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Control Under Communication Constraints

As per the theme of this seminar, this talk deals with the problem of
stabilizing a control system over a rate-limited channel.

We will focus on stochastic non-linear discrete time systems.

The stability notions considered will be asymptotic ergodicity, and
asymptotic mean stationarity (AMS).

We will discuss necessary lower bounds on channel capacity required
for stochastic stability.

The techniques used build on the notion of invariance entropy for
noiseless systems.

I will be presenting some joint work with my supervisors Serdar
Yüksel and Christoph Kawan, as well as some of their own past work.
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Introduction

A common way to model communication constraints is to impose
that the state information travel through a (possibly noisy)
information channel to reach the controller.

The following diagram provides a graphical representation.

The diagram depicts a channel with feedback. Of course, not all
channels have this feature.
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Channel Capacity

For now, we will focus on finite alphabet noiseless channels.

Definition 1

A noiseless channel with finite alphabet M has capacity C := log2(|M|)
bits, where |M| denotes cardinality of the set M.

When a system is controlled over such a channel, a controller
determines its action based on a reliable estimate of the system
state.
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Channel Capacity

For now, we will focus on finite alphabet noiseless channels.

Definition 1

A noiseless channel with finite alphabet M has capacity C := log2(|M|)
bits, where |M| denotes cardinality of the set M.

When a system is controlled over such a channel, a controller
determines its action based on a reliable estimate of the system
state.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 4



Setup

System: We consider discrete-time non-linear systems of the form

xt+1 = f (xt ,wt) + ut (1)

where (xt), (ut), and (wt) are the state, control, and noise processes
respectively.

State and control are RN -valued and the i.i.d. noise takes
values in some standard probability space. We will assume that the

random variables x0,w0,w1,w2, ... are all defined on a common
probability space (Ω,F ,P).

Information Constraints: The above system is controlled over a finite
alphabet noiseless channel. I.e.

At each time step, an encoder with perfect state knowledge sends
qt ∈M to the controller over the channel.
The estimate and control decisions are determined according to a
sequence of encoding and control functions (γet )t∈N and (γct )t∈N

where

qt = γet (x0, .., xt), ut = γct (q0, .., qt)

Such a pair of sequences of functions is called a coding and control
policy.
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Setup

System: We consider discrete-time non-linear systems of the form

xt+1 = f (xt ,wt) + ut (1)

where (xt), (ut), and (wt) are the state, control, and noise processes
respectively. State and control are RN -valued and the i.i.d. noise takes
values in some standard probability space. We will assume that the

random variables x0,w0,w1,w2, ... are all defined on a common
probability space (Ω,F ,P).

Information Constraints: The above system is controlled over a finite
alphabet noiseless channel. I.e.

At each time step, an encoder with perfect state knowledge sends
qt ∈M to the controller over the channel.
The estimate and control decisions are determined according to a
sequence of encoding and control functions (γet )t∈N and (γct )t∈N

where

qt = γet (x0, .., xt), ut = γct (q0, .., qt)

Such a pair of sequences of functions is called a coding and control
policy.Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 5



Setup (Continued)

Digression: Consider the system

xt+1 = f (xt ,wt) + ut . (2)

with randomly distributed initial state x0.

Suppose we fix a coding and

control policy for a given noiseless channel, say (γet )t∈N and (γct )t∈N.

Then x1, x2, x3, , , , and u0, u1, u2, ... are well defined random
variables.Indeed:

u0(ω) = γc0 (γe0 (x0(ω))), x1(ω) = f (x0(ω),w0(ω)) + u0(ω) (3)

with similar definitions for larger time indices. If we consider the system

above without fixing a causal coding and control policy, then
x1(ω), x2(ω), x3(ω), ... and u0(ω), u1(ω), ... are note well defined. Given

that we have fixed a causal coding and control policy, we will use

x(ω) u(ω) w(ω) (4)

to denote the resulting state, control, and noise sequences given ω ∈ Ω.
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Setup (Continued)

Digression: Consider the system

xt+1 = f (xt ,wt) + ut . (2)

with randomly distributed initial state x0. Suppose we fix a coding and

control policy for a given noiseless channel, say (γet )t∈N and (γct )t∈N.

Then x1, x2, x3, , , , and u0, u1, u2, ... are well defined random
variables.

Indeed:

u0(ω) = γc0 (γe0 (x0(ω))), x1(ω) = f (x0(ω),w0(ω)) + u0(ω) (3)

with similar definitions for larger time indices. If we consider the system

above without fixing a causal coding and control policy, then
x1(ω), x2(ω), x3(ω), ... and u0(ω), u1(ω), ... are note well defined. Given

that we have fixed a causal coding and control policy, we will use

x(ω) u(ω) w(ω) (4)

to denote the resulting state, control, and noise sequences given ω ∈ Ω.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 6
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Setup (Continued)

Control Objective: Render the state process stochastically stable
(precise definition to come).

Results:

Ideally: Provide an exact characterization of the necessary and
sufficient channel capacity required for stochastic stabilization.

This seems intractable with current techniques.

Reality: Under some technical assumptions, we can provide lower
bounds on channel capacity necessary for stochastic stabilization.

Before proceeding, some history.
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Setup (Continued)

Control Objective: Render the state process stochastically stable
(precise definition to come).

Results:

Ideally: Provide an exact characterization of the necessary and
sufficient channel capacity required for stochastic stabilization.

This seems intractable with current techniques.

Reality: Under some technical assumptions, we can provide lower
bounds on channel capacity necessary for stochastic stabilization.

Before proceeding, some history.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 7



Some Brief History

For linear systems such as

xt+1 = Axt + But and ẋ(t) = Ax(t) + Bu(t) A ∈ Rn×n (5)

it has been established (under many different assumptions and
stability criteria) that the minimum data rate required for
stabilization is the sum of logarithms of unstable eigenvalues of A.

Some early results for such systems include [1] and [2].

In [3], the notion of topological feedback entropy (TFE) was
introduced for the study of data rates of non-linear discrete time
deterministic systems.

Invariance entropy was introduced in [4] for the same problem, but
in continuous time. When modified to the discrete time setting, this
notion coincides with TFE.

1 2 3 4

1
W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints. ii. stabilization with limited

information feedback, IEEE Transactions on Automatic Control, 44 (1999), pp. 1049–1053.
2

J. Baillieul, Feedback designs for controlling device arrays with communication channel bandwidth constraints, in ARO workshop on
smart structures, University Park PA, 1999, pp. 16– 18.

3
G. N. Nair, R. J. Evans, I. M. Mareels, and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Transactions

on Automatic Control, 49 (2004), pp. 1585– 1597.
4

F. Colonius and C. Kawan, Invariance entropy for control systems, SIAM Journal on Control and Optimization, 48 (2009), pp.
1701–1721.
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Some Brief History (Continued)

To the best of our knowledge, [5], [6], and [7] are the only works
which have established necessary lower bounds on channel capacity
for stochastic stability of random non-linear systems.

In the first, information-theoretic methods were used. Stability
notions considered were asymptotic mean stationarity, ergodicity,
and positive Harris recurrence.

In the latter two, stabilization entropy was used. This notion is a
modification of invariance entropy for discrete-time stochastic
systems and will be explained in detail later in the talk.

5 6 7

5
S. Yüksel , Stationary and ergodic properties of stochastic nonlinear systems controlled over communication channels, SIAM

Journal on Control and Optimization, 54 (2016), pp. 2844– 2871.
6

C. Kawan and S. Yüksel, Invariance properties of nonlinear stochastic dynamical systems under information constraints, IEEE
Transactions on Automatic Control, to appear (arXiv: 1901.02825), (2020).

7
N. Garcia, C. Kawan, and S. Yüksel, “Ergodicity conditions for con- trolled stochastic nonlinear systems under information

constraints: A volume growth approach,” SIAM Journal on Control and Optimization, vol. 59, no. 1, pp. 534–560, 2021.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 9
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systems and will be explained in detail later in the talk.

5 6 7

5
S. Yüksel , Stationary and ergodic properties of stochastic nonlinear systems controlled over communication channels, SIAM

Journal on Control and Optimization, 54 (2016), pp. 2844– 2871.
6

C. Kawan and S. Yüksel, Invariance properties of nonlinear stochastic dynamical systems under information constraints, IEEE
Transactions on Automatic Control, to appear (arXiv: 1901.02825), (2020).

7
N. Garcia, C. Kawan, and S. Yüksel, “Ergodicity conditions for con- trolled stochastic nonlinear systems under information

constraints: A volume growth approach,” SIAM Journal on Control and Optimization, vol. 59, no. 1, pp. 534–560, 2021.
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Stochastic Stability

We now give a precise definition of the stability notions considered.

Let (Xn)n∈N be an RN -valued stochastic process defined on a
common probability space (Ω,F ,P).
Let Σ := (RN)N denote the set of sequences with elements in RN .
Let B(RN) denote the Borel σ-algebra of RN .
Σ inherits a Borel σ-algebra B(Σ) from RN using the product
topology.
To define a probability measure on B(Σ) it suffices to define it on
finite dimensional rectangles, i.e. sets of the form

(B0,B1, ..,Bm,R
N ,RN , . . .) (6)

for B0, ..,Bm ∈ B(RN).
This is true since sets of the above form generate B(Σ).
The stochastic process (Xn)n∈N induces a measure µ on B(Σ)
defined by:

µ((B0, ..,Bm,R
N ,RN , . . .)) = P({ω ∈ Ω : Xi (ω) ∈ Bi for i = 0, ..,m}).

µ is known as the process measure corresponding to (Xn)n∈N.
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Stochastic Stability

We now give a precise definition of the stability notions considered.

Let (Xn)n∈N be an RN -valued stochastic process defined on a
common probability space (Ω,F ,P).
Let Σ := (RN)N denote the set of sequences with elements in RN .
Let B(RN) denote the Borel σ-algebra of RN .
Σ inherits a Borel σ-algebra B(Σ) from RN using the product
topology.
To define a probability measure on B(Σ) it suffices to define it on
finite dimensional rectangles, i.e. sets of the form

(B0,B1, ..,Bm,R
N ,RN , . . .) (6)

for B0, ..,Bm ∈ B(RN).
This is true since sets of the above form generate B(Σ).
The stochastic process (Xn)n∈N induces a measure µ on B(Σ)
defined by:

µ((B0, ..,Bm,R
N ,RN , . . .)) = P({ω ∈ Ω : Xi (ω) ∈ Bi for i = 0, ..,m}).

µ is known as the process measure corresponding to (Xn)n∈N.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 10
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Stochastic Stability (Continued)

A few more definitions:

Let θ : Σ→ Σ denote the left shift map on the sequence space (I.e.
θ((xt))n = xn+1 for (xt) ∈ Σ).

Let Finv(θ) denote the collection of B(Σ)-measurable sets which are
θ-invariant. I.e

Finv(θ) := {A ∈ B(Σ) : A = θ−1(A)}. (7)

It is not hard to check that Finv(θ) is itself a σ-algebra on Σ.

We are ready to define distinct notions of stochastic stability.
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Stationary Processes

Definition 2

(Stationarity) Let (Xn)n∈N be a stochastic process taking values in RN

and let µ be its process measure on B(Σ).

We say that the process
(xn)n∈N is:

stationary (or measure-preserving) iff µ(B) = µ(θ−1(B)) for all
B ∈ B(Σ).

A consequence of (Xn)n∈N being stationary is that if we fix an arbitrary
collection of indices k1, .., kn ∈ N and a collection B1, ..,Bn ∈ B(RN) of
Borel sets, then

P(
n⋂

i=1

{Xki ∈ Bi}) = P(
n⋂

i=1

{Xki+l ∈ Bi}) (8)

for any integer l . In other words, the finite dimensional distributions are
invariant under shifts.
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Asymptotic Mean Stationarity (AMS)

Remark: Suppose Q is a stationary measure on B(Σ).

We can
unambiguously project it to a measure on B(RN) by defining

Q ′(B) = Q((B,RN ,RN ,RN , ...)) for any B ∈ B(RN). (9)

If we were to put B in any other position, stationarity would result in
Q ′(B) remaining unchanged. From now on we write Q for both the
projected and sequence space measures.

Definition 3

Let (Xn)n∈N be a stochastic process taking values in RN and let µ be its
process measure on B(Σ).We say that the process (xn)n∈N is:

asymptotically mean stationary (AMS) iff there exists a measure Q
(called the Asymptotic Mean of the process) on (Σ,B(Σ)) such that

lim
T→∞

1

T

T−1∑
k=0

µ(θ−k(B)) = Q(B) for all B ∈ B(Σ).

It is immediate that stationarity implies AMS.
Not hard to show that the AMS mean Q is stationary.
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Ergodicity and Asymptotic Ergodicity

Definition 4

Let (Xn)n∈N be an RN -valued process with process measure µ.

We say it
is:

ergodic iff it is stationary and µ(A) ∈ {0, 1} for every A ∈ Finv(θ)

AMS ergodic (or asymptotically ergodic) iff (Xn)n∈N is AMS with
asymptotic mean Q, and Q is additionally ergodic.

Interpretation of Ergodicity

Ergodicity is an non-decomposability condition.

It tells us that in a certain sense, the long term behavior of all
sample paths is the same.
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Ergodicity and Asymptotic Ergodicity (Continued)

Example: Frequency of visits to a set.

Consider the event

A := {(xn) ∈ (RN)N : lim
T→∞

1

T

T−1∑
k=0

1B(xk) = c} (10)

for some constant c ∈ [0, 1] and some Borel set B ⊆ RN .

A contains exactly the sequences which asymptotically spend 100c
percent of the time in B.

The set A is easily seen to be θ-invariant.

If (Xn) is ergodic, then µ(A) is either zero or one. I.e. either
(almost) all sample paths visit a region at a given frequency, or
(almost) none of them do.

Asymptotic ergodicity is a relaxation of ergodicity which still provides
almost-sure guarantees on asymptotic sample path behavior.

We have all the background to state the main theorems discussed in this
talk.
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Results

The following are two theorems which provide lower bounds on channel
capacity for ergodic and AMS stabilization.

Theorem 5

Consider the control system

xt+1 = f (xt) + wt + ut (11)

with state, i.i.d noise, and control taking values in RN .

Suppose that

the system is controlled over a finite alphabet channel with capacity
C ,

there exists a causal coding and control policy which renders the
state process AMS with asymptotic mean Q.

Then if some technical assumptions are satisfied, we must have that

Q(B) log2( inf
x∈B
| detDf (x)|) ≤ C (12)

for any B ∈ RN with finite and non-zero Lebesgue measure.
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Results (Continued)

Theorem 6

Consider the control system

xt+1 = f (xt ,wt) + ut (13)

with state and control taking values in RN , and i.i.d noise wt with law
v .

Suppose that

the system state is made asymptotically ergodic over a noiseless
channel of capacity C with ergodic AMS mean Q.

Under technical assumptions, we must have that∫ ∫
log2 | detDfw (x)| dQ(x)dv(w) ≤ C . (14)

where fw denotes the map x 7→ f (x ,w) for a fixed noise symbol w .

Note: For both of the stated theorems, an identical result can be proven
for scalar systems controlled over Discrete Memoryless Channels.
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Intuition for the Bound

Consider the linear system

xt+1 = 5xt + ut (15)

and imagine x0 is uniformly distributed on [−1, 1].

Suppose we wish to render the interval [−1, 1] invariant.

We know x0 ∈ [−1, 1] therefore we can quantize the state in bins

[−1,−0.6), [−0.6,−0.2), [−0.2, 0.2), [0.2, 0.6), [0.6, 1] (16)

and apply the respective control decisions:

4, 2, 0,−2,−4. (17)

This ensures that x1 ∈ [−1, 1]. We repeat this process for t = 2, 3, ...

Thus if controlled over a noiseless channel, we need a capacity of at least
log2(5) bits to accomplish this.For a non-linear system whose state
trajectories are ergodic with measure Q, we might expect that we should
average the logarithm of the Jacobian determinant of the system
dynamics function w.r.t. the measure Q.
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Invariance Entropy

The notion of stabilization entropy was inspired by Invariance Entropy
[Colonius-Kawan 09’] which we now briefly discuss.

Consider a noiseless

system xt+1 = f (xt , ut) controlled over a noiseless channel of capacity C .

Suppose a causal coding and control policy exists which maintains
the state process (xt) contained in a compact set B ∈ B(RN), and
suppose x0 ∈ B.

At a given time, the controller receives C bits thus can generate at
most 2C different control decisions.

During the first T time steps, the controller can thus generate no
more than 2CT distinct control sequences.

Suppose ST is the smallest cardinality set of open-loop control
sequences of length T with which we can render B invariant for the
first T time steps.

By the assumption that B can be rendered invariant using
closed-loop control, we must have that

|ST | ≤ 2CT . (18)

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 19
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Invariance Entropy

It follows from |ST | ≤ 2CT that

1

T
log2 |ST | ≤

1

T
log2 2CT = C . (19)

The smallest number of control sequences required to accomplish a
control task may be therefore be used to obtain lower bounds on
channel capacity.

The quantity lim supT→∞
1
T log2 |ST | is known as the Invariance

Entropy for the set B.
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Stabilization Entropy

Consider again the stochastic system xt+1 = f (xt ,wt , ut) with
RN -valued state and control.

Set invariance is too much to ask due to the presence of noise.

For this reason, stabilization entropy [Kawan-Yüksel] was introduced.

For this notion, it is only required that the rate at which a set B is
visited be above some threshold.

Notation: if we fix an initial state x0, a noise sequence w := (wt), and
control sequence u := (ut), the state trajectory (xt) is uniquely defined.
I.e.

x1 = f (x0,w0, u0), x2 = f (x1,w1, u1), x3 = f (x2,w2, u2), .... (20)

To make explicit the fixed parameters, we use the notation

ϕ(t, x0, u,w) := xt . (21)

Notation: Given ω ∈ Ω, the initial state and noise sequence are
deterministic. We denote them by x0(ω) and w(ω).
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For this notion, it is only required that the rate at which a set B is
visited be above some threshold.

Notation: if we fix an initial state x0, a noise sequence w := (wt), and
control sequence u := (ut), the state trajectory (xt) is uniquely defined.
I.e.

x1 = f (x0,w0, u0), x2 = f (x1,w1, u1), x3 = f (x2,w2, u2), .... (20)

To make explicit the fixed parameters, we use the notation

ϕ(t, x0, u,w) := xt . (21)

Notation: Given ω ∈ Ω, the initial state and noise sequence are
deterministic. We denote them by x0(ω) and w(ω).

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 21
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Stabilization Entropy

Consider the control system xt+1 = f (xt ,wt , ut). For now, we do not fix
a coding and control policy.

Definition 7

(Spanning Sets) Fix the following objects:

a Borel set B ⊆ RN , and a time horizon T ∈ N.

a rate r ∈ (0, 1) and a probability ρ ∈ (0, 1).

A subset S ⊆ (RN)T of control sequences of length T is called
(B, r , ρ,T )-spanning for the above system iff there exists a set Ω̃ ∈ F
such that P(Ω̃) > ρ and such that

for any ω ∈ Ω̃ there exists u ∈ S with the property that

1

T
|{t ∈ {0, 1, ..,T − 1} : ϕ(t, x0(ω), u,w(ω))} ∈ B| ≥ r . (22)

Digression: The second condition tells us the following. Let ω ∈ Ω̃.
Then there exists u ∈ S such that when we iterate the initial state x0(ω)
together with the sequences u and w(ω), the rate of state visits to B is
no smaller than r on the time interval 0, 1, ..,T − 1.
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Stabilization Entropy

Interpretation of spanning set: Let S be a (B, r , ρ,T ) spanning set.
Then using only open loop control with sequences from the set S , we
can, with probability ρ, ensure that the rate of visits to B is no smaller
than r (on the time interval 0, ..,T − 1).

Definition 8

For arbitrary T ∈ N, let ST denote a minimum cardinality
(B, r , ρ,T )-spanning set. We define the (B, r , ρ)-stabilization entropy as

h(B, r , ρ) = lim sup
T→∞

1

T
log2 |ST |. (23)

The notion of stabilization entropy is crucial in the proofs of the two
main theorems stated earlier.
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Proof Techniques

We now state and sketch a proof for a simplified version of the theorems
presented earlier.

Theorem 9

Suppose that the RN -valued system,

xt+1 = f (xt) + wt + ut , (wt) i.i.d. with measure v

is made ergodic with process measure Q via a causal coding and control
policy over a noiseless channel with capacity C = log2 |M|. Suppose also
that:

(A1) The map f : RN → RN is C 1 and injective.

(A2) The initial state x0 is random and admits a bounded density π0.

(A3) We have that | detDf (x)| > 1 for all x ∈ RN .

Then for any B ∈ B(RN) with finite and non-zero Lebesgue measure, we
have that

Q(B) log2( inf
x∈B
| detDf (x)|) ≤ C .
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Proof Technique

Fix a Borel set B ⊆ RN with finite and nonzero Lebesgue measure
for which we will prove the bounds. WLOG we can assume
0 < Q(B) < 1.

By assumption, there exists coding and control policy which renders
the state process ergodic with ergodic (thus stationary!) process
measure Q. Fix such a coding and control policy.

Note that given ω ∈ Ω, the state sequence x(ω), noise sequence
w(ω) and control sequence u(ω) are all well defined (since we have
fixed a coding and control policy).

Lemma 10

For every ε > 0 sufficiently small and any probability ρ ∈ (0, 1) we have
that

h(B,Q(B)− ε, ρ) ≤ C . (24)
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Lemma 10

For every ε > 0 sufficiently small and any probability ρ ∈ (0, 1) we have
that

h(B,Q(B)− ε, ρ) ≤ C . (24)
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Proof Technique

Proof of Lemma:

By the pointwise ergodic theorem, one obtains that

P
(
{ω ∈ Ω : lim

T→∞

1

T

T−1∑
k=0

1B(xk(ω)) = Q(B)}
)

= 1.

In Words: Almost surely, each sample path x(ω) will asymptotically visit
B at a rate of Q(B).

By taking T sufficiently large and through continuity of probability
arguments, one can show that:

there exists a set Ω̃ ∈ F with P(Ω̃) > ρ,

for any ω ∈ Ω̃ we have that

1

T

T−1∑
k=0

1B(xk(ω)) > Q(B)− ε. (25)
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Proof Technique

Proof of Lemma: By the pointwise ergodic theorem, one obtains that

P
(
{ω ∈ Ω : lim

T→∞

1

T

T−1∑
k=0

1B(xk(ω)) = Q(B)}
)

= 1.

In Words: Almost surely, each sample path x(ω) will asymptotically visit
B at a rate of Q(B).

By taking T sufficiently large and through continuity of probability
arguments, one can show that:

there exists a set Ω̃ ∈ F with P(Ω̃) > ρ,

for any ω ∈ Ω̃ we have that

1

T

T−1∑
k=0

1B(xk(ω)) > Q(B)− ε. (25)

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 26
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Proof Technique

Define the set

ST = {u(ω) ∈ (RN)T : ω ∈ Ω̃}. (26)

Then for any ω ∈ Ω̃, there exists u ∈ ST (just take u(ω)) with

1

T
|{t ∈ {0, 1, ..,T − 1} : ϕ(t, x0(ω), u,w(ω)) ∈ B}| ≥ Q(B)− ε.

This establishes that ST is a (B,Q(B)− ε, ρ,T )-spanning set.
Note that at time T , the coding and control policy can generate no more
than |M|T distinct control sequences.As such, |ST | ≤ |M|T and we
obtain

h(B,Q(B)− ε, ρ) ≤ lim sup
T→∞

(
1

T
log2 |ST |) (27)

≤ lim sup
T→∞

(
1

T
log2 |M|T ) = log2 |M| = C (28)

which completes the proof of the lemma.
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Proof Technique

We now sketch the proof of the simplified theorem.

Let ST be a finite (B,Q(B)− ε, ρ,T )-spanning set.

Imagine that we can obtain a lower bound

LT ≤ |ST | (29)

for some L > 0 which does not depend on the specific spanning set
ST chosen.

Taking ST to be a minimum cardinality spanning set, we would
obtain

C ≥ h(B,Q(B)− ε, ρ) = lim
T→∞

1

T
log2 |ST | ≥ lim

T→∞

1

T
log2 L

T = log2 L.

We will indeed find a suitable L which results in

Q(B) log2( inf
x∈B
| detDf (x)|) ≤ C . (30)

for the set B ⊆ RN that was previously fixed.
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Proof Technique

Let ST be a finite (B,Q(B)− ε, ρ,T )-spanning set and let Ω̃ denote
the associated subset of F with P(Ω̃) > ρ.

Let also m denote the N-dimensional Lebesgue measure, and let
M > 0 be an upper bound for the density of π0.

Consider the set {(w(ω), x0(ω)) : ω ∈ Ω̃}.
Decomposing it into ’fibers’ and using Fubini-Tonelli, one can obtain

0 <
ρ

M
≤ |ST |max

u∈ST

∫
m(A(u,w))dν(w). (31)

where

A(u,w) := {x ∈ RN :
1

T

T−1∑
t=0

1B(ϕ(t, x , u,w)) ≥ Q(B)− ε}.

In words: A(u,w) consists of initial conditions that, when paired with
sequences u and w , visit the B at a rate no smaller than Q(B)− ε during
the first T time steps.
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Proof Technique

Let ST be a finite (B,Q(B)− ε, ρ,T )-spanning set and let Ω̃ denote
the associated subset of F with P(Ω̃) > ρ.

Let also m denote the N-dimensional Lebesgue measure, and let
M > 0 be an upper bound for the density of π0.

Consider the set {(w(ω), x0(ω)) : ω ∈ Ω̃}.
Decomposing it into ’fibers’ and using Fubini-Tonelli, one can obtain

0 <
ρ

M
≤ |ST |max

u∈ST

∫
m(A(u,w))dν(w). (31)

where

A(u,w) := {x ∈ RN :
1

T

T−1∑
t=0

1B(ϕ(t, x , u,w)) ≥ Q(B)− ε}.

In words: A(u,w) consists of initial conditions that, when paired with
sequences u and w , visit the B at a rate no smaller than Q(B)− ε during
the first T time steps.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 29



Proof Technique

Goal: Obtain a ’small’ upper bound for the volume m(A(u,w)) when
iterated up to time T − 1.

More precisely, define the function

ϕt,u,w (·) := ϕ(t, ·, u,w), (32)

and attempt to bound the volume of.

ϕT−1,u,w (A(u,w)) (33)

Idea: Consider a set V ⊆ B. We have that

m(V )( inf
x∈V
| detDf (x)|) ≤ m(f (V )). (34)

We know that initial states in A(u,w) will visit the set B at a frequency
no less than Q(B)− ε. We also have that by assumption
m(A) ≤ m(f (A)) for any A ⊆ RN .We might therefore be tempted to say
that

m(A(u,w))( inf
x∈B
| detDf (x)|)(Q(B)−ε)T ≤ m(ϕT−1,u,w (A(u,w))). (35)
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Proof Technique

Problem: This does not quite work however:

Even though trajectories obtained by iterating elements in A(u,w)
necessarily visit B at least (Q(B)− ε)T times, they need not visit B
at the same time!

As such, at any given time, part of the iterated volume may not be
in B and we cannot apply the previous bound.

Solution:

We can instead write A(u,w) as a disjoint union of sets, each of
which contains initial states that when iterated, visit B at the
desired frequency, and at the same times.

This allows us to bound the volumes using the quantity
(infx∈B | detDf (x)|).

By doing this with as few partitions and bounding each one, we
obtain

0 <
ρ

M
≤ |ST |max

u∈ST

∫
m(A(u,w))dν(w)

≤ |ST | ·m(B)((Q(B)− ε)T )−(Q(B)−ε)T .
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We can instead write A(u,w) as a disjoint union of sets, each of
which contains initial states that when iterated, visit B at the
desired frequency, and at the same times.

This allows us to bound the volumes using the quantity
(infx∈B | detDf (x)|).

By doing this with as few partitions and bounding each one, we
obtain

0 <
ρ

M
≤ |ST |max

u∈ST

∫
m(A(u,w))dν(w)

≤ |ST | ·m(B)((Q(B)− ε)T )−(Q(B)−ε)T .
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Proof Technique

Rearranging the inequality on the previous slide results in

ρ

M ·m(B)
( inf
x∈B
| detDf (x)|)(Q(B)−ε)T ≤ |ST |.

As per the discussion a few slides back, we have our lower bound on the
minimum-cardinality spanning set |ST |.Taking logs, normalizing by 1/T ,
taking a limit as T →∞, and noting that ε > 0 was arbitrary, we obtain

Q(B) log2( inf
x∈B
| detDf (x)|) ≤ lim

T→∞

1

T
log2 |ST | ≤ C

as desired. This completes the proof of the simplified theorem.
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Proof Technique

Rearranging the inequality on the previous slide results in

ρ

M ·m(B)
( inf
x∈B
| detDf (x)|)(Q(B)−ε)T ≤ |ST |.

As per the discussion a few slides back, we have our lower bound on the
minimum-cardinality spanning set |ST |.Taking logs, normalizing by 1/T ,
taking a limit as T →∞, and noting that ε > 0 was arbitrary, we obtain

Q(B) log2( inf
x∈B
| detDf (x)|) ≤ lim

T→∞

1

T
log2 |ST | ≤ C

as desired.

This completes the proof of the simplified theorem.

Nicolas Garcia - Joint work with Christoph Kawan and Serdar Yüksel Control and Communications Seminar 32
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Generalization

Recall that we previously claimed that under asymptotic ergodicity, we
obtain the bound∫ ∫

log2(| detDfw (x)|)dQ(x)dv(w) ≤ C (36)

for the system xt+1 = f (xt ,wt) + ut .

This bound is obtained using the

above approach, however:

We view (xt ,wt) as an ’augmented’ ergodic process.

We define stabilization entropy for disjoint collections of sets of the
form (Bi ×Wj).

We obtain the bound∑
i,j

(Q × v)(Bi ×Wj) log2( inf
(x,w)∈Di×Wj

| detDfw (x)|) ≤ C . (37)

As this holds for arbitrarily fine partitions, we can approximate the
integral from below with the above bounds, from which the result
follows.
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DMC Case

As mentioned earlier, the theorems stated in this talk also hold for
scalar systems controlled over Discrete Memoryless Channels
(DMCs).

A DMC is a channel in which the channel output at time t is a
random variable that is independent from all other random variables
except for the channel input at time t.

One can characterize capacity in terms of the mutual information
between its input and outputs.

In the proofs involving DMCs, we combine stabilization entropy
techniques with the strong converse for the channel theorems for
DMCs.

The idea is to view the control decisions as a code with which to
estimate x0 at the controller end.

If the desired channel capacity inequalities do not hold, one shows
that ergodic/AMS stabilization is not possible, since if it were, one
would be able to reconstruct x0 with non-vanishing probability.

This results in a contradiction with the strong converse theorem for
DMCs.
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Concluding Remarks

As mentioned in the history section, bounds of the form∫ ∫
log2(| detDfw (x)|)dQ(x)dv(w) ≤ C (38)

have been obtained using information theoretic methods.

Such bounds rely on inequalities involving differential entropy and
mutual information.

This approach is better suited for dealing with a larger class of
communication channels, but cannot deal with systems for which
state variables do not admit differential entropies.
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Concluding Remarks

Finally, we note that a recent refinement (using stabilization entropy
tools) to the bound∫ ∫

log2(| detDfw (x)|)dQ(x)dv(w) ≤ C (39)

has been obtained, where we allow for the integration to be done
over any arbitrary subset of the coordinates of the system state
space.

This allows one to eliminate ’volume contracting’ directions, and
results in a tighter bound.
This refinement is not possible with information theoretic
techniques, where one cannot ’decouple’ distinct coordinates of the
system state-space due to non-zero mutual information between the
distinct coordinates.
For a state space decomposing into ’stable’ and ’unstable’
components, the bound becomes∫ ∫

log2(| detDxu fw (xu, x s)|)dQ(xu, x s)dv(w) ≤ C (40)

where the Jacobian determinant is a square matrix of size < N.
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THE END
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