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Abstract

In this thesis we study the problem of stabilizing a controlled discrete time non-linear

stochastic dynamical system, subject to information constraints. Consider such a

system, controlled over a (possibly noisy) communication channel. An important

problem is to determine the minimum channel capacity required to render the state

process stable via a causal coding and control policy. In this thesis we consider

this problem for the stability notion of asymptotic ergodicity of the state process,

and prove lower bounds on the channel capacity necessary to achieve it. Under

mild technical assumptions, we obtain that the necessary channel capacity is lower

bounded by the log-determinant of the linearization, double-averaged over the state

and noise space. We prove this bound by introducing a modified version of invariance

entropy and utilizing the almost sure convergence of sample paths guaranteed by the

pointwise ergodic theorem. The fundamental bounds obtained generalize well-known

formulas for linear systems, and are in some cases more refined than those obtained

for non-linear systems via information-theoretic methods.
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Chapter 1

Introduction

In the mathematical field of control theory, one is interested in the behavior of dy-

namical systems when acted upon by inputs. Such systems can be deterministic

or stochastic, and can be modeled in either discrete or continuous time. Typically,

the controller generates the input for the system based on knowledge of the state at

previous times in order to steer the dynamical system in a desired way.

In practical applications, the assumption that the controller has instantaneous

and arbitrarily precise knowledge of the state at any given time may not hold. For

example, digital systems may impose maximum bit-rates on information transfer, re-

sulting in the controller seeing only an estimation of the state. Furthermore, physical

channels may introduce errors in the communication. Realistic mathematical models

of such systems must therefore take these limitations into account. This need has

motivated the subfield of information-based control, in which one seeks to achieve a

control task despite the presence of information constraints.

This thesis deals with the fundamental problem of characterizing the smallest

amount of information required to achieve a control task. We consider stochastic
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discrete time systems, and thus the control task is stochastic in nature.

1.1 Contribution of Thesis

We study the problem of stochastic stabilization of a non-linear stochastic dynamical

system controlled over a finite capacity communication channel. We will have an

occasion to consider both noisy and noiseless channels. The stability criterion consid-

ered is the (asymptotic) ergodicity of the state process. As a primary contribution,

we develop a stochastic volume growth technique tailored to ergodicity properties,

which is in contrast with the information-theoretic methods typically used to study

such problems. We establish refined and more general results on information trans-

mission requirements for making the controlled stochastic non-linear system ergodic.

In particular, compared with [39], we allow arbitrary coding and control policies and

do not impose an entropy growth condition a priori. Our results generalize the linear

setups considered extensively in the literature.

1.2 Organization of Thesis

The thesis is organized as follows. Section 2.4 provides a brief literature review and

presents the contributions of this thesis. Relevant definitions and theorems are stated

in Section 2.1. The main results are presented and discussed in Section 3.1, while their

proofs are given in Section 3.2. Some definitions and auxiliary results are outlined in

the appendix.
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Chapter 2

Background

In this chapter we state notational conventions and provide the mathematical back-

ground necessary to state and prove the main theorems in this thesis. We give a

precise formulation of the stabilization problem, and conclude with a literature re-

view.

2.1 Notation and Preliminaries

Throughout this thesis, R denotes the real numbers, Z the integers and N the strictly

positive integers. Z+ denotes N ∪ {0}, R>0 the strictly positive real numbers and

R≥0 the non-negative real numbers. We write [a; b] for a discrete interval, i.e., [a; b] =

{a, a+ 1, . . . , b− 1, b} for any a ≤ b in Z. Given a topological space X , B(X ) denotes

the Borel σ-algebra of X and Σ denotes the space of sequences from X , i.e., Σ = XZ+ .

If x ∈ Σ, we write x[0,t] := (x0, x1, . . . , xt−1, xt) for any t ∈ Z+. By m we denote the

Lebesgue measure on RN where N ∈ N will be clear from context. All logarithms are

taken to the base 2. Given a map f : Rn → Rm, we denote the Jacobian by Df which

is just the matrix of partial derivatives. We will use t to emphasize that the union

in question is disjoint. We let d·e and b·c represent the ceiling and floor functions
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respectively. Given some sequence space Σ we denote by θ the left shift map, so that

if x := (xn)∞n=0 we have that (θx)n = xn+1 for every n ∈ Z+. Given a map f , we

denote by fn the n−fold composition of f with itself whenever the expression makes

sense.

2.2 Stochastic Stability and Ergodicity

In control theory, it is natural to consider the problem of rendering the state process of

a dynamical system ’stable’. Stability notions vary greatly depending on the context

and type of system. For example, the notion of set invariance is commonly used in

deterministic control, where the goal is to ensure that the state process never leaves

a given (usually compact) set. In the context of stochastic control, the presence of

noise makes the notions of set invariance too restrictive; for example, unbounded ad-

ditive noise could result in the state process leaving any given compact set regardless

of the control decision. For this reason, notions of stochastic stability are consid-

ered. In these cases, one wishes to establish desirable probabilistic properties of the

state process. For example, one may consider notions of recurrence. A full treatment

of stochastic stability is available in [28]. In this section, we provide only the no-

tions necessary to define and motivate the stability notion considered in this thesis;

asymptotic ergodicity of the state process. We begin with some formal definitions.

Definition 2.2.1. (Discrete Time Stochastic Process) Let (Ω,F , P ) be a probability

space and (S, d) a metric space. A discrete time stochastic process defined on (Ω,F , P )

taking values in (S, d) is a family of random variables xn : Ω→ S where n ∈ Z+.

Definition 2.2.2. A topological space (X , T ) is called a Polish space if and only if

(X , T ) is separable, metrizable, and complete with respect to at least one metric which
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induces the topology.

In the remainder of this section, whenever we introduce a stochastic process, we

will assume that a probability space (Ω,F , P ) on which the process is defined is

lurking. Unless otherwise stated, we will also assume that the process takes values in

a Polish space (X , T ).

Consider such a process x := (xn)∞n=0. Writing Σ := XZ+ to denote the set

of sequences with entries in X , we consider the product σ-algebra defined as the

smallest σ- algebra containing cylinder sets (sets of the form {(xn)∞n=0 ∈ Σ : xi ∈

Bi for all i satisfying n ≤ i ≤ m} where m,n ∈ Z+, n ≤ m, and Bi ∈ B(X ) for

every i ∈ {n, n + 1, ..,m − 1,m}). Denote this σ- algebra by B(Σ). The stochastic

process x induces a measure µ on the measurable space (Σ,B(Σ)) called the process

measure. To define this measure, it suffices to define it on the cylinder sets. For

such a set B := (X , . . . ,X︸ ︷︷ ︸
n - times

, Bn, . . . , Bm,X ,X , . . .) we define µ(B) :=
∏m

k=n P ({ω ∈

Ω : Xk(ω) ∈ Bk}). Observe that a stochastic process can be thought of as an infinite

random vector x : (Ω,F , P ) → (Σ,B(Σ)) where the process measure µ is nothing

but the push-forward of P through x. We define the shift map θ : Σ → Σ by

(θx)t := xt+1, ∀x = (xt)t∈Z+ ∈ Σ.

Definition 2.2.3. A measure ν on (Σ,B(Σ)) is called stationary if and only if

ν(θ−1(B)) = ν(B) for all B ∈ B(Σ), i.e., if (Σ,B(Σ), ν, θ) is a measure-preserving

system.

A stochastic process with process measure µ is called

• stationary if and only if its µ is stationary, i.e., P ({ω ∈ Ω : x(ω) ∈ B}) =

P ({ω ∈ Ω : (θx)(ω) ∈ B}) for all B ∈ B(Σ).
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• asymptotically mean stationary (AMS) if and only if there exists a measure Q̃

on (Σ,B(Σ)) such that

lim
T→∞

1

T

T−1∑
k=0

P (θ−k(B)) = Q̃(B) for all B ∈ B(Σ).

It can easily be shown that the measure Q̃ is stationary. As such, we can obtain

a measure Q on (X ,B(X )) by projecting Q̃ down to any of its coordinates which is

well defined due to stationarity. It follows that for any B ∈ B(X )

lim
T→∞

1

T

T−1∑
k=0

P (xk ∈ B) = Q(B).

We proceed by stating some key notions from ergodic theory.

Definition 2.2.4. Let T : Ω → Ω be a measurable map on a probability space

(Ω,F , P ). T is called measure-preserving if and only if P (T−1(A)) = P (A) for

all A ∈ F . An event A ∈ F is T -invariant if and only if A = T−1(A) (up to a set of

measure zero). We denote by Finv(T ) the set of all T -invariant measurable sets. It is

not hard to show that Finv(T ) is a σ-algebra.

Definition 2.2.5. A measure-preserving map T : Ω → Ω on a probability space

(Ω,F , P ) is called ergodic if and only if P (A) ∈ {0, 1} for all A ∈ Finv(T ). Note that

ergodicity is a property of a system (Ω,F , P, T ), but often we say “T is ergodic”, or

“P is ergodic” when the other components of the system are clear from the context.

A fundamental result in ergodic theory is the following pointwise ergodic theorem.

Theorem 2.2.6. (Pointwise Ergodic Theorem) Let (Ω,F , P ) be a probability space
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and T : Ω→ Ω a measure-preserving map. Then for any f ∈ L1(Ω,F , P ) we have

1

N

N−1∑
k=0

f ◦ T k a.s−−−→
N→∞

ϕ

for some ϕ ∈ L1(Ω,Finv(T ), P |Finv(T )
) satisfying

∫
ϕ dP =

∫
f dP . If, in addition, T

is ergodic, then ϕ is almost everywhere constant and thus

1

N

N−1∑
k=0

f ◦ T k a.s−−−→
N→∞

∫
f dP.

Let now x := (xn)∞n=0 be a stochastic process with process measure µ, and suppose

that the system (Σ,B(Σ), µ, θ) is ergodic. Observe that if B ∈ B(X ), we can apply

the pointwise ergodic theorem to the indicator function 1x0∈B : Σ 7→ {0, 1} to obtain

µ
({
x ∈ Σ : lim

T→∞

1

T

T−1∑
k=0

1x0∈B(θk(x)) =

∫
1x0∈B(x) dµ

})
= 1.

Abusing notation and letting µ also denote the projection of the stationary process

measure on the space (X ,B(X )), we can rewrite the above expression as

µ
({
x ∈ Σ : lim

T→∞

1

T

T−1∑
k=0

1xk∈B(x) = µ(B)
})

= 1. (2.1)

Thus, if the stochastic process is ergodic, then the set of sample paths which visit a

Borel set B with frequency µ(B) is of full measure. This is a strong notion of stability,

and is a key ingredient in the proofs of the theorems in this paper.

It turns out however that (2.1) holds for a larger class of processes which we

characterize in the next definition.
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Definition 2.2.7. (AMS Ergodic) Consider a stochastic process which is AMS with

asymptotic mean Q. If Q is ergodic, we call the process AMS ergodic.

The above notion, which we informally refer to as asymptotic ergodicity is the

notion of stability that we will consider in this thesis. Let us now show that it

satisfies (2.1).

Proposition 2.2.8. An AMS ergodic process satisfies an equation similar to (2.1).

Namely, for any B ∈ B(X) we have that

µ
({
x ∈ Σ : lim

T→∞

1

T

T−1∑
t=0

1xt∈B(x) = Q(B)
})

= 1. (2.2)

Proof. Let us fix a B ∈ B(X ). By stationarity, we can project Q to the space X . By

a slight abuse of notation, we also denote the projected measure by Q. We define

F :=
{
x ∈ Σ : lim

T→∞

1

T

T−1∑
t=0

1x0∈B(θt(x)) = Q(B)
}
.

From the ergodicity assumption on Q, it follows that Q(F ) = 1. Also, F is invariant

under θ from which we obtain that µ(F ) = 1 (see [17, Lem. 6.3.1 and Eq. (6.22)]).

2.3 Problem Statement

We are now ready to give a precise formulation of the problem that we consider in

this thesis. Consider the nonlinear stochastic dynamical system given by the equation

xt+1 = f(xt, wt) + ut
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where xt and ut take values in RN and wt takes values in a standard probability space.

The variables xt, wt and ut represent the state, noise, and control action at time t,

respectively. Suppose first that the system is controlled over a noiseless channel of

capacity C. At each time step, the encoder can transmit M := b2Cc symbols without

error (the floor function is required in case that C is not an integer) to the decoder.

For simplicity suppose M := {1, . . . ,M} is the coding alphabet.

We will consider the case where the system is controlled over a possibly noisy

communication channel. We consider the problem of determining necessary conditions

on channel capacity required for the existence of coding and control policies which

make the closed-loop system stochastically stable. The stability criterion considered

is asymptotic ergodicity, by which we mean the existence of an asymptotically mean

stationary measure which is also ergodic.

2.4 Literature review

The study of control under communication constraints dates back at least 50 years,

as can be seen in [8] which is one of the first texts to consider the problem of control

using quantized state information. The vast majority of the literature has considered

linear systems, both stochastic and deterministic, and in both continuous and discrete

time. In the linear case, the problem of stabilization has been worked out under a

variety of setups and stability notions. Despite distinct formulations, assumptions and

control objectives, a recurring theme is the characterization of the minimum data rate

required for closed-loop stability as the log-sum of the unstable open-loop eigenvalues

of the system dynamics matrix. Two of the earliest significant contributions are due to

Wong and Brockett [36], and Baillieul [3], who showed that the state process of a scalar
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linear system with parameter |a| > 1 can be kept bounded with quantized control if

and only if the data rate in bits per sample is no less than log2(|a|). These results

were some of the first instances of data-rate theorems, which characterize the rate of

information between an encoder and controller required to accomplish a given control

task. Other notable papers containing more general data-rate theorems are due to

Delchamps [11], Tatikonda and Mitter [34], Fagnani and Zampieri [15], Delvenne

[12], Matveev and Savkin [27], Nair [29], De Persis [9],Liberzon and Hespanha [26],

Hespanha [19], and Savkin [33].

In the linear systems case, it is important to note that there is no distinction

between global and local dynamical and control-theoretic properties. As such, the

local problem of stabilization to a point, the semi-global problem of set invariance,

and the global problem of stochastic stabilization can all be handled with the same

tools. For nonlinear systems however, this is not so; the three aforementioned stabil-

ity problems are structurally different and require distinct mathematical machinery

to handle. An example of this is linearization techniques, which under regularity

assumptions work well for local problems, but fail to work in general for global ones

[23]. As such, the techniques for studying minimum information rates for non-linear

control are fundamentally different from those used in the linear systems theory.

Evidently, the field of information-based control has achieved a certain level of

maturity, and is too vast to summarize in this literature review. Many interesting

and important results have been obtained in a wealth of settings. For additional data-

rate theorems and control-theoretic results over finite capacity channels, the reader

may wish to consult [27, 2, 16, 31]. [21] and [40] also contain relevant discussions on

the subject, with the former focusing on methods from dynamical systems and the
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latter on systems with stochastic components.

To date, the study of stabilization of non-linear systems under communication

constraints has focused primarily on deterministic systems controlled over noiseless

channels. Furthermore, constructive schemes have generally been the main focus

(as opposed to converse theorems). Some noteworthy results include [26] and [9].

In the former, the problem of stabilizing a continuous-time system with Lipschitz

assumptions using sampled and quantized state information was considered. So long

as the data rate exceeds the product of the state space dimension and the Lipschitz

constant of the system dynamics function, it was shown than it is possible to achieve

global asymptotic stabilization to an equilibrium point. The latter author considered

feed-forward systems, and constructed an encoder and controller for a non-linear

system (satisfying local Lipschitz assumptions) which achieves stabilization despite

both arbitrarily large communication delays and arbitrarily small channel capacity

between encoder and controller. Other constructive schemes for non-linear systems

include [10] and [25].

For the task of proving more general data rate theorems for set invariance of non-

linear (and linear) deterministic systems, two a priori distinct notions have proven

particularly fruitful. The first is that of topological feedback entropy, a concept mod-

eled after the open cover definition of topological entropy for classical dynamical

systems prescribed in [1]. Presented in [30] by Nair, Evans, Mareels, and Moran, the

topological feedback entropy measures the lowest data-rate required between a coder

and controller to ensure the existence of a coding and control policy which guarantees

that the system’s state process remain inside a compact controlled invariant set.
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The second notion is invariance entropy, which was introduced in [5]. The defi-

nition resembles the Bowen–Dinaburg definition of topological entropy via spanning

sets (see [13]) and has analogous properties. One can even use Bowen’s formula for

the topological entropy to obtain the invariance entropy in the case of a linear control

system [21]. To define invariance entropy, let r(τ,Q) denote the minimum number of

control functions required to establish invariance of Q on the time interval [0, τ ] given

an arbitrary initial state in the set. The invariance entropy of a compact subset Q of

the state space is then defined to be

hinv(Q) := lim
τ→∞

1

τ
log r(τ,Q),

The quantity measures how fast in time the number of open-loop control functions

required to render Q invariant grows. It is a measurement of the smallest average

rate of information that must be transmitted to a controller to render Q invariant and

thus intimately linked to minimum data rates. The motivation for the above definition

arises by observing that with n bits of information available at the controller side,

at most 2n different states can be distinguished, and therefore at most 2n different

control inputs can be generated.

It turns out that under a strong invariance condition, the notions of topologi-

cal feedback entropy and invariance entropy are equivalent, as explained in [6]. We

conclude our review of dynamical notions by noting the more recent introduction of

metric invariance entropy in [4]. This quantity provides a measure-theoretic ana-

logue to invariance entropy for discrete time systems, and is based on conditionally

invariant measures.

In the case of stochastic systems, the above notions can not be used directly for
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stabilization problems. First, asking for a compact subset of the state space to be

invariant is too restrictive to be a useful notion of stability. For example, if the

system is subject to unbounded noise, the state process may leave a given compact

set regardless of the control policy. Secondly, If the channel is noisy, the informational

content of received codewords cannot be measured by the number of distinct possible

receiver outputs. As an extreme case, consider a channel where the channel inputs

and outputs are independent, and hence the (information theoretic) channel capacity

is zero. In this case, no reliable information can be transmitted across the channel.

Due to these two observations, it is clear that distinct stability notions and methods

are required for systems with stochastic components.

In stochastic control systems, many different notions of stability have been con-

sidered, such as stationarity, ergodicity, AMS, and various types of recurrence. In

the context of linear systems (without information constraints), conditions for the

achievement of the aforementioned stability criterion have been determined using

Lyapunov methods, and we refer the reader to [40] for a full treatment of this, and

other techniques. In general however, full state feedback is required to establish sta-

bilizing policies, and thus many of the techniques in the general theory do not apply

to problems with information constraints. One technique used for stochastic stabi-

lization under communication constraints has been the use of information theoretic

methods as done in [39]. These methods however do not allow one to take advantage

of geometric properties of non-linear systems.

Building on work done in the deterministic non-linear system case, the authors in

[23] were able to generalize the notion of invariance entropy for use in the stability

analysis of discrete time stochastic systems controlled over finite-capacity channels.
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The introduced quantity, called stabilization entropy, ”is inspired by both invariance

entropy and measure-theoretic entropy of dynamical systems. It is based on a charac-

terization of measure-theoretic entropy due to Katok [20], and a generalization of said

notion found in Ren et al. [32]” [23]. The authors were able to establish necessary

conditions in the form of lower bounds on the channel capacity for a certain class

of stochastic nonlinear systems over both noiseless and noisy channels. Such results

are similar to those obtained in [39], where the stability notion considered in the first

paper is AMS, and the notions considered in the second paper are AMS, ergodic-

ity, and positive Harris recurrence. In contrast to the dynamical systems-motivated

techniques used in [23], [39] relied on information-theoretic techniques and directed

information (a generalization of mutual information). The distinct methods arrived

at complementary results.

In this thesis, we consider the stochastic stability notion of asymptotic ergodic-

ity for non-linear discrete time stochastic systems. Although the stability notion of

ergodicity has been considered in several papers (which we summarize below), the

notion of asymptotic ergodicity, to the best of our knowledge, has not been stud-

ied before. For a class of nonlinear systems controlled over noiseless channels [39],

and for linear systems over Gaussian, discrete noiseless, erasure, and discrete noisy

channels [40, 37, 38, 41] establish ergodicity under channel capacity constraints using

information theoretic techniques.

In the thesis at hand, we provide an operationally and mathematically significant

refinement, where our stability criterion is stochastic in nature, but deterministic in

its sample path limits as seen in the Definition 2.2.7. Our stronger notion of stability

guarantees the almost sure convergence of sample paths which asymptotically visit
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each subset of the state space at a frequency given by the AMS measure on the

subsets. We further generalize the notion of stabilization entropy by considering a

finite collection of subsets rather than one single subset of the state space, and prove

stronger results using the pointwise ergodic theorem. One of our main contributions

in this thesis is the development of a geometric analytical method, afforded by a

stochastic volume growth approach, to study stochastic stabilization of non-linear

systems under information constraints. This method is distinct from the methods

relying on directed mutual information such as the ones used in [39] to study such

problems. Our focus is on proving converse theorems, which aim to determine whether

an unstable open loop stochastic system can be rendered stable through a coding and

control policy over a (possibly noisy) finite capacity channel. To our knowledge, such

theorems have only been studied in [39] and [23] for non-linear systems.
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Chapter 3

Results

3.1 Bounds on channel capacity

We now state the main contributions of this thesis. Proofs can be found in the next

section. Consider the system

xt+1 = f(xt, wt) + ut (3.1)

where xt and ut are RN -valued for some N ∈ N and wt takes values in a standard

probability space W. For a fixed w ∈W, let us denote the map x 7→ f(x,w) by fw.

Suppose also that the following holds:

(A1) The map f : RN ×W→ RN is Borel measurable.

(A2) The noise process (wt)t∈Z+ is i.i.d. By abuse of notation, ν denotes both the

law of any individual wt, as well as the process measure.

(A3) The map fw : RN → RN is C1 and injective for any w ∈W.

(A4) The initial state x0 is random and independent of the noise process. We write
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π0 for the associated probability measure.

(A5) The measure π0 is absolutely continuous with respect to the N -dimensional

Lebesgue measure m, and its density (which exists by the Radon-Nikodym

theorem) is bounded.

(A6) There is a constant c > 0 with | detDfw(x)| > c for all x ∈ RN and w ∈W.

We write (Ω,F , P ) for the probability space on which both x0 and wt are modeled.

We assume that the system is controlled over a possibly noisy communication

channel as depicted in Fig. 3.1. The channel has a finite input alphabet M and

a finite output alphabet M′. For a channel with feedback, the input qt at time t

is generated by a function γet so that qt = γet (x[0,t], q
′
[0,t−1]) where we note that the

definition is identical for a noiseless channel without feedback, since for noiseless

channels feedback provides no additional information. The channel maps qt to q′t in

a stochastic fashion so that P (q′t ∈ ·|qt, q[0,t−1], q
′
[0,t−1]) = P (q′t ∈ ·|qt) is a conditional

probability measure onM′ for all t ∈ Z+, for every realization qt, q[0,t−1], q
′
[0,t−1]. The

controller, upon receiving the information from the channel, generates its decision at

time t, also causally: ut = γct (q
′
[0,t]). Any coding and control policy of this kind is

called causal. If the channel is noiseless, we have M =M′ and the channel capacity

reduces to C = log |M|. If the channel is noisy and memoryless, feedback does not

increase its capacity, see Section A.2.

Theorem 3.1.1. Consider system (3.1) satisfying assumptions (A1)–(A6). Suppose

the system is controlled over a discrete noiseless channel of capacity C and a coding

and control policy achieves that the state process is AMS ergodic with asymptotic mean
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Figure 3.1: Block Diagram of Control System in Question

Q. Then the capacity must satisfy

∫ ∫
log | detDfw(x)| dQ(x) dν(w) ≤ C.

Our second main theorem relaxes the condition of the channel being noiseless. On

the other hand, the class of nonlinear systems considered is more restrictive.

Theorem 3.1.2. Consider the scalar system

xt+1 = f(xt, wt) + ut

satisfying assumptions (A1)–(A5) as well as the following three assumptions:

(i) |f ′w(x)| ≥ 1 for every x ∈ R.

(ii) The support of π0 is a compact interval K ⊆ R.

(iii) The lower and upper bounds of the density of π0 within K, denoted by ρmin and



3.1. BOUNDS ON CHANNEL CAPACITY 19

ρmax respectively, satisfy 0 < ρmin ≤ ρmax <∞.

Suppose that the system is controlled over a discrete memoryless channel with feedback

of capacity C (see Definition A.2.4) and that there exists a causal coding and control

policy which results in the state process being AMS ergodic with asymptotic mean Q.

Then the channel capacity must satisfy

∫ ∫
log |f ′w(x)| dQ(x) dν(w) ≤ C. (3.2)

The first theorem above is a counterpart to [23, Thm. 5.1], where it was shown

for systems of the form xt+1 = f(xt) +wt + ut, without the ergodicity assumption on

the AMS measure, that for any Borel set B of finite Lebesgue measure

Q(B) inf
x∈B

log | detDf(x)| ≤ C

must be satisfied. The second theorem above is a counterpart to [23, Thm. 7.1]

without the ergodicity assumption on the AMS measure.

To prove Theorem 3.1.1 and Theorem 3.1.2, the stabilization entropy introduced

in [23] must be generalized and a technical lemma proven. This is carried out in the

next section. Before doing this, we provide a discussion of the theorems.

Observe that our lower bound on channel capacity is ≤ 0 (and thus vacuous)

if | detDfw(x)| ≤ 1 for all (x,w). Recall that the determinant of a square matrix

represents the volume of the unit cube after it is acted on by the matrix. As such,

Theorem 3.1.1 is only interesting if the system is volume-expansive on some regions

of the state space. This is intuitive, since if f is nowhere volume-expansive, it may

be possible for the uncontrolled system to have desirable stability properties.
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The results obtained here are consistent with those obtained using information-

theoretic techniques in [39], but are in fact a strict refinement. A similar converse

result on channel capacity was obtained in [39] under the stronger stability criterion

of positive Harris recurrence of the closed-loop stochastic process. It reads as follows:

Theorem 3.1.3. ([39, Thm. 4.2]) Consider the system

xt+1 = f(xt, wt) + ut

and suppose that the following assumptions hold:

(i) For any fixed w, the function fw : RN → RN is a C1-diffeomorphism.

(ii) There exist L,M ∈ R such that L ≤ log | detDfw(x)| ≤M for all x,w ∈ RN .

Suppose that a stationary coding and control policy (see [39] for a precise definition)

is adopted so that under this policy

(i) the Markovian system state and encoder state is positive Harris recurrent (which

implies the existence of a unique invariant measure).

(ii) lim supt→∞ h(xt)/t ≤ 0 (see Definition A.2.2 for the definition of the differential

entropy h(·)).

Then the channel capacity must satisfy

∫ ∫
log | detDfw(x)| dQ(x) dν(w) ≤ C.

Let us now compare Theorem 3.1.1 and Theorem 3.1.2 with Theorem 3.1.3. The-

orem 3.1.1 is more general in the sense that it applies to arbitrary causal coding and
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control policies, not just Markov ones. Moreover, it does not require the assumption

of sublinear growth of the differential entropy of the state process (and the implicit

assumption that the law of each state random variable xt be absolutely continuous

with respect to the Lebesgue measure so that the differential entropy is well defined).

Theorem 3.1.3 assumes that the state process is positive Harris recurrent which im-

plies unique ergodicity, while Theorem 3.1.1 only assumes ergodicity of the AMS

measure. On the other hand, compared with Theorem 3.1.2, Theorem 3.1.3 considers

a more general class of channels (involving memory) as well as systems taking values

in higher dimensions.

We conclude the discussion of the theorems with a note about achievability re-

sults. For the linear system case, it was shown in [38] that for a linear system of

the form xt+1 = Axt + wt + ut with a diagonalizable matrix A (and additional tech-

nical assumptions), controlled over a DMC with channel capacity no smaller than

the log-sum of the unstable eigenvalues of A, the AMS stochastic stability property

([23]) can be achieved. Given that AMS ergodicity implies the AMS property, we see

that the lower bounds established in this thesis are tight for a class of linear systems.

Achievability results have also been obtained for non-linear systems. For the system

xt+1 = f(xt, ut)+wt with Gaussian i.i.d noise and technical assumptions, it was shown

in [39] that ergodic stabilization is possible. We thus see that the bounds in this the-

sis are meaningful for non-linear systems, as the problem of ergodic stabilization is

indeed feasible.
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3.2 Proofs

In this section, we prove our two main theorems. We begin by generalizing the notion

of stabilization entropy and proving a technical lemma.

3.2.1 Generalizing stabilization entropy

Consider system (3.1) with a fixed (open-loop) control sequence u := (ut)t∈Z+ , a

noise realization w := (wt)t∈Z+ and an initial state x0 ∈ RN . For such a setup, the

trajectory x := (xt)t∈Z+ ∈ (RN)Z+ of the state is uniquely determined. Let us denote

this trajectory by ϕ(·, x0, u, w) so that for any t ∈ Z+, xt = ϕ(t, x0, u, w).

We want to find a subset of control sequences that allow to render certain subsets

of the state space invariant in a probabilistic sense. This leads to the next definitions

of spanning sets and stabilization entropy for finite collections of subsets ofRN andW,

respectively, which generalize similar notions in [23], where a single set was considered.

Definition 3.2.1. Let B ∈ B(RN) and D ∈ B(W) be finite disjoint unions of Borel

sets B1, . . . , Bn and D1, . . . , Dm, respectively. Let also R denote a collection of num-

bers rk,l ∈ [0, 1] for k ∈ {1, . . . , n} and l ∈ {1, . . . ,m} satisfying

1− r :=
n∑
k=1

m∑
l=1

(1− rk,l) ∈ [0, 1].

Fix T ∈ N and ρ ∈ (0, 1). A set of control sequences S ⊆ (RN)T is called

(T,B,D, ρ,R)-spanning if there exists Ω̃ ∈ F such that the following conditions hold:

• P (Ω̃) ≥ 1− ρ.
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• For each ω ∈ Ω̃, there exists a control sequence u ∈ S such that

1

T
|{t ∈ [0;T − 1] : (ϕ(t, x0(ω), u, w(ω)), wt(ω)) ∈ Bk ×Dl}| ≥ 1− rk,l

holds for all k and l.

Note that we abuse notation by calling a set (T,B,D, ρ,R)-spanning instead of

(T, (Bk)
n
k=1, (Dl)

m
l=1, ρ, R)-spanning. When doing so, there is the underlying assump-

tion that the partitions of B and D are fixed. No confusion should arise, since we

explicitly define the partitions whenever we use the definition.

In the above definition, the fact that all random variables are modeled on a com-

mon probability space ensures that given ω, the initial state and the noise sequence

of length T are deterministic. Intuitively speaking, a subset of control sequences of

length T is (T,B,D, ρ,R)-spanning if the probability that, for all k, l, we can main-

tain the state variable in Bk and the noise variable in Dl for at least 1− rk,l percent

of the time, is at least 1− ρ. We want to use the size of spanning sets to quantify the

difficulty of a control task, which leads to the next definition.

Definition 3.2.2. For the system (3.1), we define the (B,D, ρ,R)-stabilization en-

tropy by

h(B,D, ρ,R) := lim sup
T→∞

1

T
log s(T,B,D, ρ,R),

where s(T,B,D, ρ,R) denotes the smallest cardinality of a (T,B,D, ρ,R)-spanning

set. We define this quantity to be ∞ if no or no finite spanning set exists.

It is obvious that finite (T,B,D, ρ,R)-spanning sets need not exist. As we will

see however, they do exist in desired scenarios.

The following lemma is instrumental to prove Theorem 3.1.1.
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Lemma 3.2.3. Consider system (3.1) with the assumptions of Theorem 3.1.1 (i.e.,

a coding and control policy exists over a noiseless channel of capacity C = log |M|

which makes the state process AMS ergodic). Let now

• B :=
⊔n
k=1Bk ∈ B(RN) and D :=

⊔m
l=1Dl ∈ B(W) be finite disjoint unions of

Borel sets,

• ρ ∈ (0, 1) be arbitrary.

Next, define the sequence of numbers Rε := (rk,l)1≤k≤n,1≤l≤m, where

rk,l :=


(1 + ε)(1−Q(Bk)ν(Dl)) if Q(Bk)ν(Dl) ∈ (0, 1)

1 if Q(Bk)ν(Dl) = 0

ε if Q(Bk)ν(Dl) = 1

and observe that for ε > 0 small enough, the following conditions are satisfied:

(i) 1− r :=
∑n

k=1

∑m
l=1(1− rk,l) ∈ [0, 1].

(ii) 1− (1 + ε)(1−Q(Bk)ν(Dl)) ∈ (0, 1) for all k, l with Q(Bk)ν(Dl) ∈ (0, 1).

Thus, for such a small ε, the generalized stabilization entropy h(B,D, ρ,Rε) is well-

defined. (Of course, r and the rk,l’s are ε-dependent, but we drop this from the nota-

tion.) Then for all ε > 0 further small enough the capacity must satisfy

h(B,D, ρ,Rε) ≤ C. (3.3)

Proof. We distinguish two cases.
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Case 1: We can remove the trivial sets with zero measure from the collections

{Bk} and {Dl} and thus assume that Q(Bk)ν(Dl) > 0 for all (k, l). Indeed, if a

spanning set can be found for the new collections, it is still spanning for the original

ones. If Q(Bk)ν(Dl) = 1 for some (k, l), all the other Cartesian products have measure

zero and we can remove them from the collection. Hence, this case reduces to the

analysis of a single set as worked out in [23], where we considered AMS instead of

AMS ergodicity as the control objective. Since AMS ergodicity implies AMS, and

h(B,D, ρ,R) reduces to the stabilization entropy notion used in [23] in case of a

single set, the desired inequality follows.

Case 2: We continue by considering the case where Q(Bk)ν(Dl) ∈ (0, 1) for all

k, l. Let ε > 0 be small enough such that conditions (i) and (ii) are satisfied and

ε < ρ. We will show that for any such ε the claim holds.

Let us denote the process measure by µ, which is AMS by assumption. Let Q

denote the asymptotic mean, which is by assumption ergodic. As Q is stationary,

we can project it unambiguously to a measure on (RN ,B(RN)). By a slight abuse of

notation, we denote by Q both the AMS measure and its projection. Let us consider

some Borel set C ⊂ RN and let f : (RN)Z+ → R be defined by f((xt)t∈Z+) := 1C(x0).

It is obvious that this function is in L1((RN)Z+) (with either Q or µ as the measure).

Recalling our ergodicity assumption, the pointwise ergodic theorem tells us that

1

N

N−1∑
j=0

f ◦ θj Q−a.s.−−−−→
N→∞

∫
f dQ =

∫
1C(x) dQ(x) = Q(C).

Crucially however, the above convergence also happens µ-almost surely (see (2.2) or

[18, Lem. 7.5]). Now, for any V ∈ B(W), it is clear by the i.i.d. property that
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P
({
ω ∈ Ω : lim

T→∞

1

T

T−1∑
t=0

1V (wt(ω)) = ν(V )
})

= 1.

As such, noting that xt and wt are independent at each time step t, it follows that

P
({
ω ∈ Ω : lim

T→∞

1

T

T−1∑
t=0

1Bk
(xt(ω))1Dl

(wt(ω)) = Q(Bk)ν(Dl), ∀k, l
})

= 1.

Let us denote the full measure set, where this convergence happens, by Ω̂.

We continue by defining the events

Ej
i :=

{
ω ∈ Ω :

∣∣∣ 1

T

T−1∑
t=0

1Bk
(xt(ω))1Dl

(wt(ω))−Q(Bk)ν(Dl)
∣∣∣ < 1

i

∀k, l whenever T ≥ j
}
,

E :=
∞⋂
i=1

∞⋃
j=1

Ej
i .

It is not hard to see that Ω̂ ⊆ E, hence P (E) = 1. Furthermore, observe that E is

an infinite intersection of “decreasing” sets (in the containment sense). Hence,

P

( ∞⋃
j=1

Ej
i

)
= 1 for all i ∈ N.

Let now I0 be large enough such that

1

I0

≤ ε(1−Q(Bk)ν(Dl)) for all k ∈ {1, . . . , n}, l ∈ {1, . . . ,m}
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and observe that E1
I0
⊆ E2

I0
⊆ E3

I0
⊆ · · · . By continuity of probability, we have

lim
j→∞

P (Ej
I0

) = P

( ∞⋃
j=1

Ej
I0

)
= 1,

and thus there exists J0 such that P (Ej
I0

) ≥ 1 − ε for all j ≥ J0. For an arbitrary

T ≥ J0, we define the set of control sequences

ST := {u[0;T−1](ω) : ω ∈ ET
I0
}.

We claim that this set is (T,B,D, ρ,Rε)-spanning. We use the set Ω̃T := ET
I0
∈ F

to show this, where we note that it satisfies P (Ω̃T ) ≥ 1 − ε > 1 − ρ, as required.

For every ω ∈ Ω̃T and all k, l, the control sequence u[0;T−1](ω) results in the joint

state-noise process satisfying

∣∣∣ 1

T

T−1∑
t=0

1Bk
(xt(ω))1Dl

(wt(ω))−Q(Bk)ν(Dl)
∣∣∣ < 1

I0

≤ ε(1−Q(Bk)ν(Dl)). (3.4)

To prove the claim, it now suffices to show that for all ω ∈ Ω̃T and k, l we have

1

T
|{t ∈ [0;T − 1] : (ϕ(t, x0(ω), u[0;T−1](ω), w(ω)), wt(ω)) ∈ Bk ×Dl}|

≥ 1− (1 + ε)(1−Q(Bk)ν(Dl)) = (1 + ε)Q(Bk)ν(Dl)− ε.

This follows directly from (3.4). Also, since the coding and control policy can generate

at most |M|T distinct control sequences by time T , it follows that |ST | ≤ |M|T ,
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therefore s(T,B,D, ρ,Rε) ≤ |M|T . Recalling that T ≥ J0 was arbitrary, we find that

log s(T,B,D, ρ,Rε) ≤ T log |M| = TC for all T ≥ J0,

and therefore dividing by T and letting T → ∞ yields the desired capacity bound

(3.3), which completes the proof.

3.2.2 Proof of Theorem 3.1.1

Proof. Let c ∈ (0, 1) be such that c < | detDfw(x)| for all x ∈ RN and w ∈W. Let

also δ > 0 and ρ ∈ (0, 1) be arbitrary. Next, fix a partition of a Borel set B ⊂ RN

and let D = W, respectively; let (Bk)
n
k=1 be a partition of B and (Dl)

m
l=1 a partition

of D. Suppose that B has finite Lebesgue measure and

Q(B) > 1− δ

2| log c|
,

where Q denotes the asymptotic mean of the state process. Let ε > 0 be small enough

such that Lemma 3.2.3 holds, resulting in

h(B,D, ρ,Rε) ≤ C,

where Rε is the associated collection of rk,l’s as defined in Lemma 3.2.3. Let also

1− r :=
∑

(1− rk,l). It is easy to see that r = 1− (1 + ε)Q(B) + nmε (or r = ε if one

of the Bk ×Dl has full Q× ν-measure) thus we see that for every sufficiently small ε,

2r <
δ

| log c|
. (3.5)



3.2. PROOFS 29

Now fix a sufficiently large T ∈ N and let S be a finite (T,B,D, ρ,Rε)-spanning set

(whose existence is guaranteed by the proof of Lemma 3.2.3) with Ω̃ ∈ F , P (Ω̃) ≥

1− ρ, the associated subset of Ω. Also let

A := {(w(ω), x0(ω)) : ω ∈ Ω̃},

A(u) := {(w, x) ∈WZ+ ×RN :
1

T

T−1∑
t=0

1Bk×Dl
(ϕ(t, x, u, w), wt) ≥ 1− rk,l, ∀k, l}

A(u,w) := {x ∈ RN : (w, x) ∈ A(u)}

and observe that

A ⊆
⋃
u∈S

A(u). (3.6)

By the theorem of Fubini-Tonelli, we have

(ν ×m)(A(u)) =

∫
m(A(u,w)) dν(w). (3.7)

Let us now define a set consisting of disjoint collections of subsets of {0, . . . , T − 1}:

A := {Λ = {Λl
k}k,l :

n⊔
k=1

m⊔
l=1

Λl
k ⊆ {0, . . . , T − 1},

|Λl
k| ≥ (1− rk,l)T,∀k = 1, . . . , n, l = 1, . . . ,m}

and note that as a consequence of the definition, |
⊔n
k=1

⊔m
l=1 Λl

k| ≥ (1 − r)T for all

Λ ∈ A. For such a Λ, define the set

A(u,w,Λ) := {x ∈ RN : (ϕ(t, x, u, w), wt) ∈ Bk ×Dl ⇔ t ∈ Λl
k for all k, l}
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and also (writing ϕt,u,w(·) := ϕ(t, ·, u, w))

At(u,w,Λ) := ϕt,u,w(A(u,w,Λ)), t = 0, 1, . . . , T − 1.

It is not hard to see that A(u,w) =
⊔

Λ∈AA(u,w,Λ) is a disjoint union, implying

m(A(u,w)) =
∑
Λ∈A

m(A(u,w,Λ)). (3.8)

If M > 0 is an upper bound for the density of π0, it follows that

1− ρ ≤ (ν × π0)(A) ≤M · (ν ×m)(A). (3.9)

We also have

At(u,w,Λ) ⊆ Bk whenever t ∈ Λk,l, ∀ k ∈ {1, . . . , n}, l ∈ {1, . . . ,m}.

Next, we define the following numbers:

ck,l := inf
(x,w)∈Bk×Dl

| detDfw(x)|.

Recalling the fact that fw is injective and C1, for all (k, l) we have

m(At+1(u,w,Λ)) ≥ ck,l ·m(At(u,w,Λ)) whenever t ∈ Λk,l,

m(At+1(u,w,Λ)) ≥ c ·m(At(u,w,Λ)) whenever t /∈
⊔

Λk,l.
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Letting t∗(Λk,l) := max Λk,l, t
∗(Λ) := maxk,l t

∗(Λk,l) and applying the above inequali-

ties repeatedly, it is not hard to see that

m(A(u,w,Λ))
( n∏
k=1

m∏
l=1

c
|Λk,l|−1

k,l

)
crT+nm ≤ m(At∗(Λ)(u,w,Λ)).

Recall that c ≤ ck,l. Now in principle, all the exponents of the ck,l’s should be |Λk,l|,

except for possibly one which should be |Λk,l|−1. We do not know which one though,

so we write the weaker inequality as above. Combining this with (3.6), (3.7), (3.8)

and (3.9), we obtain

1

M
(1− ρ) ≤ (ν ×m)(A)

≤ |S|max
u∈S

(ν ×m)(A(u))

= |S|max
u∈S

∫
m(A(u,w)) dν(w)

= |S|max
u∈S

∫ ∑
Λ∈A

m(A(u,w,Λ)) dν(w)

= |S|max
u∈S

∑
Λ∈A

∫
m(A(u,w,Λ)) dν(w)

≤ |S|max
u∈S

∑
Λ∈A

∫
m(At∗(Λ)(u,w,Λ))c−(rT+nm)

n∏
k=1

m∏
l=1

c
−(|Λk,l|−1)

k,l dν(w)

= |S| · c−(rT+nm) max
u∈S

T∑
t1,1=(1−r1,1)T

· · ·
T∑

tn,m=(1−rn,m)T∫ ∑
Λ∈A: t∗(Λk,l)=tk,l∀k,l

m(At∗(Λ)(u,w,Λ))
n∏
k=1

m∏
l=1

c
−(|Λk,l|−1)

k,l dν(w)

≤ |S| · c−(2rT+nm) max
u∈S

T∑
t1,1=(1−r1,1)T

· · ·
T∑

tn,m=(1−rn,m)T



3.2. PROOFS 32

∫ ∑
Λ∈A: t∗(Λk,l)=tk,l∀k,l

m(At∗(Λ)(u,w,Λ))
n∏
k=1

m∏
l=1

c
−((1−rk,l)T−1)

k,l dν(w).

In the last inequality we use that

crT+nm
∏
k,l

c
|Λk,l|−1

k,l = crT+
∑

k,l |Λk,l|
∏
k,l

(ck,l
c

)|Λk,l|−1

≥ crT+
∑

k,l |Λk,l|
∏
k,l

(ck,l
c

)(1−rk,l)T−1

= crT+
∑

k,l |Λk,l|−(1−r)T+nm
∏
k,l

c
(1−rk,l)T−1

k,l

≥ c2rT+nm
∏
k,l

c
(1−rk,l)T−1

k,l .

Observe that the sets At∗(Λ)(u,w,Λ) with Λ ∈ A, t∗(Λ) fixed, are pairwise disjoint,

since they are the images of the corresponding sets A(u,w,Λ) under the injective map

ϕt∗(Λ),u,w. Moreover, all of these sets are contained in B. Hence,

∑
Λ∈A:t∗(Λk,l)=tk,l∀k,l

m(At∗(Λ)(u,w,Λ)) ≤ m(B),

which, together with the above chain of inequalities, implies

1

M
(1− ρ) ≤ |S| ·m(B) · c−(2rT+nm) ·

n∏
k=1

m∏
l=1

c
−((1−rk,l)T−1)

k,l

n∏
k=1

m∏
l=1

(rk,lT + 1).

Since this inequality holds for every T sufficiently large, we can take logarithms on

both sides, divide by T and let T →∞. This results in

0 ≤ h(B,D, ρ,Rε)− 2r log c−
n∑
k=1

n∑
l=1

(1− rk,l) log ck,l.



3.2. PROOFS 33

Recalling the definition of rk,l, the fact that ε can be chosen arbitrarily small and

(3.5), this leads to the estimate

C + δ ≥
n∑
k=1

n∑
l=1

Q(Bk)ν(Dl) inf
(x,w)∈Bk×Dl

log | detDfw(x)|.

Considering the supremum of the right-hand side over all finite measurable partitions

of B and W leads to

C + δ ≥
∫ ∫

1B(x) log | detDfw(x)| dQ(x) dν(w),

where we use that the integrand is uniformly bounded below by log c (and hence, we

can assume that it is non-negative). Considering now an increasing sequence of sets

Bk ⊂ RN whose union is RN , we can invoke the theorem of monotone convergence

to obtain the desired estimate, observing that δ can be made arbitrarily small as Bk

becomes arbitrarily large.

3.2.3 Proof of Theorem 3.1.2

Proof. In this proof, we assume that the controller and encoder have knowledge of

the noise realization. If we can prove the bound under this setup, the bound will

clearly also hold in the setup of Theorem 3.1.2. Suppose for a contradiction that a

causal coding and control policy is such that the state process is AMS ergodic, but

that the converse of inequality (3.2) holds. Let r > 0 be small enough so that

C < (1− 3r)

∫ ∫
log |f ′w(x)| dQ(x) dν(w).
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Since we can approximate the integral by the integral over associated step functions,

for any b ∈ N large enough, there exists a disjoint collection of intervals B1, . . . , B2b+1

and a partition D1, . . . , Dm of W such that B := [−b, b] =
⊔2b+1

k=1 Bk, and

C < (1− 3r)
m∑
l=1

2b+1∑
k=1

ν(Dl)Q(Bk) log ck,l,

where ck,l := inf(x,w)∈Bk×Dl
|f ′w(x)|. Put n := 2b+1 + 1, and fix a b (and the associated

collection (Bk)
n−1
k=1 of intervals) further large enough such that

Q([−b, b])(1− r) > 1− 2.5

2
r (3.10)

which is possible by continuity of probability. Finally, let Bn := R \
⊔n
k=1Bk. For

brevity, in the rest of the proof we write

mk,l := Q(Bk)ν(Dl), k = 1, . . . , n, l = 1, . . . ,m.

Next, we define the following sets in a slightly different manner than in the previous

proof:

AT (u,w) := {x ∈ R : ∀k, l and ∀N ∈ {dT (1− 3r)e, . . . , T},
1

N
|{t ∈ [0;N − 1] : (ϕ(t, x, u, w), wt) ∈ Bk ×Dl}| ≥ mk,l(1− r)}.

It is easy to see that this set is always bounded. Later on, for appropriate parameters,

we will also see that the set is nonempty. For these cases, let

AT (u,w) := [inf AT (u,w), supAT (u,w)]
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and let x0(T, u, w) denote the midpoint of this interval. We claim that there exists

T larger than some threshold M1 = M1(r) so that for all u,w and x1, x2 ∈ AT (u,w)

there exists a t∗ with d(1− 2.5r)T e ≤ t∗ ≤ T − 1 satisfying

ϕ(t∗, xi, u, w) ∈ B for i ∈ {1, 2}.

To see this, suppose otherwise. Then for at least one i ∈ {1, 2} we have

|{t ∈ [0;T − 1] : ϕ(t, xi, u, w) ∈ B}| ≤ d(1− 2.5r)T e+
1

2
(T − d(1− 2.5r)T e)

≤ 1

2
((1− 2.5r)T + 1) +

1

2
T =

1

2
+ (1 + (1− 2.5r))

1

2
T

=
1

2
+

(
1− 2.5

2
r

)
T < (1− r)Q(B)T,

where the last inequality holds for T large enough from the assumption (3.10) on

Q(B).

This is a contradiction to xi ∈ AT (u,w), which follows by recalling the definition

of AT (u,w). Let now ε > 0 and δ > 0 be given. By the pointwise ergodic theorem (see

the construction in the proof of Lemma 3.2.3), there exists an M2 := M2(ε, δ) ∈ N

such that for all T ≥M2

P ({ω ∈ Ω : ∀k, l, ∀N ≥ (1− 3r)T,

1

N

N−1∑
t=0

1Bk
(xt(ω))1Dl

(wt(ω)) ≥ mk,l(1− δ)}) > 1− ε.

We denote by Ω̃(ε, δ,M2) the set of ω’s for which the event within the braces of the

above expression occurs. Recalling that ck,l := inf(x,w)∈Bk×Dl
| detDfw(x)| and letting
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u,w and x1, x2 ∈ AT (u,w) be arbitrary, we have

|x1 − x2| ≤
2b∏

k,l c
mk,l(1−δ)t∗
k,l

≤ 2b∏
k,l c

mk,l(1−δ)T (1−2.5r)

k,l

(3.11)

which follows by noting that

∏
k,l

c
(1−δ)mk,l(1−2.5r)T

k,l |x1 − x2| ≤
∏
k,l

c
(1−δ)mk,l(1−2.5r)T

k,l (|x1|+ |x2|)

≤
∏
k,l

c
(1−δ)mk,lt

∗

k,l |x1|+
∏
k,l

c
(1−δ)mk,lt

∗

k,l |x2| ≤ |ϕ(t∗, x1, u, w)|+ |ϕ(t∗, x2, u, w)| ≤ 2b.

Given a realization ω ∈ Ω, we denote by x0(ω) and w(ω) the resulting realizations

of the initial state and noise sequence, respectively. Given these realizations, the

control sequence is thus fully determined, and denoted by u(ω). It follows quite

easily that ω ∈ Ω̃(ε, δ,M2) implies x0(ω) ∈ AT (u(ω), w(ω)) for all T ≥ M2 and all

δ < r. Combining this with (3.11), we conclude that

|x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏
k,l c

(1−δ)mk,l(1−2.5r)T

k,l

for every T ≥ M2(ε, δ) and every ω ∈ Ω̃(ε, δ,M2). Letting δ be small enough so that

both (1− 3r) ≤ (1− 2.5r)(1− δ) and δ < r hold, we conclude that

lim inf
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏

k,l c
mk,l(1−3r)T

k,l

})
≥ 1− ε
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and since ε > 0 was also arbitrary, it follows that

lim sup
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| > b∏

k,l c
mk,l(1−3r)T

k,l

})
= 0. (3.12)

We will see that our initial hypothesis leads to a contradiction with the above

equation. To this effect, let us choose α ∈ (0, 1/2) small enough so that for all

sufficiently large L:

1− ρmin · (1− α)

2 · ρmax

+
ρ2

max

2Lρ2
min

+
2 · ρmax

ρmin

α

1− α
< 1. (3.13)

Let also Ω̃ ∈ F be such that P (Ω̃) > 1−α, and such that for all T large enough (say,

larger than C(α)),

|x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏
k,l c

mk,l(1−3r)T

k,l

for all ω ∈ Ω̃. The idea from here on is to treat Ω̃ as “the universe”, since conditioning

on this set gives the above deterministic bound. We proceed by defining

UT := {(γ0(q′0), . . . , γT−1(q′[0;T−1])) ∈ UT : q′[0;T−1] ∈ (M′)T},

ŨT := {(γ0(q′0(ω)), . . . , γT−1(q′[0;T−1](ω))) ∈ UT : ω ∈ Ω̃},

R̃ := lim sup
T→∞

1

T
log |ŨT |.

We now treat two distinct cases: In Case 1, we show that the condition R̃ <

(1 − 3r)
∑

k,lmk,l log ck,l cannot hold if we want to achieve the desired result. This

leaves us with Case 2: the condition that R̃ ≥ (1 − 3r)
∑

k,lmk,l log ck,l; however,
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this condition would imply R̃ > C. We show that this cannot hold either, through a

tedious argument involving a strong converse to channel coding (with feedback) and

optimal transport theory. In the following, we study these two cases separately.

Case 1: Let us suppose that

R̃ < (1− 3r)
∑
k,l

mk,l log ck,l. (3.14)

Let ε > 0 be small enough so that R̃+ 2ε < (1− 3r)
∑

k,lmk,l log ck,l and observe that

for all T large enough,

|ŨT | ≤ 2(R̃+ε)T . (3.15)

Recall also that Ω̃ is such that for all T large enough,

|x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏
k,l c

mk,l(1−3r)T

k,l

for all ω ∈ Ω̃. (3.16)

We now fix a noise realization w. For all T large enough so that (3.15) holds,

m

( ⋃
u∈ŨT

AT (u,w)

)
≤ 2b · 2(R̃+ε)T∏

k,l c
mk,l(1−3r)T

k,l

≤ 2b · 2((1−3r)
∑

k,lmk,l log ck,l−ε)T∏
k,l c

mk,l(1−3r)T

k,l

≤
2b · 2−εT ·

∏
k,l 2

T (1−3r)mk,l log ck,l∏
k,l c

mk,l(1−3r)T

k,l

=
2b

2εT
,

where the inequalities follow by applying the union bound, and from (3.15) and (3.14).

The above yields

lim
T→∞

m

( ⋃
u∈ŨT

AT (u,w)

)
= 0,
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and thus by the absolute continuity and boundedness assumptions on π0, we have

lim
T→∞

π0

( ⋃
u∈ŨT

AT (u,w)
))

= 0.

On the other hand, let us define J := {w ∈ WZ+ : P ({ω ∈ Ω̃|w(ω) = w}) > 0}.

We note that J is the projection of Ω̃ onto RZ+ from which the set {w : P (ω ∈

Ω̃|w(ω) = w) = 0} is taken out; these ensure that J is a universally measurable set

since the image of a Borel set under a measurable map is universally measurable [14].

We can therefore write

lim sup
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏

k,l c
mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃
})

= lim sup
T→∞

(
P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤

b∏
k,l c

mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃, w(ω) ∈ J
})
· P (J)

+ P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤

b∏
k,l c

mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃, w(ω) ∈ J c
})
· P (J c)

)
.

Now, noting that P (Ω̃) > 1− α implies ν(J c) ≤ α, we can further write

≤ lim sup
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤

b∏
k,l c

mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃, w(ω) ∈ J
})
· P (J) + α.
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Observe that for a noise realization w ∈ J , we have

lim sup
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤

b∏
k,l c

mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃, w(ω) = w
})

≤ lim sup
T→∞

P
({
ω ∈ Ω : x0(ω) ∈

⋃
u∈ŨT

AT (u,w)
∣∣ω ∈ Ω̃, w(ω) = w

})
≤ 1

P (ω ∈ Ω̃|w(ω) = w)
lim sup
T→∞

P
({
ω ∈ Ω : x0(ω) ∈

⋃
u∈ŨT

AT (u,w)|w(ω) = w
})

=
1

P (ω ∈ Ω̃|w(ω) = w)
lim sup
T→∞

π0

( ⋃
u∈ŨT

AT (u,w)
)

= 0,

where the first inequality can be justified by noting that

|x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏
k,l c

mk,l(1−3r)T

k,l

⇒ x0(ω) ∈ AT (u(ω), w)

for all T sufficiently large (see (3.16)) and the last inequality follows by independence

of noise and initial state. We thus have a uniform upper bound on the limsup when

conditioned on w ∈ J , hence

lim sup
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤

b∏
k,l c

mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃, w(ω) ∈ J
})

= 0.

Therefore,

lim sup
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏

k.l c
mk,l(1−3r)T

k,l

∣∣ω ∈ Ω̃
})
≤ α,
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which contradicts (3.12), since α < 1/2. Hence, the proof for Case 1 is complete.

Case 2: Now we suppose that

R̃ ≥ (1− 3r)
∑
k,l

mk,l log ck,l,

thus by assumption we also have R̃ > C. Recall that the proof is by contradiction. In

this case, we will obtain a contradiction to a generalized version of the strong converse

theorem for discrete memoryless channels with feedback (see [24] and Theorem A.2.8).

Recall that by definition of Ω̃, we have that for any T sufficiently large, the inequality

|x0(ω)− x0(T, u(ω), w(ω))| ≤ b∏
k,l c

mk,l(1−3r)T

k,l

holds for any ω ∈ Ω̃. Also recall that P (Ω̃) > 1 − α for α satisfying the important

assumption (3.13). As such, there must exist some noise realization w such that

P ({ω ∈ Ω̃|w(ω) = w}) > 1− α. This can be seen by contradiction; suppose no such

realization exists. Letting ν denote the measure on the space of noise realizations, we

can write

P (ω ∈ Ω̃) =

∫
P (ω ∈ Ω̃|w(ω) = w̃) dν(w̃) ≤

∫
(1− α) dν(w̃) = 1− α (3.17)

which is a contradiction since P (Ω̃) > 1 − α. The existence of such a realization w

yields

lim inf
T→∞

P
({
ω ∈ Ω : |x0(ω)− x0(T, u(ω), w)| ≤

b∏
k,l c

mk,l(1−3r)T

k,l

∣∣w(ω) = w
})

> 1− α.
(3.18)
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In the remainder of the proof, we condition on the occurrence of the noise realization

w. We follow an almost identical approach as in the proof from [23]; we will construct

a sequence of codes to transmit a uniform random variable which contradicts a version

of the strong converse result for DMCs. This is accomplished in four steps.

Step 1 (Construction of bins): For every T ≥ 1, define ST := {x0(T, u, w) :

u ∈ ŨT} and enumerate the elements of this set so that

ST := {x1(T ), . . . , xn1(T )(T )}. (3.19)

We continue by defining the not necessarily disjoint collection of bins

BT
i :=

{
x ∈ R : |x− xi(T )| ≤ b∏

k,l c
mk,l(1−3r)T

k,l

}
, i = 1, . . . , n1(T ).

Note that for a fixed T , each bin has the same Lebesgue measure which we denote by

ρT := (2b)/
∏

k,l c
mk,l(1−3r)T

k,l . Recalling that P ({ω ∈ Ω̃|w(ω) = w}) > 1− α, it follows

that

1− α < lim inf
T→∞

P
({
ω ∈ Ω : x0(ω) ∈

n1(T )⋃
i=1

BT
i

∣∣w(ω) = w
})
,

from which by independence of noise and initial state, we obtain

1− α < lim inf
T→∞

π0

(n1(T )⋃
i=0

BT
i

)
. (3.20)

We will disregard the bins that are only partially contained in K. Since ρT → 0 as

T →∞ and the union of the measure of bins that are partially inside of K can have

at most a Lebesgue measure of 2ρT , they will contribute negligible measure as T gets

large. Also, let us suppose without loss of generality that the ordering of the bins in
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(3.19) is such that the last n(T ) are the ones not contained in K. Observing that

lim inf
T→∞

π0

(n1(T )⋃
i=0

BT
i

)
= lim inf

T→∞
π0

(
K ∩

n1(T )⋃
i=0

BT
i

)
= lim inf

T→∞
π0

(n1(T )−n(T )⋃
i=0

BT
i

)
≤ lim inf

T→∞
ρmax ·m

(n1(T )−n(T )⋃
i=0

BT
i

)
≤ lim inf

T→∞

(ρmax · 2b · (n1(T )− n(T ))∏
k,l c

mk,l(1−3r)T

k,l

)
,

we obtain

1− α
2b · ρmax

≤ lim inf
T→∞

(
(n1(T )− n(T ))∏

k,l c
mk,l(1−3r)T

k,l

)
,

from which we conclude that the number of bins n1(T ) − n(T ) which are entirely

contained in K must grow at an exponential rate of at least
∑

k,lmk,l(1− 3r) log ck,l

with T , just as n1(T ) does. Thus, since we are concerned only with the number of

bins entirely contained in K, we may as well assume that all are entirely in K (or

alternatively, relabel n1(T )− n(T ) to be n1(T )).

We continue by extracting a sub-collection of disjoint bins (CT
i )

n2(T )
i=1 as described

in [23, App. A]. This new sub-collection has the property that

1

2
m

( n1(T )⋃
i=1

BT
i

)
≤ m

( n2(T )⋃
i=1

CT
i

)
.

Also, it is clear that for any given T , 1
2
n1(T ) ≤ n2(T ). Hence, we also have the

exponential growth condition of

lim sup
T→∞

1

T
log n2(T ) ≥ (1− 3r)

∑
k,l

mk,l log ck,l.

Analogously to [23], define the collection (DT
i )

n2(T )
i=1

1 and observe that m(DT
i \CT

i ) ≤
1These sets should not be confused with the set D1, . . . , Dm ⊂W.
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ρT for all i. Finally, for a fixed L ∈ N we join L successive DT
i blocks (see [23, p. 27]

for an exact formulation) to get a collection (ET
i )

n3(T )
i=1 , where n3(T ) = bn2(T )

L
c + 1,

possibly adding some empty sets in the last block. Again, the following holds:

lim sup
T→∞

1

T
log n3(T ) ≥ (1− 3r)

n∑
k=1

m∑
l=1

mk,l log ck,l, m(ET
i ) ≥ LρT .

We also define

MT :=

n1(T )⋃
i=1

BT
i MT :=

n3(T )⋃
i=1

ET
i \(DT

iL\CT
iL)

and observe that m(MT ) ≤ 2n2(T )ρT ≤ 2n3(T )LρT .

Step 2 (Auxiliary coding scheme): We now construct a sequence of codes

to transmit information over the channel. We will transmit a quantized version of

the initial state random variable x0. The quantization will be done using the bins

constructed earlier. For a fixed L and for each T , we will construct a code. Note

that we are considering a channel with feedback, which can be used by the encoding

function. For a given T , the encoding and decoding processes are specified as follows.

Encoder: We give to the encoder the noise realization w that we have conditioned

on throughout, the function f corresponding to the system dynamics, and the fixed

causal coding and control policy. In the classical notion of a code, the encoding

function is a deterministic map and given the (system) noise sequence realization,

this is the case here. The transmitted codeword is determined as follows. For an

initial state realization x0, the first symbol of the codeword is q0 = γe0(x0). Now,

because the channel has feedback, the encoder can determine u0 by applying the

decoding function of the fixed causal coding and control policy to the output of

the channel resulting from the first codeword symbol q0. Thus, using the fixed and
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known noise realization w, x1 can be computed. Then, the second codeword symbol

q1 = γe1(x0, x1, u0) is computed again using the causal coding and control policy,

and so on until qT−1 is determined (note that the encoder makes use of the channel

feedback from the channel, and thus we use the generalized version of the strong

converse theorem for channel capacity to obtain a contradiction). We are essentially

viewing the coding and control policy as a scheme from which the initial state can be

estimated at the controller end of the channel.

Decoder: At time T , the decoder has received T symbols from the channel, which

are used to compute the control decisions u0, . . . , uT−1 according to the fixed causal

coding and control policy. The decoder also has knowledge of the noise sequence w

and uses it to compute the point x0(T, u, w). Our goal is to use the received channel

output and control sequence to reconstruct the index Y of the bin ET
Y containing

x0. We do this by looking at the point x0(T, u, w) for the observed control sequence

u. Note that w can be thought of as deterministic since we are conditioning on its

occurrence. Recall also that x0(T, u, w) is the “midpoint” of the set AT (u,w), and

can be computed without knowledge of the initial state x0. We simply decide on our

guess Ỹ of the index as follows.

• If x0(T, u, w) ∈MT , take the index i of the set ET
i containing x0(T, u, w).

• If x0(T, u, w) /∈ MT , then decide randomly between i and i + 1, where i is the

index of the set ET
i that x0(T, u, w) belongs to.

Analysis of probability of the error for the code. To study the probability

of error, let Y be a random variable on the indices {1, . . . , n3(T )}, where P (Y = i) =

π0(ET
i ). We analyze P (Ỹ 6= Y ).
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First, by construction of the bins and the estimation scheme, we have

P
(
Ỹ 6= Y

∣∣x0 ∈MT , |x0 − x0(T, u, w)| ≤ b∏
k,l c

mk,l(1−3r)T

k,l

)
= 0

and

P
(
Ỹ 6= Y

∣∣x0 ∈MT\MT , |x0 − x0(T, u, w)| ≤ b∏
k,l c

mk,l(1−3r)T

k,l

)
≤ 1

2
.

As such, from (3.18), it is not hard to see that for every T sufficiently large,

P (Y 6= Ỹ ) ≤ 1

2
π0(MT\MT ) + α.

By an analysis exactly as in [23], we have

π0(MT\MT ) ≤ 1

L

ρmax

ρmin

π0(MT ).

Combining the above two inequalities, we obtain

n3(T )∑
i=1

P (Y = i)P (Ỹ 6= Y |Y = i) ≤ 1

2L

ρmax

ρmin

π0(MT ) + α.

Step 3 (Introduction of an auxiliary uniform random variable): In order

to obtain a contradiction to the strong converse theorem for DMCs, we need to

transmit a random variable uniformly distributed on the indices 1, . . . , n3(T ). Let

us call this random variable W = WT . Of course, at any time step, W must be

conditionally independent from the channel output, given the channel input. To

obtain the desired contradiction, we must show that limT→∞ P (W 6= Ỹ ) < 1. Before

considering this quantity, note that by following exactly the same steps as in [23], we
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obtain

π0(MT ) ≤ ρmax ·m(MT ) ≤ 2n3(T )ρmax · LρT

and also
n3(T )∑
i=1

1

n3(T )
P (Ỹ 6= Y |Y = i) ≤

α + ρmaxπ0(MT )
4Lρmin

ρminπ0(MT )
2ρmax

.

Again as in [23] we have

P (W 6= Ỹ ) =

n3(T )∑
i=1

P (W = i)P (Ỹ 6= W |W = i) ≤ P (Y 6= W ) +
α + ρmaxπ0(MT )

4Lρmin

ρminπ0(MT )
2ρmax

.

(3.21)

Step 4 (Application of optimal transport): Recall the independence condi-

tion mentioned above that W must satisfy. To achieve this, one could adjoin W to

the common probability space using the product measure, thus keeping W indepen-

dent from all other random variables. Observe however, that the random variable x0

satisfies the independence condition that we require W to satisfy. As such, we are free

to choose any possible coupling between WT and x0 while still ensuring that W will

remain independent form the channel output given the channel input (in particular,

x0 and W need not be independent). We will take advantage of this observation.

Consider (3.21) and note that if the limit as T → ∞ of the right-hand side

is strictly less than 1, then we will have the desired contradiction with the strong

converse. As such, we proceed by finding a coupling between W and x0 which makes

P (Y 6= W ) small enough so that the limit is less than 1.

We continue by letting µ denote the law of Y . That is, for every index i ∈

1, . . . , n3(T ), µ(i) = π0(ET
i ). Let also ν represent the law of W , i.e., a uniform

measure on the set {1, . . . , n3(T )}. We now invoke Lemma A.1.3, which guarantees
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the existence of a coupling (Y,W ) : (Ω,F , P )→ {1, . . . , n3(T )}2 such that

P (Y 6= W ) =
1

2

n3(T )∑
i=1

|µ(i)− ν(i)|.

Let now A = {i ∈ {1, . . . , n3(T )} : µ(i) ≥ ν(i)} and observe that

1−
n3(T )∑
i=1

min(µ(i), ν(i)) =
1

2

n3(T )∑
i=1

µ(i) +
1

2

n3(T )∑
i=1

ν(i)−
∑
i∈A

ν(i)−
∑
i∈Ac

µ(i)

=
1

2

∑
i∈A

µ(i)− 1

2

∑
i∈Ac

µ(i)− 1

2

∑
i∈A

ν(i) +
1

2

∑
i∈Ac

ν(i)

=
1

2

(∑
i∈A

µ(i)− ν(i)
)

+
1

2

(∑
i∈Ac

ν(i)− µ(i)
)

=
1

2

n3(T )∑
i=1

|µ(i)− ν(i)|.

Thus, we can write

P (Y 6= W ) =
1

2

n3(T )∑
i=1

|µ(i)− ν(i)| = 1−
n3(T )∑
i=1

min(µ(i), ν(i)).

To get an upper bound for the right-hand side, note that

µ(i) = π0(ET
i ) ≥ ρmin ·m(ET

i ) =
n3(T )

n3(T )
·m(ET

i ) · ρmin

≥ n2(T ) · ρT · ρmin

n3(T )
≥ m(MT ) · ρmin

2 · n3(T )
≥ π0(MT ) · ρmin

2 · ρmax · n3(T )
≥ ρmin · (1− α)

2 · ρmax · n3(T )
.

Recalling that ν(i) = 1/n3(T ) for each i, we have min(µ(i), ν(i)) ≥ (ρmin ·(1−α))/(2 ·

ρmax · n3(T )) for all i, and therefore

P (Y 6= W ) ≤ 1− ρmin · (1− α)

2 · ρmax

.
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Combining with (3.21), we obtain

P (W 6= Ỹ ) ≤ 1− ρmin · (1− α)

2 · ρmax

+
α + ρmaxπ0(MT )

4Lρmin

ρminπ0(MT )
2ρmax

which holds for all T sufficiently large. We now evaluate the right-hand side to

determine its behavior as T tends to infinity. We have

lim sup
T→∞

(
1− ρmin · (1− α)

2 · ρmax

+
α + ρmaxπ0(MT )

4Lρmin

ρminπ0(MT )
2ρmax

)
≤ 1− ρmin · (1− α)

2 · ρmax

+
ρ2

max

2Lρ2
min

+
2 · α · ρmax

ρmin

lim sup
T→∞

1

π0(MT )

≤ 1− ρmin · (1− α)

2 · ρmax

+
ρ2

max

2Lρ2
min

+
2 · ρmax

ρmin

α

1− α
,

where the last inequality follows from (3.20). Recall now that throughout, L ∈ N

was fixed but arbitrary. Taking L large enough so that (3.13) holds, and writing

T -subscripts to emphasize T -dependence, we obtain lim supT→∞ P (WT 6= ỸT ) < 1,

which is a contradiction, since it negates the strong converse theorem for DMCs with

feedback. Hence, the proof is complete.
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Chapter 4

Conclusion and Future Work

In conclusion, this thesis has focused on the problem of stabilizing a stochastic non-

linear discrete time control systems subject to information constraints. The results of

the thesis provide necessary conditions for stability of such systems when controlled

over both noisy or noiseless channels. The results complement those obtained via

information theoretic methods for such problems, and generalize well known formulas

for linear systems. The techniques in this thesis build upon the earlier notion of the

stabilization entropy used to study noise free systems, and rely on a stochastic volume

growth approach, combined with the pointwise ergodic theorem.

There are several directions for future work. The first is to impose further condi-

tions on the system dynamics, and use the additional structure to prove more precise

channel capacity estimates. One such requirement may be to impose hyperbolicity

(see [22] for a hyperbolicity definition for control systems), and focus only on the un-

stable system dynamics. A second possibility is the generalization of the techniques in

this thesis to include continuous time systems modeled by stochastic differential equa-

tions. Lastly, it would be interesting to explore achievability schemes for non-linear
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systems.
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[38] Serdar Yüksel. Characterization of information channels for asymptotic mean

stationarity and stochastic stability of non-stationary/unstable linear systems.

IEEE Transactions on Information Theory, 58:6332–6354, October 2012.
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Appendix A

Optimal Transport and the Strong Converse from

Information Theory

In this section, we state a few results required in the thesis.

A.1 A result from optimal transport

In the proof of Theorem 3.1.2, a basic result from optimal transport is used, which

we state here.

Definition A.1.1. Let µ and ν be Borel probability measures on a metric space (S, d).

A coupling of µ and ν is a pair of random variables X, Y defined on some probability

space (Ω,F , P ) such that the law of the random variable (X, Y ) on S2 admits µ and

ν as its marginals.

The notion of coupling can easily be generalized for the case where the measures

µ and ν are on distinct spaces, however we do not require that level of generality.

The total variation distance between probability measures on the same measurable

space serves as a measure for how distinct they are. The definition reads as follows.
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Definition A.1.2. Let µ and ν be probability measures on a measurable space (Ω,F).

We define the total variation distance as

‖µ− ν‖TV := 2 sup
A∈F
|µ(A)− ν(A)|.

Lemma A.1.3. Let (X, Y ) : (Ω,F , P )→ S2 be a coupling of the probability measures

µ and ν on the metric space (S, d). Then

‖µ− ν‖TV ≤ 2 · P ({ω ∈ Ω : X(ω) 6= Y (ω)}).

If in addition, S is a finite set, then a coupling (X, Y ) exists which achieves the

above bound.

Proof. See Equation (6.11) in [35].

Note also that if S is finite in the above setup, then a simple calculation results

in

‖µ− ν‖TV =
∑
x∈S

|ν(x)− µ(x)|.

Indeed, for finite S let A := {x ∈ S : µ(x) ≥ ν(x)}. The result follows by noting that

‖µ− ν‖TV = |µ(A)− ν(A)|+ |µ(Ac)− ν(Ac)|. As such, a coupling (X, Y ) of the laws

exists which satisfies

P (X 6= Y ) =
1

2

∑
x∈S

|ν(x)− µ(x)|.

We make use of this identity in case 2 of the proof for the noisy channel case.
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A.2 Channel coding theorem

When considering a system controlled over a noisy channel, we make use of the strong

converse of the noisy channel coding theorem. We state the necessary definitions and

theorems here without proof. A detailed overview of these concepts can be found in

[7].

Definition A.2.1. (Entropy) Let X and Y be finite alphabet random variables taking

values in alphabets X and Y respectively. Let pX denote the probability mass function

of X and pY the probability mass function of Y .

• The entropy (in bits) of X is defined to be H(X) := −
∑

x∈X pX(x)·log2(pX(x)).

• The conditional entropy of X given the event {Y = y} (in bits) is defined

to be H(X|Y = y) := −
∑

x∈X pX|Y (x, y) log2(pX|Y (x, y)) where pX|Y is the

conditional probability mass function of X given Y .

• The conditional entropy of X given Y (in bits) is defined to be H(X|Y ) :=∑
y∈Y H(X|Y = y)pY (y).

Definition A.2.2. Let X be a random variable taking values in Rn, admitting a

density f . We define the differential entropy of X as

h(X) :=

∫
−f(x) log2(f(x))dm(x)

where m denotes the n-dimensional Lebesgue measure.

Definition A.2.3. (Mutual Information) Let X and Y be as in the previous def-

inition. the mutual information of X and Y is defined to be I(X;Y ) := H(X) −
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H(X|Y ) = H(Y )−H(Y |X). It can be interpreted as the reduction in uncertainty of

X given the random variable Y (or vice versa due to symmetry).

Definition A.2.4. (Discrete Memoryless Channel) Consider a memoryless finite al-

phabet channel with input alphabet X , output alphabet Y and a given transition prob-

ability measure. The capacity of the channel is defined by C := supp(x) I(X ,Y), where

the sup is taken over all possible probability measures on the input alphabet X . We

call such a channel a Discrete Memoryless Channel (DMC). A DMC with feedback is

as above, but with the additional property that the encoder has knowledge of the chan-

nel output. The definition of capacity is identical, and it is well-known that feedback

does not increase channel capacity.

Next, we provide the definition of a code. We provide the definitions for channels

without feedback, however the feedback case is very similar, the only difference being

that at a given time, the encoder can use the channel output for previous inputs in

generating the next codeword symbol.

Definition A.2.5. For M,n ∈ N, an (M,n)-code consists of an encoding function

xn : {1, . . . ,M} → X n and a decoding function g : Yn → {1, . . . ,M}. We define the

rate of an (M,n)-code by R := (logM)/n.

For a code as above, we call xn(1), xn(2), . . . , xn(M) the codewords. Because the

channel distorts the codewords, we must consider the probability that we can decode

correctly. This leads to the following definition.

Definition A.2.6. The maximal error of an (M,n)-code is given by

λ(n) := max
i=1,...,M

P (g(Y n) 6= i|Xn = xn(i)).
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Definition A.2.7. A rate R is called achievable if there exists a sequence of

(d2nRe, n)-codes with the property that λ(n) → 0 as n→∞.

The following is the strong converse of the noisy channel coding theorem in infor-

mation theory.

Theorem A.2.8. Consider a DMC (X , p(·|·),Y) of capacity C. Let R > C and

consider an arbitrary sequence of (d2nRe, n)-codes, used to transmit the uniform ran-

dom variables Wn, uniformly distributed on the set {1, . . . , 2nR}, respectively. Then

P (Wn 6= gn(Y n))→ 1 as n→∞.

The above theorem also holds for DMCs with feedback (see [24] for a proof).

In the proof of Theorem 3.1.2, the encoding functions require that the channel has

feedback, hence the need for this assumption in the theorem statement.


