃si also appears in (xnt , y
n
j ) as z̃tj, we have that

z̃si = z̃tj (4.15)

yil − (2q − 1)xsl
(−1)xsl

=
yjl − (2q − 1)xtl

(−1)xtl
, l = 1, . . . , n. (4.16)
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Therefore,

z̃si − z̃mi

=
k∑
l=1

(−1)xscl
(
2yicl − (2q − 1)

)
2q(cl−1)

(a)
=

k∑
l=1

(−1)xscl
(
2
(
(2q − 1)xscl + (−1)xscl zsicl

)
− (2q − 1)

)
2q(cl−1)

(b)
=

k∑
l=1

(−1)1−xtcl
(
2
(
(2q − 1)(1− xtcl ) + (−1)1−xtcl zsicl

)
− (2q − 1)

)
2q(cl−1)

(c)
=

k∑
l=1

(−1)1−xtcl
(
2
(
(2q − 1)(1− xtcl ) + (−1)1−xtcl ztjcl

)
− (2q − 1)

)
2q(cl−1)

(d)
=

k∑
l=1

(−1)xtcl
(
(2q − 1)− 2

(
(2q − 1)(1− xtcl )− (−1)xtcl ztjcl

))
2q(cl−1)

=
k∑
l=1

(−1)xtcl
(
(2q − 1)− 2(2q − 1) + 2(2q − 1)xtcl + 2(−1)xtcl ztjcl

)
2q(cl−1)

=
k∑
l=1

(−1)xtcl
(
2
(
(2q − 1)xtcl + (−1)xtcl ztjcl

)
− (2q − 1)

)
2q(cl−1)

=
k∑
l=1

(−1)xtcl
(
2yjcl − (2q − 1)

)
2q(cl−1) (4.17)

where (a) is by equation (4.6), (b) is due to (4.16), property (c) and xscl being binary,

(c) is due to (4.15) and (d) is valid since (−1)1−x = −(−1)x. The proof is complete

since equation (4.17) shows that z̃si− z̃mi is achieved by toggling the same coordinates

of xnt which indicates that z̃mi also appears in the column ynj . This shows that Q̃n is

quasi-symmetric and by Remark (4.3), Qn is also quasi-symmetric.

Since the channel transition matrix for the channel given by (4.6) satisfies the

quasi-symmetric condition, by Theorem 2.2.2 the input distribution that maximizes

1
n
I(Xn;Y n) is the uniform distribution. With the next proposition, the value of



CHAPTER 4. A DISCRETE NON-BINARY NOISE CHANNEL 41

[H(Y n)] under uniform distribution is formulated.

Proposition 4.3.2. The value of [H(Y n)] under a uniform distribution over X n =

{0, 1}n is given by

max
p(xn)

H(Y n) = n+H(W n). (4.18)

Proof. We need to calculate

H(Y n) = −
∑

yn∈ Yn
Pr(Y n = yn) log2 Pr(Y

n = yn) (4.19)

when xn has a uniform distribution. But,

Pr(Y n = yn) =
1

2n

∑
xn∈ Xn

Pr

(
Zn =

yn − (2q − 1)xn

(−1)xn
)

)
. (4.20)

Since Qn is quasi-symmetric, the probability in (4.20) is the same for all the 2n distinct

values of yn. Substituting (4.20) into (4.19) and using Definition 4.3.1, we get

max
p(xn)

H(Y n) = −
∑

wn∈ Wn

Pr(W n = wn) log2

(
Pr(W n = wn)

2n

)
(4.21)

and the result follows.

To find the channel capacity, we just need to substitute (4.18) into (4.10). This

gives us

C(n) = 1 +
1

n
[H(W n)−H(Zn)] (4.22)

and the channel capacity is thus given by

CNFB = lim
n→∞

C(n)

= 1 + lim
n→∞

1

n
[H(W n)−H(Zn)] (4.23)

= 1 +H(W)−H(Z) (4.24)

in bits/channel use, whereH(W) = limn→∞(1/n)H(W n) andH(Z) = limn→∞(1/n)H(Zn)

denote the entropy rates of {Wn} and {Zn}, respectively.



Chapter 5

Feedback Capacity of NBNDC

In this chapter, we will show that feedback does not increase the capacity of the

NBNDC. Without loss of generality, we assume that q ≥ 2, since for q = 1, the

NBNDC reduces to the modulo-2 additive noise channel and hence the result trivially

holds from [1].

5.1 Capacity with Feedback

In the derivation of feedback capacity we frequently use the properties of NBNDC

that we defined in Chapter 4. Let us recall these properties:

(a) For any fixed input x ∈ X , f(x, ·) : Z → Y is invertible.

(b) Every output symbol is the image of exactly two distinct input-noise pairs; i.e.,

for any y ∈ Y , there are exactly two pairs (x1, z1) and (x2, z2) in X × Z such

that x1 6= x2, z1 6= z2 and y = f(x1, z1) = f(x2, z2).

42
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In a feedback communication system, by feedback we mean that there exists a

channel from the receiver to the transmitter which is noiseless, delayless and has large

capacity. Thus at any given time, all previously received outputs are unambiguously

known by the transmitter and can be used for encoding the message into the next

code symbol. Therefore,a feedback code with blocklength n and rate R consists of a

sequence of mappings

ψi : {1, 2, ..., 2nR} × Y i−1 → X

for i = 1, 2, ...n and an associated decoding function

φ : Yn → {1, 2, ..., 2nR}.

Thus when the transmitter wants to send a message, say V ∈ {1, 2, ..., 2nR},

it sends the codeword Xn, where X1 = ψ1(V ) and Xi = ψi(V, Y1, · · · , Yi−1), for

i = 2, · · · , n. For a received Y n at the channel output, the receiver uses the decoding

function to estimate the transmitted message as V̂ = φ(Y n). A decoding error is

made when V̂ 6= V .

We assume that the message V is uniformly distributed over {1, 2, ..., 2nR}. There-

fore, the probability of error is given by

P (n)
e =

1

2nR

2nR∑
k=1

P {φ(Y n) 6= V |V = k} = P {φ(Y n) 6= V } .

The capacity with feedback, CFB, is the supremum of all admissible feedback

code rates (i.e., all rates for which there exists sequences of feedback codes with

asymptotically vanishing probability of error). From Fano’s inequality, we have

H(V |Yn) ≤ hb(Pe
(n)) + Pe

(n) log2(2
nR − 1)

≤ 1 + Pe
(n)nR
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where the second inequality holds since hb(P
(n)
e ) ≤ 1, where hb(·) is the binary entropy

function. We also know that

nR = H(V )

= H(V |Y n) + I(V ;Y n)

≤ 1 + Pe
(n)nR + I(V ;Y n)

where R is any admissible rate. Dividing both sides above by n and taking the limit

yields

CFB ≤ lim
n→∞

sup
1

n
I(V ;Y n)

where the supremum is taken over all feedback policies {P (xi|xi−1, yi−1)}ni=1. We can

write I(V ;Y n) as follows

I(V ;Y n) =
n∑
i=1

I(V ;Yi|Y i−1)

=
n∑
i=1

(
H(Yi|Y i−1)−H(Yi|V, Y i−1)

)
=

n∑
i=1

(
H(Yi|Y i−1)−H(Yi|V, Y i−1, Xi, X

i−1)
)

where the last equality follows from the fact that Xk = ψk(V, Y1, Y2, . . . , Yk−1) for

k = 1, · · · , i. We also can write

H(Yi|V, Y i−1, Xi, X
i−1)

= H(f(Xi, Zi)|V, Y i−1, Xi, X
i−1)

= H(Zi|V, Y i−1, Xi, X
i−1)

= H(Zi|V, Y i−1, Xi, X
i−1, Zi−1)

= H(Zi|Zi−1)
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where the second and third equalities follow from channel property (a) and the last

equality holds since Zi and (V,Xi, Y
i−1) are conditionally independent given Zi−1.

Therefore, we get that

I(V ;Y n) =
n∑
i=1

I(V ;Yi|Y i−1)

=
n∑
i=1

[
H(Yi|Y i−1)−H(Zi|Zi−1)

]
. (5.1)

We next prove that all of the output conditional entropies H(Y i|Y i−1) in (5.1)

are maximized by uniform conditional input distributions P (Xi|X i−1, Y i−1) (feedback

policies). With this result in hand, we can then directly deduce that feedback does

not increase the capacity of the NBNDC as the right hand side of (5.1) will equal

CNFB after normalizing by n and taking the limit.

Lemma 5.1.1. For a general noise process {Zk}, each conditional output entropy

H(Yi|Y i−1), i = 1, · · · , n in (5.1) is maximized by a uniform feedback policy:

P (Xi = a|X i−1 = xi−1, Y i−1 = yi−1) =
1

2

for all a ∈ {0, 1}, xi−1 ∈ {0, 1}i−1 and yi−1 ∈ Y i−1.

Proof. Let us first write the output conditional entropy H(Yi|Y i−1) as

H(Yi|Y i−1) =
∑
yi−1

P (yi−1)H(Yi|Y i−1 = yi−1) (5.2)

where

H(Yi|Y i−1 = yi−1) = −
∑
yi

P (yi|yi−1) logP (yi|yi−1). (5.3)

To show that H(Yi|Y i−1) in (5.2) is maximized by a uniform feedback policy, it is

enough to show that such uniform policy maximizes each of the H(Yi|Y i−1 = yi−1)

terms.
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We now expand P (yi|yi−1) as follows∑
xi

∑
xi−1

∑
zi

∑
zi−1

P (yi, xi, zi, x
i−1, zi−1|yi−1)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi, xi−1, zi−1, yi−1)P (xi, zi, x
i−1, zi−1|yi−1) (5.4)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (xi, zi, x
i−1, zi−1|yi−1) (5.5)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (zi, x
i−1, zi−1|yi−1)P (xi|zi, xi−1, zi−1yi−1) (5.6)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (xi|xi−1, yi−1)P (zi, x
i−1, zi−1|yi−1) (5.7)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (xi, x
i−1, zi−1|yi−1)P (zi|xi, xi−1, zi−1, yi−1) (5.8)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (zi|zi−1)P (xi|xi−1, zi−1, yi−1)P (xi−1, zi−1|yi−1) (5.9)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (xi|xi−1, yi−1)P (zi|xi−1, zi−1, yi−1)P (xi−1, zi−1|yi−1)

=
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (xi|xi−1, yi−1)P (zi|zi−1)P (xi−1, zi−1|yi−1). (5.10)

Thus

P (yi|yi−1) =
∑
xi

· · ·
∑
zi−1

P (yi|xi, zi)P (zi|zi−1)

P (xi|xi−1, yi−1)P (xi−1, zi−1|yi−1). (5.11)

The equation (5.11) encompasses the properties of channel such as the symmetry.
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This can be seen when going through the sum over yi in (5.3) as follow:

P (yi = 0|yi−1) =
∑
xi,zi

xi−1,zi−1

P (yi = 0|xi, zi)P (zi|zi−1)P (xi|xi−1, yi−1)

P (xi−1, zi−1|yi−1) (5.12)

=
∑
zi,x

i−1

zi−1

P (yi = 0|xi = 0, zi)P (zi|zi−1)P (xi = 0|xi−1, yi−1)

P (xi−1, zi−1|yi−1)

+
∑
zi,x

i−1

zi−1

P (yi = 0|xi = 1, zi)P (zi|zi−1)P (xi = 1|xi−1, yi−1)

P (xi−1, zi−1|yi−1) (5.13)

=
∑

xi−1,zi−1

P (yi = 0|xi = 0, zi = 0)P (zi = 0|zi−1)P (xi = 0|xi−1, yi−1)

P (xi−1, zi−1|yi−1)

+
∑

xi−1,zi−1

P (yi = 0|xi = 1, zi = 2q − 1)P (zi = 2q − 1|zi−1)

P (xi = 1|xi−1, yi−1)P (xi−1, zi−1|yi−1) (5.14)

where in (5.14) we used the fact that, P (yi|xi, zi) is deterministic given xi and zi and

moreover, it is only non-zero for exactly two values of input-noise pairs (channel’s

properties (a) and (b)).
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Similar to the derivation above, we can write P (yi = 2q − 1|yi−1) as follows;

P (yi = 2q − 1|yi−1) =
∑
xi,zi

xi−1,zi−1

P (yi = 2q − 1|xi, zi)P (zi|zi−1)P (xi|xi−1, yi−1)

P (xi−1, zi−1|yi−1) (5.15)

=
∑
zi,x

i−1

zi−1

P (yi = 2q − 1|xi = 0, zi)P (zi|zi−1)P (xi = 0|xi−1, yi−1)

P (xi−1, zi−1|yi−1)

+
∑
zi,x

i−1

zi−1

P (yi = 2q − 1|xi = 1, zi)P (zi|zi−1)P (xi = 1|xi−1, yi−1)

P (xi−1, zi−1|yi−1) (5.16)

=
∑

xi−1,zi−1

P (yi = 2q − 1|xi = 0, zi = 2q − 1)P (zi = 2q − 1|zi−1)

P (xi = 0|xi−1, yi−1)P (xi−1, zi−1|yi−1)

+
∑

xi−1,zi−1

P (yi = 2q − 1|xi = 1, zi = 0)P (zi = 0|zi−1)

P (xi = 1|xi−1, yi−1)P (xi−1, zi−1|yi−1). (5.17)

Equations (5.14) and (5.17) are quite similar. Let us define P (xi = 0|xi−1, yi−1) :=

p and P (xi = 1|xi−1, yi−1) := 1− p and look at their sum. Then

P (yi = 0|yi−1) + P (yi = 2q − 1|yi−1) =∑
xi−1,zi−1

P (zi = 0|zi−1)P (xi−1, zi−1|yi−1) (p+ (1− p)) (5.18)

+
∑

xi−1,zi−1

P (zi = 2q − 1|zi−1)P (xi−1, zi−1|yi−1) (p+ (1− p)) (5.19)

where we can observe that, the sum is independent of the feedback policy, P (xi =

0|xi−1, yi−1) = p over which that we are trying to maximize (5.2).

Considering the channel properties (a) and (b), it can be seen that this argument

holds for any j = 0, 1, · · · , 2q−1 − 1,
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P (Yi = j|yi−1) + P (Yi = 2q − 1− j|yi−1)

=
∑

xi−1,zi−1

P (Zi = j|zi−1)P (xi−1, zi−1|yi−1) (p+ (1− p))

+
∑

xi−1,zi−1

P (Zi = 2q − 1− j|zi−1)P (xi−1, zi−1|yi−1)

× (p+ (1− p))

=
∑

xi−1,zi−1

[
P (Zi = j|zi−1) + P (Zi = 2q − 1− j|zi−1)

]
×P (xi−1, zi−1|yi−1)

=
∑
zi−1

[
P (Zi = j|zi−1) + P (Zi = 2q − 1− j|zi−1)

]
×P (zi−1|yi−1)

:= kj. (5.20)

This fact reduces the problem to the maximization of the following expression

H(Yi|Y i−1 = yi−1) = −
2q−1−1∑
j=0

[aj log aj + (kj − aj) log(kj − aj)] (5.21)

where

aj = P (Yi = j|Y i−1 = yi−1)

and

kj − aj = P (Yi = 2q − 1− j|Y i−1 = yi−1),

applying the log-sum inequality on each summand (within brackets) in (5.21) yields

that

H(Yi|Y i−1 = yi−1) ≤ −
2q−1−1∑
j=0

kj log(kj/2) (5.22)

with equality iff aj = kj−aj for j = 0, 1, ..., 2q−1−1. In other words, H(Yi|Y i−1 = yi−1)
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is maximized iff

P (Yi = j|Y i−1) = P (Yi = 2q − 1− j|Y i−1). (5.23)

By examining (5.11) and using the channel’s properties, it can be directly shown that

(5.23) is satisfied when

P (Xi = 0|xi−1, yi−1) = P (Xi = 1|xi−1, yi−1) =
1

2
. (5.24)

Hence a uniform feedback policy maximizes the conditional entropy H(Yi|Y i−1 =

yi−1) for each yi−1; this completes the proof.

Lemma 5.1.1 directly implies that a uniform feedback policy yields a uniformly

distributed input Xn and maximizes the channel’s output block entropy H(Y n), re-

sulting in H(Y n) = n+H(W n) as in (4). Substituting the later in (5.1), normalizing

by n and taking the limit yield that

CFB ≤ 1 +H(W)−H(Z) = CNFB (5.25)

for a stationary ergodic noise. But by definition of the feedback capacity, we know

that CNFB ≤ CFB. Thus, we have shown the following.

Theorem 5.1.1. Feedback does not increase the capacity of the NBNDC with sta-

tionary ergodic noise:

CFB = CNFB = 1 +H(W)−H(Z).

Observation: We should remark that, since Lemma 5.1.1 holds for arbitrary noise

processes, Theorem 5.1.1 can be extended for such noise sources (i.e., without requir-

ing them to be stationary ergodic) by using Verdú and Han’s non-feedback capacity

formula for general channels with memory [21] as discussed in Chapter (3) [17].



Chapter 6

Summary and Future Work

6.1 Summary

In this project, we first introduced a discrete binary-input 2q-ary output discrete

channel (denoted by NBNDC) to properly represent both the statistical memory and

the soft-decision information of BPSK-modulated time-correlated Rayleigh fading

channels when they are coherently demodulated via a q-bit output quantizer. We

next observed that the NBNDCs output is explicitly described in terms of its binary

input and a 2q-ary noise.

To compute the capacity of this channel, we first observed that the transition

probability matrix of the channel is quasi-symmetric and therefore its capacity is

achieved by a uniform input. Using this fact, Pimentel and Alajaji computed the

channel capacity and showed that it is equal to 1 plus the difference between the

entropy of a process with a reduced alphabet and the noise entropy.

In the last chapter we showed that feedback does not increase the capacity of

NBNDC. In a sense, it is an unexpected result since one might expect that with

51
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feedback there exists some encoding mechanism which makes the output more uniform

and increases the capacity.

6.2 Future Work

[1] and this work showed that via the existence of some kind of symmetry in the

channel transition matrix, it is not possible to get higher capacity with feedback.

The modulo additive channel in [1] is strongly symmetric and the NBNDC is quasi-

symmetric. A possible direction for future work is to identify the largest class of

channels with memory for which feedback does not increase the capacity. Another

extension is to study the feedback capacity of finite-state channels and multiple access

channels with memory.
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