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A NOTE ON THE SEPARATION OF OPTIMAL QUANTIZATION
AND CONTROL POLICIES IN NETWORKED CONTROL\ast 

SERDAR Y\"UKSEL\dagger 

Abstract. For controlled \BbbR n-valued linear systems driven by Gaussian noise under quadratic
cost criteria, we revisit the problem of the structure of optimal quantization and control policies. In
a recent paper [IEEE Trans. Automat. Control, 59 (2014), pp. 1612--1617] by the author, for fully
observed and partially observed systems, the global optimality of predictive encoders was established
under quadratic cost criteria. Furthermore, optimal control policies were shown to be linear in the
conditional estimate of the state, and a form of separation of estimation and control was established.
The present note does not introduce any new results or new conditions but clarifies that the results
have been mischaracterized in the recent paper [M. Rabi, C. Ramesh, and K. H. Johansson, SIAM
J. Control Optim., 54 (2016), pp. 662--689]. Since perhaps the arguments in [IEEE Trans. Automat.
Control, 59 (2014), pp. 1612--1617] were concise and this led to the confusion, its key result is
presented here with a more detailed proof.
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1. Introduction. Consider a linear quadratic Gaussian (LQG) setup, where a
sensor encodes its noisy information to a controller. Let xt \in \BbbR n and the evolution of
the system be given by the following:

xt+1 = Axt +But + wt, yt = Cxt + vt.(1.1)

Here, \{ wt, vt\} is a mutually independent, zero-mean independent and identically dis-
tributed (i.i.d.) Gaussian noise sequence, ut is an \BbbR m-valued control action, yt \in \BbbR p

is the observation variable, and A,B,C are matrices of appropriate dimensions. We
assume that x0 is a zero-mean Gaussian random variable. As in Figure 1.1, let there
be an encoder which has access to the observation variable yt, and which transmits
its information to a receiver/controller, over a discrete noiseless channel with finite
capacity.

Linear System Encoder Controller

xw y q u

v

Fig. 1.1. Joint LQG optimal design of coding and control.

Definition 1.1. Let \scrM = \{ 1, 2, . . . ,M\} with M = | \scrM | . Let \BbbA be a (topological)
space. A quantizer Q(\BbbA ;\scrM ) is a Borel measurable map from \BbbA to \scrM .
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774 SERDAR Y\"UKSEL

When the spaces \BbbA and\scrM are clear from the context, we will denote the quantizer
simply by Q. Following [3], by Composite Quantization (Coding) Policy \Pi comp, we
refer to a sequence of functions \{ Qcomp

t ((\BbbR p)t+1;\scrM ), t \geq 0\} which are causal such
that the quantization output at time t, qt, under \Pi 

comp is generated by a function of
its local information, that is, a mapping measurable on the sigma-algebra generated
by \scrI e

t = \{ y[0,t]\} to a finite set \scrM := \{ 1, 2, . . . ,M\} , which is the quantization output
alphabet for 0 \leq t \leq T  - 1. Here, we have the notation for t \geq 1: y[0,t - 1] =
\{ ys, 0 \leq s \leq t  - 1\} . Let \BbbI t = (\BbbR p)t+1 be information spaces such that for all t \geq 0,
the realizations satisfy \scrI e

t \in \BbbI t. Thus, Qcomp
t : \BbbI t \rightarrow \scrM . As elaborated on in [3],

we may express the policy \Pi comp as a composition of a Quantization Policy \Pi i and a
Quantizer. A quantization policy \scrT is a sequence of functions \{ Tt\} , such that for each
t \geq 0, Tt is a mapping from the information space \BbbI t to a space of quantizers \BbbQ t, to be
specified below. A quantizer is used, subsequently, to generate the quantizer output.
A quantizer will be generated based on the common information at the encoder and
the controller/receiver, and the quantizer will map the relevant private information
at the encoder to the quantization output (see [4] for similar reasoning).

Thus, with the information at the controller at time t > 1 being \scrI c
t = \{ q[0,t]\} and

by writing \scrI e
t = \{ y[0,t], q[0,t - 1]\} , we can express the composite quantization policy as

Qcomp
t (\scrI e

t ) = (Tt(\scrI c
t - 1))(\scrI e

t \setminus \scrI c
t - 1).(1.2)

Any composite quantization policy Qcomp
t can be expressed in the form above;

i.e., there is no loss in the set of such policies, since for any Qcomp
t , one can define

Tt(\scrI c
t - 1)(\cdot ) := Qcomp

t (\cdot , \scrI c
t - 1).

Thus, we let the encoder have policy \scrT and under this policy generate quantizer
actions \{ Qt, t \geq 0\} , Qt \in \BbbQ t (hence, Qt(\BbbI t \setminus \scrM t;\scrM ) is the quantizer used at time
t and the realization space of \scrI e

t \setminus \scrI c
t - 1 is quantized). Under action Qt, and given

the local information, the encoder generates qit as the quantization output at time
t. An admissible controller policy is a sequence of functions \gamma = \{ \gamma t\} such that
ut = \gamma t(q[0,t]), with \gamma t : \scrM t+1 \rightarrow \BbbR m, t \geq 0. We call such encoding and control
policies causal or admissible. The goal is the computation of

inf
\Pi comp

inf
\gamma 

J(\Pi comp, \gamma , T ),(1.3)

where

J(\Pi comp, \gamma , T ) :=
1

T
E\Pi comp,\gamma 

\nu 0

\biggl[ T - 1\sum 

t=0

x\prime 
tQxt + u\prime 

tRut

\biggr] 
.

Here, Q \geq 0 is a positive semi-definite matrix, R > 0 is a positive definite matrix,
and \nu 0 is the initial Gaussian measure on x0.

Recently, [2] proposed structural results on optimal encoders for the setup pro-
vided in the previous section. The authors in [2, section 4] provide a class of encoders
and establish a separation result similar to the one presented in [1]. While motivating
their optimality result, the authors of [2] state that the existing results in the field are
nonsatisfactory and that the arguments in [1] may not hold. In particular, they note
that they illustrate the insufficiency of the arguments offered in 12 papers, including
[1], for the optimality of separation and certainty equivalent control.

The goal of this note is to correct the criticism claimed in [2]: There is no new
result in this note, nor is there any additional new assumption; we will emphasize
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SEPARATION OF OPTIMAL QUANTIZATION AND CONTROL 775

that the structural and separation results in [1] hold true as they were. The point of
this note is to present a record with regard to the results presented in [1], but also
to show that one does not need to impose any new conditions for the optimality of
predictive encoders: The results in [1] on separation and optimality are general with
regard to the optimality of predictive encoders without any a priori restrictions on
the encoders and the controllers.

We also use this opportunity to apply some minor corrections with regard to the
Riccati equation recursions in [1].

There is a large literature on jointly optimal quantization for the LQG problem
dating back to the early 1960s. Since evidently this problem has caused a large
amount of confusion and given the sensitivity surrounding the abundance of results in
this field (some of which are unfortunately inconsistent), and to present the findings
of the contribution in a proper context, we ask the reader to revisit the cautiously
written literature review in [1, pages 1612--1613].

In the following, we revisit the results in [1] and present an expanded proof for the
main separation result; in particular, we expand the dynamic programming argument
that was crucial in the proof of [1, Lemma 3.1].

2. Structural results on optimal codes for controlled Markov models.
Consider the fully observed system

xt+1 = f(xt, ut, wt), yt = xt, t = 0, 1, . . . ,(2.1)

where the realizations satisfy xt \in \BbbX , ut \in \BbbU , with \BbbX ,\BbbU being complete, separable,
metric (that is, Polish) spaces (thus, including spaces such as \BbbR n or a countable set).
Suppose that the goal is the minimization

inf
\Pi comp

inf
\gamma 

E\Pi comp,\gamma 
\nu 0

\biggl[ T - 1\sum 

t=0

c(xt, ut)

\biggr] 
,(2.2)

over all quantization and control policies (\Pi comp, \gamma ) with the random initial con-
dition x0 having probability measure \nu 0. Here, c(\cdot , \cdot ) is a measurable function and
ut = \gamma t(q[0,t]) for t \geq 0. Structural results on optimal quantization policies for such
controlled Markov sources have been studied in [5] in the context of finite control and
action spaces and in [6] for control over noisy channels and also for finite state-actions
space setting. The following theorems extend the finite state space analysis of [5]
to more general spaces. The proofs of the results below essentially follow from [3,
Theorems 2.4, 2.5] with additional minor modifications due to the presence of control
actions. The first one can be regarded as an extension of Witsenhausen's structural
theorem [7], and the second one can be regarded as an extension of the results of
Walrand and Varaiya [4] (see also [8]). We note also that [3] addressed certain mea-
surability issues which arise in the uncountable (Polish) space setting (thus including
problems with real spaces as well as partially observed models) for the derivation of
structural results on optimal encoders. For proofs of the results below, we refer the
reader to [9, Theorem 10.3.6] and its proof.

Theorem 2.1 (see [1], [9, Theorem 10.3.6]). For system (2.1), under the infor-
mation structure described in the previous section and the objective given in (2.2),
any composite quantization policy (with a given control policy) can be replaced, with-
out any loss in performance, by one which only uses xt and q[0,t - 1] at time t \geq 1
while keeping the control policy unaltered. This can be expressed as a quantization

D
ow

nl
oa

de
d 

02
/2

8/
19

 to
 1

30
.1

5.
10

0.
23

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

776 SERDAR Y\"UKSEL

policy which only uses q[0,t - 1] to generate a quantizer, where the quantizer uses xt to
generate the quantization output at time t.

Let \scrP (\BbbX ) denote the set of probability measures on \scrB (\BbbX ) (where \scrB (\BbbX ) denotes the
Borel \sigma -field on \BbbX ) under the topology of weak convergence, and define \pi t \in \scrP (\BbbX ) to be
the regular conditional probability measure given by \pi t(\cdot ) = P (xt \in \cdot | q[0,t - 1], u0,t - 1).

Theorem 2.2 (see [1], [9, Theorem 10.3.6]). For system (2.1), under the infor-
mation structure described in the previous section and the objective given in (2.2),
any composite quantization policy can be replaced, without any loss in performance,
by one which only uses the conditional probability measure \pi t, the state xt, and the
time information t, at time t. This can be expressed as a quantization policy which
only uses \{ \pi t, t\} to generate a quantizer, where the quantizer uses xt to generate the
quantization output at time t.

One can also consider the partially observed setting; see [1], [9, section 10.3].
We next revisit the following construction in [10] on the set of quantizers.

Definition 2.1. An M -cell quantizer Q on \BbbR n is a (Borel) measurable mapping
Q : \BbbR n \rightarrow \scrM , and \scrQ denotes the collection of all M -cell quantizers on \BbbR n.

Each Q \in \scrQ is uniquely characterized by its quantization cells (or bins) Bi = \{ x :
Q(x) = i\} , i = 1, . . . ,M , which form a measurable partition of \BbbR n. As in [10], we
allow for the possibility that some of the cells of the quantizer are empty.

As discussed in [10], a quantizer Q with cells \{ B1, . . . , BM\} can be characterized
as a stochastic kernel Q from \BbbR n to \{ 1, . . . ,M\} defined by

Q(i| x) = 1\{ x\in Bi\} , i = 1, . . . ,M.

Reference [10] endows the quantizers with a topology induced by such a stochastic
kernel interpretation. If P is a probability measure on \BbbR n and Q is a stochastic kernel
from \BbbR n to \scrM , then PQ denotes the resulting joint probability measure on \BbbR n \times \scrM .
Consider the set of probability measures

\Theta := \{ \zeta \in \scrP (\BbbR n \times \scrM ) : \zeta = PQ,Q \in \scrQ \} 

on \BbbR n \times \scrM having fixed input marginal P , equipped with weak topology. This is
the Borel measurable set of the extreme points of the set of probability measures on
\BbbR n\times \scrM with a fixed input marginal P (see [11]). In view of this observation, and that
the class of quantization policies which admit the structure suggested in Theorem 2.2
is an important one, [10] defines

\Pi W :=

\biggl\{ 
\Pi comp = \{ Qcomp

t ,\exists \Upsilon t : \scrP (\BbbX ) \rightarrow \scrQ , Qcomp
t (It) = (\Upsilon t(\pi t))(xt) \forall It, t \geq 0\} 

\biggr\} 

to represent this class. Here, the input measure is time varying and is given by \pi t.

3. Fully observed LQG: Separation of estimation error and control.
Consider the LQG problem for the system given in (1.1) with the cost function given
in (1.3), but with a fully observed setup where yt = xt. By Theorem 2.2, an optimal
composite quantization policy will be within the class \Pi W . In the following, we adopt
a dynamic programming approach and establish that the optimal controller is linear
in its estimate. This fact applies naturally to the terminal time stage control. That
this also applies to the previous time stages follows from dynamic programming, as
we observe in the following.
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First consider the terminal time t = T  - 1. For this time stage, to minimize
E[x\prime 

tQxt+u\prime 
tRut], the optimal control is uT - 1 = 0 almost surely. To obtain a solution

for t = T  - 2, we look for a solution to

min
\gamma t

E

\biggl[ 
x\prime 
tQxt + u\prime 

tRut + E[(Axt +But + wt)
\prime Q(Axt +But + wt)| \scrI c

t , ut]

\bigm| \bigm| \bigm| \bigm| \scrI c
t

\biggr] 
.

By completing the squares, and using the orthogonality principle, we obtain that the
optimal control is linear and is given by

uT - 2 = LT - 2E[xT - 2| q[0,T - 2]],

with LT - 2 =  - (R + B\prime QB) - 1B\prime QA. For t < T  - 2, to obtain the solutions, we will
first establish that the estimation errors are uncorrelated. Towards this end, define
for 1 \leq t \leq T  - 1 (recall that the control actions are determined by the quantizer
outputs) \scrI c

t = \{ q[0,t], u[0,t - 1]\} , and note that

\~mt+1 := E[xt+1| \scrI c
t+1] = E[Axt +But + wt| \scrI c

t+1].

It then follows that

\~mt+1 = E[xt+1| \scrI c
t+1] = E

\biggl[ 
xt+1  - E[xt+1| \scrI c

t ] + E[xt+1| \scrI c
t ]

\bigm| \bigm| \bigm| \bigm| \scrI c
t+1

\biggr] 

= E

\biggl[ 
E[Axt +But + wt| \scrI c

t ] +

\biggl( 
xt+1  - E[xt+1| \scrI c

t ]

\biggr) \bigm| \bigm| \bigm| \bigm| \scrI c
t+1

\biggr] 

= A \~mt +But +

\biggl( 
E[xt+1| \scrI c

t+1] - E[xt+1| \scrI c
t ]

\biggr) 
= A \~mt +But + \=wt,(3.1)

with
\=wt = E[xt+1| \scrI c

t+1] - E[xt+1| \scrI c
t ].

The variable \=wt is orthogonal to the control action variable ut, as control actions are
determined by the past quantizer outputs and iterated expectation leads to the result
that conditioned on \scrI c

t , \=wt is zero-mean, and is orthogonal to \scrI c
t (in the sense that

for any appropriate measurable bounded g, E[ \=wtg(\scrI c
t )] = 0).

For going into earlier time stages, the dynamic programming recursion for lin-
ear systems driven by an uncorrelated noise process would normally apply, since the
estimate process \~mt is driven by an uncorrelated noise (though not necessarily an
independent) process \=wt = E[xt+1| \scrI c

t+1] - E[xt+1| \scrI c
t ]. However, this lack of indepen-

dence may be important, as elaborated on in [12]. Using the completion of the squares
method, we can establish that the optimal controller at any time will be linear in its
estimate, provided that the random variable \=w\prime 

tQ \=wt is not affected by the control
policies \{ \gamma k, k \leq t - 1\} (that is, the changes in the control actions \{ uk, k \leq t - 1\} do
not affect \=w\prime 

tQ \=wt) under an optimal coding policy for all time stages t. A sufficient
condition for this is that the encoder is a predictive one (see [13], [12], and [14] for
related discussions), as is derived in the following analysis.

Definition 3.1 (see [1, Definition 3.1]). A predictive quantizer policy is one
where for each time stage t, the quantization has the form that the quantizer at all
time stages subtracts the effect of the past control terms, that is, at time t it has the
form Qt(xt - 

\sum t - 1
k=0 A

t - k - 1Buk), and the past control terms are added at the receiver.
Hence, the encoder quantizes a control-free process defined by

\=xt+1 = A\=xt + wt,(3.2)
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778 SERDAR Y\"UKSEL

and the receiver generates the quantized estimate and adds
\sum t - 1

k=0 A
t - k - 1Buk to com-

pute the estimate of the state at time t.

A predictive quantizer is depicted in Figure 3.1. One question which had not been
addressed in [15], [13], [12], [14], or [16] is whether restriction to this class of quantiza-
tion policies (given in Definition 3.1) is without loss. We have the following lemma,
which was the key result in [1] on the structure of optimal encoders, the optimality of
predictive quantizers, and the associated separation result.

∑t−1
k=0 A

t−k−1Buk
∑t−1

k=0 A
t−k−1Buk

qtxt utut

Quantizer Estimator ControllerLinear System

Fig. 3.1. For the LQG problem, a predictive encoder is optimal.

Lemma 3.1 (see [1, Lemma 3.1]). For problem (1.3), for any quantizer policy
in class \Pi W (which is without any loss as a result of Theorem 2.2), there exists a
predictive quantizer in the sense of Definition 3.1 which attains the same performance
given an optimal control policy for problem (1.3).

Proof. We apply backwards induction and dynamic programming. For t = T  - 
1, the optimal control is zero; therefore, the quantizer's design does not affect the
expected cost. We therefore may use a predictive quantizer for t = T  - 1 without
any loss. Now, for the time stage, t = T  - 2, let ft(q[0,t - 1]) :=

\sum t - 1
k=0 A

t - k - 1Buk.
If the policy considered is in \Pi W , the quantization policy is of the form Qt(\=xt +
ft(q[0,t - 1]), P (\=xt + ft(q[0,t - 1]) \in \cdot | q[0,t - 1])). For this time stage, the optimal decoder
and controller uses a sufficient statistic to generate the optimal control policy, which
is E[xt| q[0,t]]. Observe that

E[\=xt + ft(q[0,t - 1])| q[0,t]] = E[\=xt| q[0,t]] + ft(q[0,t - 1]) = E[\=xt| q[0,t - 1], qt] + ft(q[0,t - 1]).

The quantization output qt represents the bin information for xt. By shifting each of
the finitely many quantizer bins by ft(q[0,t - 1]), a new quantizer which quantizes \=xt (see
(3.2)) can generate the same bin information on \=xt through qt, that is, can encode the
event 1\{ \=xt\in Bi\} for some bin Bi almost surely. Hence, there is no information loss due to
the elimination of the past control actions. This new quantizer, by adding ft(q[0,t - 1])
to the receiver output, generates the same conditional estimate of the state as the
original quantizer. Thus, corresponding to a quantizer policy in \Pi W at time t, there
exists a quantizer of the form \~Qt(\=xt, P (\=xt \in \cdot | q[0,t - 1])) with the following property:
The estimation error realization, and hence the estimation, is the same almost surely.
Furthermore, under such a predictive scheme (with \~Qt(\=xt, P (\=xt \in \cdot | q[0,t - 1])) fixed),
\=wT - 2 does not depend on the control actions applied earlier; for a predictive quantizer,
the error only depends on the control-free process.

Here, we note that \=wT - 2 does not (functionally) depend on the control actions in
that if one changes the control policies \{ \gamma s, 0 \leq s \leq T  - 3\} , \=wT - 2 is not affected. This
does not imply that \=wT - 2 is statistically independent from the past control actions;
however, this is not relevant for the analysis, as we demonstrate in the following.
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First, observe that through the law of iterated expectations, and the orthogonality
principle, we have

1

T
E\Pi comp,\gamma 

\nu 0

\biggl[ T - 1\sum 

t=0

x\prime 
tQxt + u\prime 

tRut

\biggr] 

=
1

T
E\Pi comp,\gamma 

\nu 0

\biggl[ T - 1\sum 

t=0

(xt  - \~mt)
\prime Q(xt  - \~mt) + \~m\prime 

tQ \~mt + u\prime 
tRut

\biggr] 
.(3.3)

Now, once we have that the quantizer at time t = T  - 2 is a predictive one, we can
write the cost for t = T  - 3 as follows: Through (3.1), with uT - 2 = LT - 2 \~mT - 2 =
 - (R+B\prime QB) - 1B\prime QA \~mT - 2, the cost to go for a policy \gamma T - 3 would write as

E

\biggl[ 
E

\biggl[ 
\~m\prime 
N - 2

\biggl( 
Q+A\prime QA - A\prime QB(R+B\prime QB) - 1B\prime QA

\biggr) 
\~mN - 2

\bigm| \bigm| \bigm| \bigm| \scrI N - 3

\biggr] 
(3.4)

+E

\biggl[ 
\=w\prime 
N - 2Q \=wN - 2

\bigm| \bigm| \bigm| \bigm| \scrI N - 3

\biggr] 
(3.5)

+E

\biggl[ 
(xN - 2  - \~mN - 2)

\prime Q(xN - 2  - \~mN - 2)

\bigm| \bigm| \bigm| \bigm| \scrI N - 3

\biggr] 
(3.6)

+E

\biggl[ 
(xN - 1  - \~mN - 1)

\prime Q(xN - 1  - \~mN - 1)

\bigm| \bigm| \bigm| \bigm| \scrI N - 3

\biggr] 
(3.7)

+2E

\biggl[ 
(xN - 2  - \~mN - 2)

\prime A\prime QBuN - 2

\bigm| \bigm| \bigm| \bigm| \scrI N - 3

\biggr] \biggr] 
.(3.8)

The last term (3.8) is zero since (xT - 2  - \~mT - 2) is orthogonal to uT - 2. By the use
of the predictive quantizer, the terms (3.6) and (3.7) do not depend on the control
policy at time T  - 3. Note that

\=wt = E[xt+1| \scrI t+1] - E[xt+1| \scrI t] = (xt+1  - E[xt+1| \scrI t+1]) - (xt+1  - E[xt+1| \scrI t])
= (xt+1  - E[xt+1| \scrI t+1]) - (Axt +But + wt  - E[Axt +But + wt| \scrI t])
= (xt+1  - E[xt+1| \scrI t+1]) - (Axt + wt  - E[Axt + wt| \scrI t])
= (xt+1  - E[xt+1| \scrI t+1]) - (A(xt  - E[Axt| \scrI t]) + wt),

and this term does not depend on the past applied control policies. Thus, (3.5) is not
affected by the control policy at time T  - 3. Hence, these terms can be taken out
from the optimization so that the cost to go that is relevant for optimization is

E

\biggl[ 
E

\biggl[ 
\~m\prime 
T - 2

\biggl( 
Q+A\prime QA - A\prime QB(R+B\prime QB) - 1B\prime QA

\biggr) 
\~mT - 2

\bigm| \bigm| \bigm| \bigm| \scrI c
T - 3

\biggr] \biggr] 
.

To obtain a solution for t = T  - 3, we then look for a solution to

min
\gamma T - 3

E

\biggl[ 
(x\prime 

T - 3QxT - 3 + u\prime 
T - 3RuT - 3)

+E

\biggl[ 
\~m\prime 
T - 2

\biggl( 
Q+A\prime QA - A\prime QB(R+B\prime QB) - 1B\prime QA

\biggr) 
\~mT - 2

\bigm| \bigm| \bigm| \bigm| \scrI c
T - 3, uT - 3

\biggr] \bigm| \bigm| \bigm| \bigm| \scrI c
T - 3

\biggr] 
.

As in (3.3), writing E[x\prime 
T - 3QxT - 3] as

E

\biggl[ 
(xT - 3  - \~mT - 3 + \~mT - 3)

\prime Q(xT - 3  - \~mT - 3 + \~mT - 3)

\biggr] 
,
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and noting the orthogonality of xT - 3 - \~mT - 3 and \~mT - 3, the estimation cost E[(xT - 3 - 
\~mT - 3)

\prime Q(xT - 3  - \~mT - 3)] can be left out from the optimization, and the cost relevant
for the control policy at time T  - 3 is

min
\gamma T - 3

E

\biggl[ 
E

\biggl[ 
( \~m\prime 

T - 3Q \~mT - 3 + u\prime 
T - 3RuT - 3)

+E

\biggl[ 
\~m\prime 
T - 2

\biggl( 
Q+A\prime QA - A\prime QB(R+B\prime QB) - 1B\prime QA

\biggr) 
\~mT - 2

\bigm| \bigm| \bigm| \bigm| \scrI c
T - 3, uT - 3

\biggr] \bigm| \bigm| \bigm| \bigm| \scrI c
T - 3

\biggr] \biggr] 
.

Now, using (3.1), by completing the squares, and using the orthogonality principle
with uT - 3 being orthogonal to \=wT - 3, we obtain that the optimal control is linear and
is given by uT - 3 = LT - 3 \~mT - 3 with LT - 3 =  - (R + B\prime KT - 2B) - 1B\prime KT - 2A, where
KT - 2 satisfies the recursion Kt = A\prime 

tKt+1At  - Pt + Q, with Pt = A\prime 
tKt+1B(R +

B\prime Kt+1B) - 1B\prime Kt+1A and KT = PT - 1 = 0.
An optimal controller at time t = T  - 3 will then use \~mT - 3 as a sufficient statistic

(note that the optimal controls for t = T  - 1 and t = T  - 2 have been derived earlier).
To design the quantizer at T  - 3, by reasoning similar to that above for t = T  - 1 and
T  - 2, a predictive quantizer can be used so that \=wk, k \geq T  - 3, is independent of the
control policies \{ \gamma s, s < T  - 3\} (and thus does not functionally depend on the control
actions) applied earlier. This inductively leads to the optimality of linear policies and
the optimality of predictive quantizers for all t \geq 0.

We have also thus established above that the optimal control is linear for all time
stages, by the proof of Lemma 3.1.

Remark 3.1. We note that the structure in Definition 3.1 separates the estimation
from the control process in the sense that the estimation errors do not depend on the
control policies. Hence, there is no dual effect of the control policies in the sense that
the estimation error at any given time does not depend on past-applied control policies
(or is not affected by past-applied actions).

Remark 3.2. For the proof presented, it was essential to show first that the coding
policies adopted can be taken to be in class \Pi W . Indeed, in the absence of such a
restriction (which we showed to be without any loss), a counterexample presented in
[2, Example 3] utilizing a coding policy which does not belong to \Pi W reveals that the
aforementioned separation result does not hold.

We have the following (see also [12], which establishes a more restrictive structure
than that given in Definition 3.1 for a similar result).

Theorem 3.1. For the minimization problem (1.3), with the new effective state
dynamics in (3.1), an optimal control policy is given by ut = LtE[xt| q[0,t]], where Lt =
 - (R+B\prime Kt+1B) - 1B\prime Kt+1A, where Kt satisfies the recursions Kt = A\prime 

tKt+1At - Pt+
Q with Pt = A\prime 

tKt+1B(R+B\prime Kt+1B) - 1B\prime Kt+1A and KT = PT - 1 = 0.

With the cost written as (3.3) and with the preceding analysis, we obtain for
t \geq 0 the unnormalized value function for any time stage t as

Jt(\scrI c
t ) = E[ \~m\prime 

tKt \~mt| \scrI c
t ]+

T - 1\sum 

k=t

\biggl( 
E[(xk - E[xk| \scrI c

k])
\prime Q(xk - E[xk| \scrI c

k])]+E[ \=w\prime 
kKk+1 \=wk]

\biggr) 
,

with J(\Pi comp, \gamma , T ) = 1
T J0(\scrI 

c
0). To obtain a more explicit expression for the value

function Jt, we have the following analysis. Given a positive definite matrix \Lambda , define
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an inner-product as \langle z1, z2\rangle \Lambda = z\prime 1\Lambda z2 and the norm generated by this inner-product

as | | z| | \Lambda =
\surd 
z\prime \Lambda z. We now note the following:

E

\biggl[ 
| | E[xt+1| \scrI c

t+1] - E[xt+1| \scrI c
t ]| | 2\Lambda 

\biggr] 
= E

\biggl[ 
| | (E[xt+1| \scrI c

t+1] - xt+1) + (xt+1  - E[xt+1| \scrI c
t ])| | 2\Lambda 

\biggr] 
= E

\biggl[ 
| | (E[xt+1| \scrI c

t+1] - xt+1)| | 2\Lambda ] + E[| | (xt+1  - E[xt+1| \scrI c
t ])| | 2\Lambda 

\biggr] 
+2E[\langle (E[xt+1| \scrI c

t+1] - xt+1), (xt+1  - E[xt+1| \scrI c
t ])\rangle \Lambda ].

Note that

E

\biggl[ 
\langle (E[xt+1| \scrI c

t+1] - xt+1), (xt+1  - E[xt+1| \scrI c
t ])\rangle \Lambda 

\biggr] 
= E

\biggl[ 
 - \langle (E[xt+1| \scrI c

t+1] - xt+1), (E[xt+1| \scrI c
t ])\rangle \Lambda + \langle (E[xt+1| \scrI c

t+1] - xt+1), (xt+1)\rangle \Lambda 
\biggr] 

= E[\langle (E[xt+1| \scrI c
t+1] - xt+1), (xt+1)\rangle \Lambda ] =  - E[| | (E[xt+1| \scrI c

t+1] - xt+1)| | 2\Lambda ],(3.9)

where (3.9) follows from the orthogonality property of minimum mean-square estima-
tion and that E[xt+1| \scrI c

t ] is measurable on \sigma (\scrI c
t+1), the sigma-field generated by \scrI c

t+1.
Therefore, we have

E

\biggl[ 
| | (E[xt+1| \scrI c

t+1] - E[xt+1| \scrI c
t ])| | 2Kt+1

\biggr] 

=  - E

\biggl[ 
(xt+1  - E[xt+1| \scrI c

t+1])
\prime (Kt+1)(xt+1  - E[xt+1| \scrI c

t+1])

+E[(xt  - E[xt| \scrI c
t ])

\prime (A\prime Kt+1A)(xt  - E[xt| \scrI c
t ])] + E[w\prime Kt+1w]

\biggr] 
.

After some algebra, for t < T  - 1, the optimal cost can be written as

Jt(\scrI c
t ) = E[ \~m\prime 

tKt \~mt| \scrI c
t ] + E[(xt  - \~mt)

\prime (Q+A\prime Kt+1A)(xt  - \~mt)]

+

T - 1\sum 
k=t+1

E[(xk  - \~mk)
\prime (Q+A\prime Kk+1A - Kk)(xk  - \~mk)] +

T - 1\sum 
k=t

E[w\prime 
kKk+1wk].(3.10)

In particular, it follows that the quantization problem can be separated from the
control problem. Once this separation result is established, [1] then studies the exis-
tence problem for the optimal quantization policies (building on [17]) and the exten-
sions to the partially observed setups.

4. Conclusion. In this brief note, a clarification on some technical concerns pre-
sented in [2] questioning the separation results in [1] is presented. We have expanded
the original proof of [1, Lemma 3.1] with no new assumptions. Thus, the joint op-
timization problem of encoding and control policies for networked Linear Quadratic
Gaussian systems with a discrete noiseless channel is studied, the global optimality
of predictive encoders established in [1] is revisited, and it is shown that a form of
separation of estimation and control applies. These results further refine the existing
structural and separation results in [18, 19, 20, 15, 21, 14, 12, 13, 16].
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