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NCS Prior Art Part 1: FO GM Part 2: PO GM

Communication NetworkPlant Controller

Figure: Fig. 1: Network Control System (NCS)

Fundamental Questions: (i) How do the network-induced delay, packet loss,
quantization errors, and communication channel affect the stability of the system;
(ii) Under what conditions is an NCS stabilizable, and how does one stabilize it?
(iii) What are the performance limitations in an NCS and how does its synthesis
affects the corresponding performance criteria?

Figure: Fig. 2: Example of a NCS (figure borrowed from [M. C. Rich:2017])
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[Tatikonda-Sahai-Mitter:2004]
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Figure: Fig. 2: NCS with a single-loop

Goals:
Derive a control theoretic separation
principle for the quantized LQG
control with á priori structure of the
quantizer
Minimize the infinite horizon LQG
cost, i.e.,
lim supt−→∞

1
n+1

∑n
t=0 E{||xt||2Q +

||ut||2R}, Q � 0, R�0

Stochastic Linear Plant

(Pt) xt+1 = Axt +But + wt, A ∈ Rp×p,
B ∈ Rp×r, (A, B) controllable pair,
wt ∼ N (0; Σw), Σw � 0, i.i.d., indep. of x0

Noiseless Channel∗

at ⊂ {0, 1, 00, 01, . . .}, ∀t (1)

Encoder/Decoder

(Et) P(dat|at−1, xt, yt−1, ut−1)
(Dt) P(dyt|at, yt−1, ut−1)

Controller

(Ut) P(dut|yt)

∗An additive Vector Gaussian noise channel
is also assumed in place of the noiseless
channel
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[Tatikonda-Sahai-Mitter:2004] (cont’d)

Control theoretic separation principle

Á priori chosen the encoder to be an innovations or predictive quantizer. Then,

ut(yt) = Lyt,yt = Ayt−1 +But−1(yt−1) + It, (2)

where yt = E{xt|at} is the decoder’s output; It is the innovation process
(independent of the control signals); L ∈ Rr×p is the control (feedback) gain
The (linear) controller achieves the following cost

LQG∗∞ = trace(ΣwK)︸ ︷︷ ︸
control cost

+ trace(Θ∆)︸ ︷︷ ︸
quantized state estimation

, (3)

where Θ = ATKA−K +Q � 0, K � 0 is the unique stabilizing solution of the
DARE

K = ATKA−ATKB(BTKB +R)−1BTKA+Q, (4)

∆ is the time-invariant counterpart of ∆t = E {(xt − yt)(xt − yt)T}

(i) A tight lower bound on (3) can be achieved via nonanticipative rate distortion theory
[Gorbunov-Pinsker:1972]
(ii) A closed form expression of a lower bound on (3) for scalar processes

(iii) A lower bound on the quantized state estimation problem for multivariate processes

obtained via a sub-optimal reverse-waterfilling solution
3rd of May 2021 4 / 38
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Mean-square stability conditions for linear dynamical systems are provided
for instance in [Baillieul:1999,2001], [Wong-Brockett:1999],
[Brockett-Liberzon: 2000], [Hespanha-Ortega-Vasudevan: 2002],
[Tatikonda-Mitter:2004], [Nair-Evans:2004]
Further studies regarding the separation principle in quantized LQG control
are given in [Bao-Skoglund-Johansson:2011], [Fu:2012], [Yuksel:2014]
Average data rate bounds of single loop SIMO NCS using directed
information, random or fixed delays in the system and ECDQ coding schemes
are studied in [Silva-Derpich-Østergaard:2011],
[Silva-Derpich-Østergaard-Encina:2016],
[Barforooshan-Derpich-Stavrou-Østergaard:2020]
The setup of Tatikonda was revisited in [Tanaka-Kim-Parrilo-Mitter:2017],
[Tanaka-Esfahani-Mitter:2018]. Main results include: (i) the exact
computation of the nonanticipative RDF via an SDP algorithm for
multivariate Gauss-Markov processes, (ii) the solution and a realization of the
rate-cost function for Gaussian processes via a three steps design comprised of
a feedback controller design, a virtual sensor, Kalman filter
Achievability schemes for the quantized state estimation or the closed-loop
control setup of Tatikonda are explored in
[Tanaka-Johansson-Oechtering-Sandberg-Skoglund:2016],
[Stavrou-Østergaard-Charalambous:2018], [Kostina-Hassibi:2019]
General lower and upper bounds for fully observable system models beyond
additive i.i.d. Gaussian processes and partially observable systems driven by
Gaussian noise are studied in [Kostina-Hassibi:2019]
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Case 1: Fully Observable Gauss-Markov Process
with MSE Distortion

3rd of May 2021 6 / 38



NCS Prior Art Part 1: FO GM Part 2: PO GM

Gauss-Markov 
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Figure: Fig. 3: Low-delay quantization system

Uncontrolled Gauss-Markov Source:

xt+1 = Axt + wt, t ∈ N0, x0 ∈ Rp ∼ N (0; Σx0 ) (5)

1 A ∈ Rp×p is a non-random (known) matrix
2 wt ∈ Rp ∼ N (0; Σw) i.i.d. sequence, Σw � 0, independent of x0.

Low-delay processing of information:

(E) : at = ft(a
t−1, xt), (D) : yt = gt(a

t); (6)

1 initial time (t = 0): z0 = f0(x0) and y0 = g0(z0)
2 clocks of the encoder/decoder are synchronized

Empirical rates: For D > 0, we define:

Rop(D) , inf
(ft, gt): t=0,1,...,∞

lim supn−→∞
1

n+1

∑n
t=0 E{||xt−yt||22}≤D

lim sup
n−→∞

1

n+ 1

n∑
t=0

H(yt|yt−1)

(7)
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Lower bound on Rop(D)

R
op

(D) ≥ Rna
(D) = inf

P(dyt|yt−1,xt): t=0,1...,∞
lim supn−→∞ 1

n+1

∑n
t=0 E{||xt−yt||22}≤D

lim sup
n−→∞

I(x
n → y

n
) (8)

where I(xn → yn) , 1
n+1

∑n
t=0 I(xt;yt|y

t−1)

Time-Invariant Characterization for jointly Gaussian process∗

{(xt,yt) : t = 0, 1, . . .} is jointly Gaussian

P(dyt|yt−1, xt) ≡ PG(dyt|yt−1, xt) can be realized as follows

yt = Hxt + (Ip −H)Ayt−1 + vt, Ip is the identity matrix; vt ∼ N (0; Σv) (9)

(H,Σv) are designing matrices chosen such (i) x̂t|t ≡ E{xt|yt} = yt − a.s, (ii)
lim supn−→∞

1
n+1

∑n
t=0 E{||xt − yt||22} = trace(∆) with

H = Ip −∆Λ
−1
, Σv = ∆H

T (10)

(∆, Λ) are the time-invariant values of (Σt|t,Σt|t−1).

For D > 0, the optimization problem to solve parametrized by (H,Σv) is

R
na

(D) = min
0≺∆�Λ

trace(∆)≤D

1

2
log

(
det(Λ)

det(∆)

)
(11)

∗ This is derived in [Stavrou-Charalambous-Charalambous-Loyka-Skoglund:2018]
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Proposition 1: Structural result

Let (A,Σw) admit one of the following strong structural properties:
1 A ∈ Rp×p is real symmetric matrix and Σw = σ2

wIp (scalar symmetric)
2 A = αIp (scalar symmetric) and Σw � 0

3 Both A = Σw � 0

4 Both (A,Σw) are diagonal matrices (trivial).
Then, (A,Σw,∆) commute by pairs and consequently (Λ,∆) commute in (11)

Proof. Makes use of the “eigenvector alignment” between the design variable ∆ and
either A or Σw, depending on which one is real symmetric (the other is scalar matrix).

Simplified expression of (11)

Suppose that one of the previous structural properties of (A,ΣW ) hold. Then (11)
achieves smaller rates and simplifies to

Rna(D) = inf
0<µ∆,i≤µΛ,i, i=1,...,p∑p

i=1 µ∆,i≤D

1

2

p∑
i=1

log

(
µΛ,i

µ∆,i

)
, (12)

with µΛ,i = µA2,iµ∆,i + µΣW ,i.

Proof. Makes use of Hadamard’s inequality that under the strong structural properties
of (A,Σw) holds with equality.
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Optimal reverse-waterfilling solution

The optimal parametric solution of (12) is the following

Rna(D) =
1

2

p∑
i=1

log

(
µΛ,i

µ∆,i

)
, (13)

where µ∆,i is computed by the reverse-waterfilling algorithm

µ∆,i =

{
ξi, if ξi < µΛ,i,

µΛ,i, otherwise
, ∀i, (14)

and ξi > 0 is computed as follows

ξi =
1

2µB,i

(√
1 +

2µB,i

θ
− 1

)
, µB,i 6= 0, (15)

ξi =
1

2θ
, µB,i = 0, (16)

with µB,i ,
µ
A2,i

µΣw,i
and θ > 0 chosen such that

∑p
i=1 µ∆,i = D.

Proof. Invoke and solve KKT conditions (necessary and sufficient conditions for global
optimality).
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Algorithm 1 Implementation of the reverse-waterfilling solution

Initialize: number of p; D; ε; nominal minimum and maximum θ, i.e, θmin and θmax; initial
variance for µΛ,1; pick the matrix structure of (A, Σw) in (5) and compute their corresponding
eigenvalues {(µA,i, µΣw,i) : i ∈ Np1} (in increasing or decreasing order).
Set θ = p/2D; flag = 0.
while flag = 0 do

Compute µ∆,i ∀ i as follows:
for i = 1 : p do

Compute ξi according to (15) or (16).
Compute µ∆,i according to (14).

end for
if
∑p
i=1 µ∆,i −D ≥ ε then

Set θmin = θ
else

Set θmax = θ
end if
if θmax − θmin ≥ ε then

Compute θ =
(θmin+θmax)

2
else

flag← 1
end if

end while
Output: {µ∆,i : i = 1, . . . , p}, {µΛ,i : i = 1, . . . , p}, for a given distortion level D.

3rd of May 2021 11 / 38



NCS Prior Art Part 1: FO GM Part 2: PO GM

[Comparison with [Tanaka-Kim-Parrilo-Mitter:2017]

Input data

Consider a time-invariant Gauss-Markov process with (A,Σw) given by

A =

1.1016 1.2190 0.4165
1.2190 1.7859 1.1035
0.4165 1.1035 0.1029

 , Σw =

1 0 0
0 1 0
0 0 1

 , (17)

and D ∈ [0.01, 3].

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

Minimum data rates of mean-square
stability are ≈ 1.6493 bits/vector
source
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Comparison with [Tanaka-Kim-Parrilo-Mitter:2017] (cont’d)

Input Data: Choose a pair (A,Σw) that satisfy the strong structural properties
of Proposition 1; D ∈ (0,∞).

Solver (Numb. dimens. p = 10) Mean
SDP Algorithm (by default ε = 10−9) 0.701
Algorithm 1 (ε = 10−9) 2.01×10−4

Solver (Numb. dimens. p = 50) Mean
SDP Algorithm (by default ε = 10−9) 122.017
Algorithm 1 (ε = 10−9) 2.61×10−4

Solver (Numb. dimens. p = 1000) Mean
SDP Algorithm (by default ε = 10−9) non-conclusive
Algorithm 1 (ε = 10−9) 3.26×10−4

Table: Table I: Average omputational time for execution between SDP algorithm and Algorithm
1 for 1000 instances.

1 For p = 10, Algorithm 1 executes 3000 times faster than SDP algorithm;
2 For p = 50, Algorithm 1 executes ≈ 450000 times faster than SDP algorithm;
3 For p = 1000 Algorithm 1 is very very fast while SDP result is inconclusive
because it executes very very slow (it takes days to operate)
Algorithm 1 is much much faster compare to SDP algorithm and more
importantly scalable =⇒ Desirable in computationally limited systems
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Closed form solution beyond scalar processes

Input data

Consider a time-invariant Gauss-Markov process with (A,Σw) given by

A =

[
1 −0.5
−0.5 1

]
, Σw =

[
1 0
0 1

]
, (18)

and D > 0. Let µA,1 = 1.5 ≥ µA,2 = 0.5 (decreasing order).

Analytical expression

R
na

(D) =
1

2

[
log

(
9

4
+

8√
(D + 4)(9D + 4)− (D + 4)

)

+ log

(
1

4
+

8

(9D + 4)−
√

(D + 4)(9D + 4)

)]
, (19)

R
na

(D) =
1

2
log

 9

4
+

1

2
9

(√
1 +

(9D−8)(9D−12)
4 − 1

)
 , (20)

1 (19) corresponds to the full rank solution (both dimensions are active).
2 (20) corresponds to the rank deficient solution (only the first dimension is active).

In fact, for D −→ ∞, (20) gives Rna(D) ≈ 0.585 bits/source sample (minimum
data rate for MS stability)
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Upper bound on Rop(D)
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Figure: Fig. 4: Optimal realization that achieves the lower bound Rna(D) (left figure) and the
same realization with the additive Gaussian noise replaced by coding noise via ECDQ
scheme (right figure)

1 ECDQ scheme “simulates” the optimal minimizer of the quadratic Gaussian RDF,
i.e., Rna(D)

2 Lattice code can be seen as the counterpart of linear codes in Euclidean space
(these are structural codes)

3 “Dithering” st is a randomization (noise!) added to guarantee desired distortion
independent of the input statistics and improve the quantization, it is of particular
help at low rates

Description of the ECDQ scheme

Encoder: receives the innovations of xt, i.e.,
κt = xt − Ayt−1, yt−1 = E{xt−1|at−1} and quantizes H

1
2 κt + st using a

p−dimensional lattice, i.e., at = QΛ(H
1
2 κt + st), H

1
2 =

√
Ip −∆Λ−1

Decoder: receives the coded bits and generates as estimate by subtracting st from
quantizer’s output multiplied by the scaling H

1
2 , κ̂t = H

1
2 (QΛ(H

1
2 κt + st)− st)
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Upper bound on Rop(D) (cont’d)
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Figure: Fig. 5: Optimal realization that achieves the lower bound Rna(D) (left figure) under
the proposed strong structural properties and the same realization with the additive
Gaussian noise replaced by coding noise via ECDQ scheme (right figure)

Performance Analysis

MSE Distortion:
D = E{||xt−yt||22} = E{||κt−κ̂t||} = E{||H

1
2 (QΛ(H

1
2 κt+st)−st)−κt||22}, (?)

Coding Rate:

lim
n−→∞

1

n+ 1

n∑
t=0

H(QΛ|st) ≤ Rna
(D) +

r

2
log (2πeGr)︸ ︷︷ ︸
rate loss

, r , rank(H) (21)

1 For r = 1, G1 = 1/12 and the rate loss is approx. 0.254 bits/source sample;
2 If r increases, the rate loss becomes smaller and smaller; if r −→ ∞
G∞ = 1

2πe and the coding noise is exactly the Gaussian noise.

∗This approach can be found in the literature as DPCM based ECDQ scheme,
e.g., [Stavrou-Østergaard-Charalambous:2018],[Khina-Kostina-Khisti-Hassibi:2019]
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Open Question: Bounds for LQG Control
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Figure: Fig. 6: NCS with a single-loop

Operational Rate Cost Function∗

R
op

(Γ) = inf
(Et,Dt,Ut): t=0,...,∞

lim supn−→∞ 1
n+1

LQR(xn,un−1)≤Γ

lim sup
n−→∞

1

n+ 1

n∑
t=0

H(yt|yt−1
,u
t−1

)
∗ (22)

where LQR(xn,un−1) , E
[∑n−1

t=0 {||xt||
2
Q + ||ut||2R}+ ||xn||2Q

]
1 For deterministic controllers, i.e., ut = et(y

t), it can be shown that
H(yt|yt−1,ut−1) ≡ He(yt|yt−1) meaning that the distribution of the conditional
entropy is specified once the control signals are specified

2 For co-located decoder/controller we can take H(ut|ut−1)
[Tanaka-Esfahani-Mitter:2018], [Kostina-Hassibi:2019] 3rd of May 2021 17 / 38
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Open Question: Bounds for LQG control (cont’d)

Lower Bound: General Rate Cost Function∗

Rna(Γ) = inf
P(dyt|yt−1,ut−1,xt): t=0,...,∞

lim supn−→∞
1

n+1
LQR(xn,un−1)≤Γ

lim sup
n−→∞

1

n+ 1
I(xn → yn||un−1)∗

(23)

I(xn → yn||un−1) ,
∑n
t=0 I(x

t;yt|yt−1,ut−1)

1 For deterministic controller, i.e., ut = et(yt), it can be shown that
I(xn → yn||un−1) ≡ I(xn → yn)

2 For co-located decoder/controller we can take I(xn → un)
[Tanaka-Esfahani-Mitter:2018]

3 Characterization of the (Gaussian) rate-cost function using the separation
principle see, e.g., [Tatikonda-Sahai-Mitter:2004] or
[Tanaka-Esfahani-Mitter:2018]

R(Γ) = min
0≺∆�Λ

trace(ΣwK)+trace(Θ∆)≤Γ

1

2
log

(
det(Λ)

det(∆)

)
(24)

where Θ = ATKA−K +Q � 0
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Open Question: Bounds for LQG control (cont’d)

Now (24) is equivalent to the lower bound of the quantized state estimation
problem

Rna(D̄) = min
0≺∆�Λ

trace(Θ∆)≤D̄

1

2
log

(
det(Λ)

det(∆)

)
(25)

where D̄ , Γ− trace(ΣwK) > 0. (25) is achieved by a linear realization of the form
[Tatikonda-Sahai-Mitter:2004], [Stavrou-Charalambous-Charalambous-Loyka:2018]

yt = Ayt−1 + ut−1(yt−1) + It,

= Ayt−1 + ut−1(yt−1) +H(xt −Ayt−1 − ut−1(yt−1)) + vt (26)

where (H,Σv) are obtained in closed form similar to the realization of the
quantized state estimation problem, i.e.,

H = Ip −∆Λ−1, Σv = ∆HT (27)

The complete realization that corresponds to (24) can be obtained using the fact
that ut = Lyt [Tatikonda-Sahai-Mitter:2004]

1 Can we find an optimal reverse-waterfilling solution to the characterization of
(25)?

2 Can we find optimal closed form expressions beyond scalar processes?
3 Extension to time-varying processes?
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Open Question: Bounds for LQG control (cont’d)

Upper Bound on Rop(Γ)

Rop(Γ) ≤ Rna(D̄) +
r

2
log(2πeGr) (28)

where r = rank(H)

1 (28) is achieved using precisely the ECDQ scheme of the quantized state
estimation problem

2 Fundamental difference with quantized state estimation problem is that at
the innovations encoder we subtract the previous control signals and add
them at the decoder following precisely the realization of the lower bound
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Case 2: Partially Observable Gauss-Markov
Process with MSE Distortion
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Partially 
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Gaussian 
Source

(E) (D)
Noiseless 
Channel
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Figure: Fig. 7: Low-delay quantization system

Uncontrolled Partially Observable Gauss-Markov Source:

xt+1 = Axt + wt, t ∈ N0, x0 ∈ Rp ∼ N (0; Σx0 )

zt = Cxt + nt
(29)

1 A ∈ Rp×p, C ∈ Rm×p,m ≤ p, full row rank both non-random (known)
matrices

2 wt ∈ Rp ∼ N (0; Σw),nt ∈ Rm ∼ N (0; Σn) are both i.i.d. sequences,
independent of each other with Σw � 0,Σn � 0, independent of x0.

Low-delay processing of information:

(E) : at = ft(a
t−1, zt), (D) : yt = gt(a

t); (30)

1 initial time (t = 0): z0 = f0(x0) and y0 = g0(z0)
2 clocks of the encoder/decoder are synchronized

Empirical rates: For D > 0, we define:

Rop
in (D) , inf

(ft, gt): t=0,1,...,∞
lim supn−→∞

1
n+1

∑n
t=0 E{||xt−yt||22}≤D

lim sup
n−→∞

1

n+ 1

n∑
t=0

H(yt|yt−1)

(31)
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Lower bound on Rop
in (D)

Data Processing inequality

Rop
in (D) ≥ Rna

in (D) = inf
P(dyt|yt−1,zt): t=0,1...,∞

lim supn−→∞
1

n+1

∑n
t=0 E{||xt−yt||22}≤D

lim sup
n−→∞

I(zn → yn)

(32)
where I(zn → yn) , 1

n+1

∑n
t=0 I(z

t;yt|yt−1)

Solving precisely (32) is still an open problem
Remarkable efforts to solve the lower bound have been made in
[Tanaka:2015], [Tanaka-Esfahani-Mitter:2018], [Kostina-Hassibi:2019]

1 [Tanaka:2015] considers a different optimization problem than (32) (with soft
distortion constraints);

2 [Tanaka-Esfahani-Mitter:2018] considered a complicated structural result
where a variant of (32) is studied, i.e., the partially observable process is
reduced to a fully observable via a pre-Kalman filtering approach (sending an
estimate of the indirectly observed process) with a modified cost

3 [Kostina-Hassibi:2019] address the problem by reducing it to a modified fully
observable Gauss-Markov process driven by the covariance of its innovations
process (it requires the some computations of a pre-Kalman filter); They
arrived to some closed form expressions
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Indirect Rate Distortion Function for Jointly Gaussian RVs

Gaussian RV (E) (D)Å Î zÎ x Î yR

( )s2~ 0
n

n ;

Figure: Fig. 8: The quadratic Gaussian remote source coding problem

Gaussian Rate Distortion Problem

Source: x ∼ N (0;σ2
x), Noisy Measurement: z = x + n, n ∼ N (0;σ2

n) indep. of x

Rin(D) = min
P(dz|y):E{(x−y)2}≤D

I(z;y)∗ (33)

∗This problem is studied by many researchers, e.g., [Dobrushin-Tsybakov:1962],
[Wolf-Ziv:1970], [Berger:1971]

Remark

Indirect rate distortion problems can be transformed to direct if we modify their
distortion constraints [Dobrushin-Tsybakov:1962], [Wolf-Ziv:1970],
[Witsenhausen:1980]
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Indirect Rate Distortion Function for Jointly Gaussian RVs (cont’d)

Complete Realization and Solution

(x,z,y) jointly Gaussian
P(dy|z) in (33) can be realized as follows

y = Hz + v, (34)

where H ∈ R (to be designed), v ∼ N (0;σ2
v) is an i.i.d Gaussian RV

independent of z with σ2
v (to be designed).

The design variables (H,σ2
v) are chosen such that: (i) E{x|y} = y − a.s.; (ii)

E{(x− y)2} = D and are given by

H = 1−
D

σ2
x

, σ2
v = DH −H2σ2

n. (35)

For D>Dmin, Rin(D) parametrized by (H,σ2
v) achieves a solution of the form

Rin(D) =
1

2

log

(
σ2
x

D

)
+ log

 σ2
x

σ2
x + σ2

n(1− σ2
x
D

)

 , D ∈ (var{x|z}, σ2
x

]
,

(36)

where var{x|z} =
σ2
xσ

2
n

σ2
x+σ2

n
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Lower bound on Rop
in (D)

R
na
in (D) = inf

P(dyt|yt−1,zt): t=0,1...,∞
lim supn−→∞ 1

n+1

∑n
t=0 E{||xt−yt||22}≤D

lim sup
n−→∞

1

n+ 1

n∑
t=0

I(z
t
;yt|yt−1

)

(37)

Theorem 1: Time-invariant characterization and realization

{(xt, zt,yt) : t ∈ N0} jointly Gaussian

P(dyt|yt−1, zt) is conditionally Gaussian with a linear time-invariant Markov
realization given by

yt = Hzt + (Ip −HC)Ayt−1 + vt, vt ∼ N (0; Σv),Σv � 0 (38)

with design variables (HC,Σv) given by

HC = Ip −∆Λ
−1
, Σv = ∆(HC)

T −HΣnH
T � 0 (39)

Rna
in (D) parametrized by (HC,Σv) yields the following optimization problem

R
na
in (D) = inf

0≺∆�Λ

0≺Λ(Λ+Q)−1Q≺∆
trace(∆)≤D

1

2

[
log

det(Λ)

det(∆)
+ log

det(Λ)

det(Λ +Q− Λ∆−1Q)

]
, (40)

where (Λ, ∆) are the time-invariant values of (Σt|t−1,Σt|t) and

Q , C†ΣnC
†T � 0 with C† = CT(CCT)−1
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Lower bound on Rop
in (D) (cont’d)

Technical Comments on Theorem 1

Proof: 1) generalized KF recursions for conditionally Gaussian processes
where we change the innovations process of the filter to modify the distortion
constraint and tranform the problem from partially observable to fully
observable; 2) we use MSE inequalities to make sure that the MMSE estimate
x̂t|t = E{xt|zt,yt} = yt − a.s. i.e., the decoder’s output is precisely the
optimal linear MMSE estimator and choose accordingly (HC,Σv) so that
lim supn−→∞

1
n+1

∑n
t=0 E{||xt − yt||22} = trace(∆)

Structural result: The output process {yt : t = 0, . . .} follows a first order
Markov process and the directed information measure depends only on the
current noisy measurement zt. Hence (37) simplifies to

Rna
in (D) = inf

P(dyt|yt−1,zt): t=0,1...,∞
E{||xt−yt||22}≤D

lim sup
n−→∞

1

n+ 1

n∑
t=0

I(zt;yt|yt−1). (41)

Special cases: If in (40) we assume that Σn = 0, then, Q = 0 (null matrix)
and we recover the characterization for the fully observable case
The characterization in (40) is a non-convex problem, in general
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Sufficient Conditions for Convexification of (40)

Suppose that (Λ,∆, Q) commute by pairs. Then, (40) simplifies to the following
convex program

Rna
in (D) = min

1

2

p∑
i=1

[
log

(
µΛ,i

µ∆,i

)
+ log

(
µΛ,i

µΛ,i + µQ,i − µΛ,iµ∆−1,iµQ,i

)]
,

(42)

s.t. 0 <
µΛ,iµQ,i

µΛ,i + µQ,i
< µ∆,i, ∀i

0 < µ∆,i ≤ µΛ,i, ∀i
p∑
i=1

µ∆,i ≤ D

where µΛ,i = µA2,iµ∆,i + µΣw,i
, for some D ∈ [Dmin, Dmax] ⊂ (0, Dmax]

Proof. The convexity follows because the objective function is differentiable and
continuous for

µΛ,iµQ,i
µΛ,i+µQ,i

< µ∆,i. Taking the second partial derivative w.r.t. to µ∆,i it
can be shown it is non-negative and the result follows.

3rd of May 2021 28 / 38



NCS Prior Art Part 1: FO GM Part 2: PO GM

Proposition 2: Strong Structural properties for optimality of (42)

Let (A,Q,Σw) satisfy one of the following strong structural properties:
1 A is real symmetric, Σw = σ2

wIp (scalar matrix), where σ2
w > 0, and Q = qIp,

(scalar matrix), where q ≥ 0∗.
2 A = αIp (scalar matrix), Σw = σ2

wIp (scalar matrix), where σ2
w > 0, and

Q � 0.
3 A = αIp (scalar matrix), Σw � 0, and Q = qIp (scalar matrix) where q ≥ 0.
4 All (A,Σw, Q) have only diagonal elements with Σw � 0 and Q � 0;
5 (A,Σw, Q) have precisely the same matrix structure.
Then, (A,Q,Σw,∆) commute by pairs and consequently (∆,Λ, Q) commute

∗ If q = 0, then Q = 0 (null matrix).
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Reverse-waterfilling solution of (42)

The parametric solution of (42) is

R
na
in (D) =

1

2

p∑
i=1

[
log

(
µΛ,i

µ∆,i

)
+ log

(
µΛ,i

µΛ,i + µQ,i − µΛ,iµ∆−1,iµQ,i

)]
, (43)

such that µΛ,i = µA2,iµ∆,i + µΣw,i, ∀i, and µ∆,i is computed based on the following
reverse-waterfilling algorithm

µ∆,i =

{
ξi if ξmin,i < ξi < µΛ,i

µΛ,i if ξi ≥ µΛ,i
, ∀i, (44)

with
∑p
i=1 µ∆,i = D, and D > Dmin =

∑p
i=1 ξmin,i where

ξmin,i ,

√
υ2 + 4µA2,iµΣw,iµQ,i − υ

2µA2,i

, µA,i 6= 0, ∀i, (45)

with υ , µΣw,i + (1− µA2,i)µQ,i, µQ,i 6=∞, and ξi > ξmin,i is the positive solution of
the third degree polynomial equation

C1ξ
3
i + C2ξ

2
i + C3ξi − C4 = 0, (46)

where

C1 , 2µA4,iθ, C2 , 2µA2,iθ(υ + µΣw,i),

C3 , µA2,i(υ − 2µΣw,i) + 2θµΣw,i(υ − µA2,iµQ,i),

C4 , µΣw,i[2θµΣw,iµQ,i + µA2,iµQ,i + µΣw,i + µQ,i]
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Technical comments on the Reverse-Waterfilling Solution

The proof relies on solving KKT conditions. Then, in order to prove that
there is exactly one positive solution of the third degree polynomial equation
(46) we use Descartes’ rule of signs.
To make sure that the positive solution at each dimension is precisely always
> ξmin,i we need to adjust the global Lagrangian θ > 0

3rd of May 2021 31 / 38



NCS Prior Art Part 1: FO GM Part 2: PO GM

Algorithm 2 Implementation of the reverse-waterfilling solution

Initialize: choose p, ε, nominal minimum and maximum value θmin and θmax; choose ini-
tial µΛ,1; pick the matrix structure of (A, Σw, Q), and their corresponding eigenvalues
{(µA,i, µΣw,i, µQ,i) : i ∈ Np1} (in increasing or decreasing order); Choose D > Dmin =∑p
i=1 ξmin,i.

Set θ = θmax; flag = 0.
while flag = 0 do

Compute µ∆,i ∀ i as follows:
for i = 1 : p do

Compute ξi according to (45), (46).
Compute µ∆,i according to (44).

end for
if
∑p
i=1 µ∆,i −D ≥ ε then

Set θmin = θ.
else

Set θmax = θ.
end if
if θmax − θmin ≥ ε

p
then

Compute θ =
(θmin+θmax)

2
.

else
flag← 1

end if
end while
Output: {µ∆,i : i = 1, 2, . . . , p}, {µΛ,i : i = 1, 2, . . . , p}, for a given distortion level D.
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Numerical Simulation

Input data

Consider a time-invariant partially observable Gauss-Markov process with
(A,Σw, Q) given by

A = diag(1.1, 1.1, 1.1.), Σw = diag(1, 1, 1) Q =

0.4390 0.8909 −0.501
0.8909 1.8145 −1.0286
−0.501 −1.0286 0.5937

 ,
(47)

and D ∈ (Dmin, 20], Dmin = 1.384.
µQ,1 = 2.836 ≥ µQ,2 = 0.0112 ≥ µQ,1 = 0 (decreasing order)

0 1.382 4 6 8 10 12 14 16 18 20
0.41

5

10

15

Minimum data rates for MS
stability are ≈ 0.41 bits/vector
source
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Closed-form expression for scalar processes

Closed-form expression: Scalar case∗

Consider the scalar-valued version of (29) with
A ≡ α,Σw ≡ σ2

w, C ≡ c,Σn = σ2
n,Λ = λ,∆ = D. Then, its solution is a follows:

R
na
in (D) =

1

2

log

(
λ

D

)
+ log

 λ

λ+
σ2
n
c2

(1− λ
D )

 , (48)

where D ∈ (Dmin, Dmax] such that

Dmin =

√
υ2 + 4α2c2σ2

wσ
2
n − υ

2α2c2
, Dmax = λ, (49)

with α 6= 0, c 6= 0, υ , c2σ2
w + σ2

n(1− α2), and λ = α2D + σ2
w.

Proof. Immediate from the solution of KKT conditions.
1 (48) is achieved by a time-invariant realization of the form

yt = Hzt + (1−Hc)αyt−1 + vt, (50)

where (Hc, σ2
v) are given by

Hc = 1−
D

λ
, σ2

v = DH −H2σ2
n (51)

2 If σ2
n = 0, (48) recovers the well-known solution of the fully observable case

with Dmin = 0
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Comparison with [Kostina-Hassibi:2019]

The lower bound proposed in [Kostina-Hassibi:2019]

For D > DKHmin ,

RKHin (D) =
1

2
log

(
λ−DKHmin

D −DKHmin

)
(52)

with Dmax = λ = α2D + σ2
w; DKHmin = var{xt|zt} obtained via the steady-state of

a pre-KF algorithm (it can be shown that DKHmin ≡ Dmin)

Example. Input data α = 1.2, c = 0.4, σ2
w = σ2

n = 1, D ∈ (Dmin, 20] (remote
case) D ∈ (0, 20] (fully observable case)

0 2 2.78 4 6 8 10 12 14 16 18 20

0.263

1

2

3

RL ≈ 0.42 bits (for this example); it
can be less or more depending on
the input data

RLo = 1
2

log

(
λ

λ+
σ2
n
c2

(1− λ
D

)

)
, D ∈

(Dmin, Dmax],
Minimum data rates for MS
stability are ≈ 0.263 bits/sample
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Upper bound on Rop
in (D)
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Figure: Fig. 9: Optimal realization that achieves the lower bound Rna
in (D) (left figure) using

structural properties and the same realization with the additive Gaussian noise replaced
by coding noise via ECDQ scheme (right figure)

1 The realization that achieves Rna
in (D) can be equivalently written as

yt = HC(xt −Ayt−1) +Ayt−1 + v̄t, (53)

where v̄t = Hnt + vt ∼ N (0; ∆(HC))

2 The coding scheme follows precisely like the fully observable case (different
scalings)

3 Upper bound:

Rop
in (D) ≤ Rna

in (D) +
r

2
log(2πeGr) (54)

with r = rank(HC)
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Open Question: Bounds for LQG Control

pyt

ut
r

{ }Îa *0,1t

mzt

Figure: Fig. 10: NCS with a single-loop

Operational Rate Cost Function

R
op
in (Γ) = inf

(Et,Dt,Ut): t=0,...,∞
lim supn−→∞ 1

n+1
LQR(xn,un−1)≤Γ

lim sup
n−→∞

1

n+ 1

n∑
t=0

H(yt|yt−1
,u
t−1

) (55)

where LQR(xn,un−1) , E
[∑n−1

t=0 {||xt||
2
Q + ||ut||2R}+ ||xn||2Q

]
Questions:

1 Bounds on (55) via optimal reverse-waterfilling solutions
2 Going beyond additive Gaussian processes
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Thank you!

QUESTIONS

For more information:

Photios Stavrou (fstavrou@kth.se)
Mikael Skoglund (skoglund@kth.se)
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