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OPTIMAL POLICIES FOR CONVEX SYMMETRIC STOCHASTIC
DYNAMIC TEAMS AND THEIR MEAN-FIELD LIMIT∗

SINA SANJARI† AND SERDAR YÜKSEL†

Abstract. This paper studies convex stochastic dynamic team problems with finite and infinite
time horizons under decentralized information structures. First, we introduce two notions called
exchangeable teams and symmetric information structures. We show that in convex exchangeable
team problems an optimal policy exhibits a symmetry structure. We give a characterization for such
symmetrically optimal teams for a general class of convex dynamic team problems under a mild
conditional independence condition. In addition, through concentration of measure arguments, we
establish the convergence of optimal policies for teams with N decision makers to the corresponding
optimal policies for symmetric mean-field teams with infinitely many decision makers. As a by-
product, we present an existence result for convex mean-field teams, where the main contribution
of our paper is with respect to the information structure in the system when compared with the
related results in the literature that have assumed either a classical information structure or a static
information structure. We also apply these results to the important special case of linear quadratic
Gaussian (LQG) team problems, where while for partially nested LQG team problems with finite time
horizons it is known that the optimal policies are linear, for infinite horizon problems the linearity
of optimal policies has not been established in full generality. We also study average cost finite and
infinite horizon dynamic team problems with a symmetric partially nested information structure and
obtain globally optimal solutions where we establish linearity of optimal policies.
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1. Introduction and literature review. Team problems consist of a collec-
tion of decision makers (DMs) or agents acting together to optimize a common cost
function, but not necessarily sharing all the available information. The term stochastic
teams refers to the class of team problems where there exist randomness in the initial
states, observations, cost realizations, or the evolution of the dynamics. At each time
stage, each agent only has partial access to the global information which is defined
by the information structure of the problem [45]. If there is a predefined order in
which the DMs act, then the team is called a sequential team. For sequential teams,
if each agent’s information depends only on primitive random variables, the team is
static. If at least one agent’s information is affected by an action of another agent,
the team is said to be dynamic. Information structures can be further categorized
as classical, partially nested, or nonclassical. An information structure is classical if
the information of decision maker i (DMi) contains all of the information available to
DMk for k < i. An information structure is partially nested if whenever the action of
DMk, for some k < i, affects the information of DMi, then the information of DMi

contains the information of DMk. An information structure which is not partially
nested is nonclassical. A detailed review is presented in [49].

Obtaining structural results in team problems is important toward establishing
both existence and computational/approximation methods for optimal policies. In
this paper, we define the notion of exchangeable teams and symmetric information
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778 SINA SANJARI AND SERDAR YÜKSEL

structures, and we show that, for convex exchangeable dynamic teams with finite hori-
zons, optimal policies exhibit a symmetry structure (Theorem 2.7). For any number
of DMs, this symmetry structure is more relaxed when compared with the symmetry
results developed earlier, e.g., in [38, 36], which focused on problems under a static
information structure, and is applicable for dynamic teams which may not admit a
static reduction, as long as convexity in policies holds for the team problem.

There have been many studies involving decentralized stochastic control with in-
finitely many DMs. In particular, when the coupling among the DMs is only through
some aggregate/average effect, such problems can be viewed within the umbrella of
mean-field games [26, 21], which were introduced as a limit model for noncooperative
symmetric N -player differential games with a mean-field interaction as N →∞. The
solution concept in game theory is often Nash equilibrium, and often under various
characterizations of it in dynamic Bayesian setups. In the context of decentralized
stochastic control or teams, these would correspond to person-by-person optimal so-
lutions, and hence not necessarily globally optimal solutions.

Nonetheless, on the existence as well as uniqueness and nonuniqueness results on
equilibria, there have been several studies for mean-field games [26, 5, 14, 28, 22, 7, 17].
There have also been several studies for mean-field games where the limits of sequences
of Nash equilibria have been investigated as the number of DMs N → ∞ (see, e.g.,
[15, 25, 6, 26, 4]). We refer interested readers to [13, 11] for a literature review and a
detailed summary of some recent results on mean-field games.

Some notable relevant studies from the mean-field literature are the following. In
[15], through a concentration of measures argument, it has been shown that sequences
of εN - local (for each player) Nash equilibria for N player games converge to a solution
for the mean-field game under exchangeability of the initial states and weak conver-
gence of normalized occupational measures to a deterministic measure [15, Theorem
5.1]. In [23], assumptions on equilibrium policies of the large population mean-field
symmetric stochastic differential games have been presented to allow the convergence
of asymmetric approximate Nash equilibria to a weak solution of the mean-field game
[23, Theorem 2.6].

However, in these studies the information structures are restricted to the follow-
ing models. In [15] the information structure is assumed to be static since strategies
of each player are assumed to be adapted to the filtration generated by his/her initial
states and Wiener process (also called distributed open-loop controllers in the mean-
field games literature [23, 14, 13]); see Remark 2 for details of this discussion. Con-
vergence of Nash equilibria induced by closed-loop controllers to a weak semi-Markov
mean-field equilibrium has been established in [25] for finite horizon mean-field game
problems, where the classical information structure (i.e., what would be a central-
ized problem in the team theoretic setup) has been considered. For infinite horizon
problems, in [12], an example of ergodic differential games with mean-field coupling
has been constructed such that limits of sequences of expected costs induced by sym-
metric Nash-equilibrium policies of N -player games capture expected costs induced
by many more Nash-equilibrium policies including a mean-field equilibrium and so-
cial optima. In [25], the classical information structure (a centralized problem) has
been considered, where in [12] it has been assumed that players have access to all the
history of states of all players but not controls (we note that in the team problem
setup through using a classical result of Blackwell [9] in the case where each DM
knows all the history of states of all DMs, optimal policies can be realized as one in
the centralized problem where just the global state is a sufficient statistic). More-
over, under relaxed regularity conditions on dynamics and the cost function, a limit
theory has been established for controlled McKean–Vlasov dynamics [24] under the
classical information structure, where through a similar analysis as in [15, 23], it has
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OPTIMAL POLICIES FOR CONVEX SYMMETRIC TEAMS 779

been shown that the empirical measure of pairs of states and εN -open-loop optimal
controls converges weakly as N →∞ to limit points in the set of pairs of states and
optimal controls of the McKean–Vlasov problem.

The above highlights the intricacies due to the information structure aspects:
different from the studies above, we consider information structures that are not
necessarily static or classical. Also, in this paper, we work with global optimality and
not only mean-field equilibria and we show the existence of a globally optimal policy
for mean-field team problems. On the other hand, in our paper since we work under
the convexity assumption, the information structure does not allow for the mean-field
coupling in the dynamics. We also note that in prior work [38], we studied static teams
where under convexity and more restrictive symmetry conditions, global optimality
of a limit policy of a sequence of N -DM optimal policies has been established.

In the context of stochastic teams with countably infinite number of DMs, the
gap between person-by-person optimality (Nash equilibrium in the game-theoretic
context) and global team optimality is significant since a perturbation of finitely
many policies fails to deviate the value of the expected cost, thus person-by-person
optimality is a weak condition for such a setup, and hence the results presented in
the aforementioned papers may be inconclusive regarding global optimality of the
limit equilibrium. For teams and social optima control problems, the analysis has
primarily focused on the linear quadratic gaussian (LQG) model or Markov chains
where the centralized performance has been shown to be achieved asymptotically by
decentralized controllers (see, e.g., [20, 2, 3]).

We also obtain existence results on optimal policies for the setups considered.
Compared to the results on the existence of a globally optimal policy in team problems
where (finite) N -DM team problems have been considered [47, 16, 50, 34], we study
convex team problems with countably infinite number of DMs.

Parts of our results in this paper correspond to LQG teams. In [18], it has been
shown that for teams with finite number of DMs, dynamic teams with a partially
nested information structure can be reduced to a static one [18, 46] where Radner’s
theorem concludes global optimality of linear policies for LQG team problems [31].
However, for average cost infinite horizon, partially nested, LQG dynamic team prob-
lems so far there has been no universal result establishing that a globally optimal
policy is linear, time-invariant, and stabilizing, and this has been often imposed a
priori. In [33], the problem of designing a linear, time-invariant, stabilizing, state
feedback optimal policy for decentralized H2-optimization problems, which satisfy the
quadratic invariance property, has been addressed by reparametrizing the problem as
a convex problem (via Youla parameterization). In [32], it has been shown that for
sequential team problems involving linear systems, quadratic invariance and the par-
tially nested property are equivalent. For a class of partially ordered systems, state
space techniques have been utilized to obtain optimal, linear, time-invariant, state
feedback controllers for H2-optimization problems with sparsity constraints [41]. A
similar result has been established in [42] where linearity and time invariance have
been imposed a priori. In [27], H2-optimization output feedback problems with two
players have been considered and optimality results have been established when the
optimal policies are restricted to linear, time-invariant, stabilizing policies. However,
the results in [27, 33, 41, 42] are inconclusive regarding global optimality. Our con-
tribution here is to consider average cost infinite horizon dynamic team problems
without restricting the set of policies to those that are linear, time-invariant, and
stabilizing, unlike the results in [27, 33, 41, 42]. We note again that the optimality of
linear policies for infinite horizon LQG problems is an open problem in its generality
and we provide positive results for a class of such problems.
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780 SINA SANJARI AND SERDAR YÜKSEL

Contributions. In view of the discussion above, our paper makes the following
contributions.

(i) We define a notion of exchangeable teams and symmetric information struc-
tures, and we show that, for convex exchangeable dynamic teams with finite
horizons, optimal policies exhibit a symmetry structure (Theorem 2.7). For
any number of DMs, this symmetry structure is more relaxed when compared
with the symmetry results developed in [38, 36] and is applicable for dynamic
teams which may not admit a static reduction, as long as convexity in policies
holds for the team problem.

(ii) For convex mean-field teams with a symmetric information structure, through
concentration of measure arguments, we establish the convergence of optimal
policies for mean-field teams with N DMs to the corresponding optimal poli-
cies for mean-field teams (see Theorem 3.2).

(iii) We establish an existence result for the class of convex mean-field teams
with a symmetric information structure (see Theorem 3.4) for finite horizon
problems, where, as noted in the literature review, related results assumed
more restrictive information structures which are either static or classical.

(iv) We also apply our results to LQG dynamic teams for finite horizon problems
(see section 4). For LQG dynamic teams with a symmetric partially nested
information pattern, we obtain an optimal policy for finite horizon problems
(see section 4.1). We also apply convex mean-field results to LQG mean-field
teams with a symmetric partially nested information structure (see section
4.1) and obtain a globally optimal policy. Building on the result above, we
also obtain a globally optimal policy for average cost LQG team problems.

The organization of the paper is as follows. We study convex exchangeable dy-
namic teams with finite horizons in section 2, and we study mean-field teams in section
3. We obtain globally optimal solutions for finite horizon problems with a symmetric
partially nested information structure and LQG mean-field teams in section 4.1, and
we discuss average cost LQG team problems with a symmetric information structure
in section 4.2, respectively.

Notation. R and N denote the set of real numbers and natural numbers, respec-
tively. We denote trace of a matrix A as Tr(A). We denote AT as the transpose of a
matrix A and A(T ) to show the dependence of a matrix A to T ∈ N. For any random
variables z1:N := (z1, . . . , zN ), we define z−i := (z1, . . . , zi−1, zi+1, . . . , zN ), andMr,q

denotes the space of r × q matrices.

1.1. Preliminaries. In this section, we introduce Witsenhausen’s intrinsic
model for sequential teams [45] (we generalize this definition to infinite number of
DMs). Consider sequential systems and assume the action and measurement spaces
are standard Borel spaces, that is, Borel subsets of complete, separable, and metric
spaces. The intrinsic model for sequential teams is defined as follows.

• There exists a collection of measurable spaces {(Ω,F), (Ui,U i), (Yi,Yi), i ∈
N}, specifying the system’s distinguishable events, and control and measure-
ment spaces. The set N denotes the collection of DMs. The set N can be a
finite set {1, 2, . . . , N} or a countable set N. The pair (Ω,F) is a measurable
space (on which an underlying probability may be defined). The pair (Ui,U i)
denotes the Borel space from which the action ui of DMi is selected. The
pair (Yi,Yi) denotes the Borel observation/measurement space.

• There is a measurement constraint to establish the connection between the
observation variables and the system’s distinguishable events. The Yi-valued
observation variables are given by yi = hi(ω, u1:i−1), where u1:i−1 = {uk, k ≤
i− 1} and his are measurable functions.
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• The set of admissible control laws γ = {γi}i∈N , also called designs or policies,

are measurable control functions, so that ui = γi(yi). Let Γi denote the set
of all admissible policies for DMi and let Γ =

∏
i∈N Γi.

• There is a probability measure P on (Ω,F) describing the probability space
on which the system is defined.

Under the intrinsic model, every DM acts separately. However, depending on the
information structure, it may be convenient to consider a collection of DMs as a single
DM acting at different time instances. In fact, in the classical stochastic control, this
is the standard approach.

2. Finite horizon convex dynamic team problems with a symmetric
information structure. In this section, we characterize symmetry in dynamic team
problems. According to the discussion above, by considering a collection of DMs as
a single DM (i = 1, . . . , N) acting at different time instances (t = 0, . . . , T − 1), we
define a team problem with (NT )-DMs as a team with N -DMs:

(i) Let the observation and action spaces be Borel subsets of Rn for a positive

integer n and be identical for each DM (i = 1, . . . , N) with Yi := Y =
∏T−1
t=0 Yt,

Ui := U =
∏T−1
t=0 Ut, respectively. The sets of all admissible policies are denoted by

Γ =
∏N
i=1 Γi =

∏N
i=1

∏T−1
t=0 Γt.

(ii) For i = 1, . . . , N , yit := hit(x
1:N
0 , ζ1:N

0:t , u
1:N
0:t−1) represents the observation of

DMi at time t (hits are Borel measurable functions).

(iii) Let (ζ1:N ) := (ζ1, . . . , ζN ) where ζi := (xi0, ζ
i
0:T−1) denotes all the uncer-

tainty associated with DMi including his/her initial states. We assume that (ζi)
takes values in Ωζ (where at each time instance t, it takes value in Ωζt). Let µ denote

the law of ζ1:N .

(iv) Define the expected cost function of γ1:N as JT (γ1:N ) = Eγ
1:N

[c(ζ1:N , u1:N )]

for some Borel measurable cost function c :
∏N
i=1(Ωζ × U) → R+, where γ1:N =

(γ1, γ2, . . . , γN ) and γi = γi0:T−1 for i = 1, . . . , N .
Now, we present the definition of symmetric information structures (note that

symmetric information structures can be classical, partially nested, or nonclassical).

Definition 2.1. Let the information of DMi acting at time t be described as Iit :=
{yit}. The information structure of a sequential N -DM team problem is symmetric if
(i) yit = ht(x

i
0, x
−i
0 , ζi0:t, ζ

−i
0:t , u

i
0:t−1, u

−i
0:t−1) where ht is identical for all i = 1, . . . , N

(note that function’s arguments depend on i).

We note that the above definition can be generalized to be applicable for teams
with countably infinite DMs and infinite horizon problems.

The symmetric information structure can also be interpreted and defined as a
graph, which has often been the common method to describe information structures in
control theory, relating DMs and their information through directed edges. Consider
G(V, µ) as a directed graph with V = {1, . . . , NT} nodes and where µ ⊂ V × V
determines the directed edges between nodes; this represents the dependency notation
in the information of nodes, i.e., (i, j) denotes a directed edge from i to j, i→ j, which
means ui affects yj through the relation yj = hj(ω, u1:j−1) defined in the intrinsic
model (see section 1.1). We denote by ↓ j the set of nodes i such that i→ j (ancestors),
and ↓↓ j := {↓ j} ∪ {j}. Similarly, we can define descendants by ↑ j. We can define
a collection of DMs as a single DM (i = 1, . . . , N) acting at different time instances
(t = 0, . . . , T − 1) on a graph with a symmetric information structure (two examples
are shown in Figures 2.1 and 2.2). Assume as follows:

(i) There exists a node {i} (root node), ω0. Each subgraph represents a single
DM acting at time instances t = 0, . . . , T − 1, and there exists a finite number of sub-
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Fig. 2.1. A tree structure of a symmetric dynamic team.

Fig. 2.2. An example of a graph structure of a symmetric dynamic team.

graphs Gp(V̂ , µ̂) such that ∪Np=1Gp∪{i} = G, where Gps are isomorphic (see, e.g., [43])
for all p = 1, . . . , N , i.e., for every node with directed edges in each subgraph there
exists a unique node with identical directed edges in the corresponding subgraphs,
where V̂ = {0, . . . , T − 1}, and Gkp refers to a node k in Gp for all p = 1, . . . , N and
k = 0, . . . , T − 1,

(ii) Sharing of the information is symmetric across subgraphs, i.e., for p, s =
1, . . . , N , and k, j = 0, . . . , T−1, and for every edge from a nodeGkp to a nodeGjs, there

exists an edge from a node Gkp to nodes Gj−p , where Gj−p denotes (Gj1, . . . , G
j
p−1, G

j
p+1,

. . . , GjN ), and also there exist edges from nodes Gk−p to a node Gjp.
Now, we present an exchangeability hypothesis on the cost function. First, we

recall the definition of an exchangeable finite set of random variables.

Definition 2.2. Random variables (x1, x2, . . . , xN ) defined on a common proba-
bility space are exchangeable if for any permutation σ of the set {1, . . . , N} (a mapping
σ : {1, . . . , N} → {1, . . . , N}),

P
(
(xσ)1 ∈ A1, (xσ)2 ∈ A2, . . . , (xσ)N ∈ AN

)
= P

(
x1 ∈ A1, x2 ∈ A2, . . . , xN ∈ AN

)
for any measurable {A1, . . . , AN} and (xσ)i := xσ(i) for all i ∈ {1, . . . , N}.

Assumption 2.1. For any permutation σ of the set {1, . . . , N}, we have for all ω0

c
(
ω0, (ζ

σ)1:N , (uσ)1:N
)

= c
(
ω0, ζ

1:N , u1:N
)
,(2.1)

where (ζσ)1:N := (ζσ(1), . . . , ζσ(N)) and (uσ)1:N := (uσ(1), . . . , uσ(N)).

Here, we recall some definitions and results from [50, section 3.3] on convexity of
static and dynamic team problems required to follow the result in this paper.

Definition 2.3 ([50, section 3.3]). An N -DM team problem (static or dynamic)
is convex in policies if for any two team policies γ1:N

T
and γ̃1:N

T
in the set {γ1:N

T
∈ Γ :

JT (γ1:N
T

) <∞}, and for any α ∈ (0, 1), we have
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JT

(
αγ1:N

T
+ (1− α)γ̃1:N

T

)
≤ αJT

(
γ1:N
T

)
+ (1− α)JT

(
γ̃1:N
T

)
.

The above definition can also be applied to infinite horizon and/or teams with
countably infinite number of DMs. We recall sufficient conditions for convexity of
static and dynamic team problems following [50, section 3.3].

Theorem 2.4 ([50, section 3.3]). Consider a sequential team problem, and as-
sume action spaces are convex, and the expected cost function is finite for all admissi-
ble policies γ ∈ Γ (or alternatively, restrict the set to those leading to the finite cost).
Then

(i) for static team problems convexity of the cost function in actions is sufficient
for convexity of the team problem in policies;

(ii) for dynamic team problems with a static reduction, convexity of the team
problem in policies is equivalent to the convexity of its static reduction;

(iii) in particular, for partially nested dynamic teams with a static reduction (more
generally, for stochastically partially nested team problems [50, section 3.3]) if the
cost function is convex in actions, then the reduced team problem with an equivalent
information structure (via control sharing according to the partial nested information
structure) is convex on Γ.

The conditions above, however, are only sufficient conditions [50, Example 1].
We note, however, that as a corollary for (ii) above, for the LQG setup, under partial
nestedness, convexity in policies holds as a consequence of Radner’s theorem; we will
study this case in section 4. On the other hand, not all LQG problems are convex:
the celebrated counterexample of Witsenhausen [44] demonstrates that under non-
classical information structures, even LQG problems may not be convex and optimal
policies may not be linear.

2.1. Optimality of symmetric policies for convex dynamic teams with
a symmetric information structure. In the following, we define notions of ex-
changeable and symmetrically optimal teams analogous to [38, 36] for dynamic teams.

Definition 2.5 (exchangeable teams). An N -DM team is exchangeable if the
value of the expected cost function is invariant under every permutation of policies of
DMs, i.e., JT (γ1

T
, γ2
T
, . . . , γN

T
) = JT ((γσ

T
)1, . . . , (γσ

T
)N ).

Definition 2.6 (symmetrically optimal teams). A team is symmetrically opti-
mal if for every given policy γ

T
= (γ1

T
, . . . , γN

T
), there exists an identically symmetric

policy (i.e., each DM has the same policy, γ̃
T

= (γ̃1
T
, . . . , γ̃N

T
), and γ̃i

T
= γ̃j

T
for all

i, j = 1, . . . , N) which performs at least as well as the given policy.

Remark 1. The concepts of exchangeable and symmetrically optimal dynamic
teams in this paper are generalizations of those for static teams in [38, 36]. However,
here, the value of the expected cost function may not be invariant under exchanging
γit with γjk for k 6= t, k, t = 0, . . . , T − 1, and for i, j = 1, . . . , N .

Here, we give a characterization for exchangeable and symmetrically optimal dy-
namic teams.

Theorem 2.7. Consider dynamic team problems with a symmetric information
structure under Assumption 2.1. If

(a) action spaces Ut are convex for all t = 0, . . . , T − 1,

(b) (ζ1, . . . , ζN ) are exchangeable,

(c) for all policies γ ∈ Γ, and for all A = A1 × · · · ×AN where Ai ∈ Yi,
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(2.2)

T−1∏
t=0

P

(
y1:N
t ∈ A

∣∣∣∣x1:N
0 , ζ1:N

0:t−1, y
1:N
0:t−1, γ

1
0(y1

0), . . . , γ1
t−1

(
y1
t−1

)
, γ2

0(y2
0), . . . , γNt−1

(
yNt−1

))

=

T−1∏
t=0

N∏
i=1

P

(
yit ∈ Ai

∣∣∣∣xi0, ζi0:t−1, y
↓↓i
↓t , γ

↓↓i
↓t (y↓↓i↓t )

)
,

where y↓↓i↓t := {yjp|ujp affects yit for all p = 0, . . . , t − 1 and for all j = 1, . . . , N} and

(γ↓↓i↓t (y↓↓i↓t )) can be defined similarly,

(i) then, the team problem is exchangeable.
(ii) Furthermore, if the team problem is convex in policies (see Theorem 2.4),

then the team is symmetrically optimal.

Proof. We first show that for any permutation σ ∈ S, JT ((γσ
T

)1, . . . , (γσ
T

)N ) =

JT (γ1
T
, . . . , γN

T
), i.e., the team is exchangeable. We have

JT

((
γσ
T

)1

, . . . ,
(
γσ
T

)N)
=

∫
c

(
ζ1:N ,

(
γσ
T

)1 (
y1
)
, . . . ,

(
γσ
T

)N (
yN
))

µ
(
dx1:N

0 , dζ1:N
0:T−1

)
(2.3)

×
T−1∏
t=0

N∏
i=1

P
(
dyit

∣∣∣xi0, ζi0:t−1, y
↓↓i
↓t , (γ

σ)↓↓i↓t

(
y↓↓i↓t

))
=

∫
c

(
(ζσ)1:N ,

(
γσ
T

)1 ((
yσ
)1)

, . . . ,
(
γσ
T

)N ((
yσ
)N))

(2.4)

× µ
(
d (xσ0 )

1:N
, d
(
ζσ0:T−1

)1:N
)

×
T−1∏
t=0

N∏
i=1

P
(
d(yσ)it

∣∣∣(xσ0 )i, (ζσ0:t−1)i, (yσ)
↓↓i
↓t , (γ

σ)↓↓i↓t ((yσ)↓↓i↓t )
)

=

∫
c
(
ζ1:N , γ1

T

(
y1
)
, . . . , γN

T

(
yN
))
µ
(
dx1:N

0 , dζ1:N
0:T−1

)
(2.5)

×
T−1∏
t=0

N∏
i=1

P
(
dyit

∣∣∣xi0, ζi0:t−1, y
↓↓i
↓t , γ

↓↓i
↓t

(
y↓↓i↓t

))
= JT

(
γ1
T
, . . . , γN

T

)
,

where (2.3) follows from condition (c). Equality (2.4) follows from exchanging yi, ζi

with (yσ)i, (ζσ)i by relabeling them, respectively. Since the information structure is
symmetric, (2.1) and condition (b) imply (2.5). Hence, the team is exchangeable. Let
γ∗
T

= (γ1∗
T
, . . . , γN∗

T
) be a given policy. Consider γ̃

T
as a convex combination of all

possible permutations of policies by averaging them. Since action spaces are convex
by condition (a), γ̃

T
is a control policy. Following from convexity of the cost function

in policies, we have

JT

(
γ̃
T

)
:= JT

(∑
σ∈S

1

|S|
γ∗,σ
T

)
≤
∑
σ∈S

1

|S|
JT

(
γ∗,σ
T

)
= JT

(
γ∗
T

)
,
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where |S| denotes the cardinality of the set S and the inequality above follows from the
hypothesis that the team problem is convex on Γ and the last equality follows from
exchangeability of the team problem. This implies that the team is symmetrically
optimal and completes the proof.

Examples will be given in sections 3 and 4.1, where Theorem 2.7 can be applied.
Here, we present the result for a class of problems that admit a static reduction (see
[49, section 3.7], [50, section 1.2], [19, 46]).

Lemma 2.8. Consider a dynamic team problem with a symmetric partially nested
information structure (see Definition 2.1) which admits a static reduction. Under
Assumption 2.1, and assumptions (a), (b), (c) of Theorem 2.7, if the cost function is
jointly convex in u1, . . . , uN P–almost surely, then the team is symmetrically optimal.

We note again that here by symmetry, we mean symmetry across the DMs.

Proof. The proof follows from Theorems 2.4(iii) and 2.7 since the team is convex
on Γ under the static reduction which is equivalent to the dynamic
problem.

Hence, it follows that if a static reduction of an exchangeable, symmetrically
optimal, dynamic team exists, then it is exchangeable and symmetrically optimal.

3. Convex mean-field teams with a symmetric information structure.
In the following, we establish global optimality results for convex mean-field teams
with a symmetric information structure (that is not necessarily partially nested).

Define state dynamics and observations as

xit+1 = ft(x
i
t, u

i
t, w

i
t),(3.1)

yit = ht(x
i
0:t, u

i
0:t−1, v

i
0:t),(3.2)

where functions ft and ht are measurable functions. The information structure of DMi

at time t is Iit = {yit}, and ζit := (wit, v
i
t) (with ζi0 := (xi0, w

i
0, v

i
0)) denotes uncertainty

corresponding to dynamics and observations at time t for DMi which are exogenous
random vectors in a standard Borel space. Denote X ⊆ Rm, U ⊆ Rm′ , Y ⊆ Rm′′ , W,
and V as the state space, action space, observation space, and space of disturbances of
dynamics and observations of DMs at each time instance t = 0, . . . , T−1, respectively,
where m, m′, and m′′ are positive integers.

Problem (PN,MF
T ). Consider N -DM teams with the expected cost function of

γ1:N
T

as

JNT

(
γN
T

)
=

1

N

T−1∑
t=0

N∑
i=1

Eγ
1:N

T

[
c

(
ω0, x

i
t, u

i
t,

1

N

N∑
p=1

upt ,
1

N

N∑
p=1

xpt

)]
,(3.3)

where ω0 : (Ω,F) → (Ω0,F0) is an exogenous random vector in the standard Borel
space and γ1:N

T
= γ1:N

0:T−1, and the cost function satisfies the following assumption.

Problem (P∞,MF
T ). Consider mean-field teams with the expected cost function

of γ
T

as

J∞T

(
γ
T

)
= lim sup

N→∞
JNT

(
γ
T

)
,(3.4)

where JNT (·) is defined in (3.3), γi
T

= γi0:T−1 for i ∈ N and γ
T

= {γi
T
}i∈N.

Assumption 3.1. Assume
(a) function ft : X× U×W→ X is continuous in its first and second arguments

for all wit and for each i ∈ N and uniformly bounded,

(b) function ht :
∏t
k=0 X ×

∏t−1
k=0 U ×

∏t
k=0 V → Y is continuous in states and

actions for all vi0:t and for each i ∈ N, and
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(c) the cost function in (3.3), c : Ω0 ×X×U×U×X→ R+, is continuous in its
second, third, fourth, and fifth arguments for all ω0.

3.1. Mean-field optimal policies as limits of optimal N -DM teams. In
the following, we first establish global optimality results under Assumption 3.2 (see
Theorem 3.2), then we establish the result under a more relaxed assumption, Assump-
tion 3.3 (see Theorem 3.3).

Assumption 3.2. Assume
(i) (x1

0, x
2
0, . . . ) are independent and identically distributed (i.i.d.) random vec-

tors conditioned on ω0,
(ii) for t = 0, . . . , T −1, {wit}i∈N are i.i.d. random vectors, and for i ∈ N, {wit}T−1

t=0
are mutually independent, and independent of ω0 and (x1

0, x
2
0, . . . ). For t =

0, . . . , T − 1, {vit}i∈N are i.i.d. random vectors, and for i ∈ N, {vit}T−1
t=0 are

mutually independent, and independent of ω0, (x1
0, x

2
0, . . . ), and wits for i ∈ N

and t = 0, . . . , T − 1.

Assumption 3.3. Assume that conditioned on ω0, (x1
0, x

2
0, . . . ) are exchangeable

random vectors.

Later on we will establish an existence theorem under Assumption 3.2, and we
note that the proof under Assumption 3.2 is more direct. This is why two separate
theorems will be presented, and the proof of the latter will be built on that of the
former.

Lemma 3.1. Consider a team defined as (PN,MF
T ) with a symmetric information

structure. Assume the team problem is convex in policies. Let the action space be
compact and convex for each DMs. Under Assumptions 3.1 and 3.2, the team is
symmetrically optimal.

Proof. The proof follows from Theorem 2.7.

Theorem 3.2. Consider a team defined as (P∞,MF
T ) with (PN,MF

T ) having a sym-
metric information structure for every N . Assume for every N the team problem is
convex in policies. Let the action space be compact and convex for each DM. Under

Assumptions 3.1 and 3.2, if there exists a sequence of optimal policies for (PN,MF
T ),

{γ∗,N
T
}N , which converges (for every DM due to the symmetry) pointwise to γ∗,∞

T
as

N →∞, then γ∗,∞
T

(which is identically symmetric) is an optimal policy for (P∞,MF
T ).

Proof. Following from Lemma 3.1, one can consider a sequence of N -DM teams

which are symmetrically optimal that defines (PN,MF
T ) and whose limit is identified

with (P∞,MF
T ). Define

QN (B) :=
1

N

N∑
i=1

δβi
N

(B), where βiN :=
(
γ∗,N
T

(yi), yi, ζi
)
,(3.5)

Q̃N (B) :=
1

N

N∑
i=1

δβi
∞

(B), where βi∞ :=
(
γ∗,∞
T

(yi), yi, ζi
)
,

where δY (·) denotes the Dirac measure for any random vector Y , and B ∈ Z :=

U ×Y × S, U := (
∏T−1
t=0 U), Y := (

∏T−1
t=0 Y), S := (

∏T−1
t=0 S) = X × (

∏T−1
t=0 W× V),

X = (
∏T−1
t=0 X), yi = (yi0, . . . , y

i
T−1), and ζi := (ζi0, . . . , ζ

i
T−1).

In the following, first we show that conditioned on ω0, QN converges P–almost
surely to Q = L(β1

∞|ω0) in w-s topology (coarsest topology on P(U×Y × S) under
which

∫
f(u, y, ζ)QN (du, dy, dζ) : P(U × Y × S) → R is continuous for every mea-

surable and bounded function f which is continuous in u and y but need not to be
continuous in ζ (see, e.g., [39] and [47, Theorem 5.6]). Then, we show that
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lim sup
N→∞

JNT

(
γ̃∗,N
T

)
= J∞T

(
γ̃∗,∞
T

)
,

where γ̃∗,N
T

:= (γ∗,N
T

, γ∗,N
T

, . . . , γ∗,N
T

) and γ̃∗,∞
T

:= (γ∗,∞
T

, γ∗,∞
T

, . . . ).
Step 1. In this step, we show that conditioned on ω0, QN converges P–almost

surely to Q in w-s topology. First, we show that for every continuous and bounded
function g in actions and observations, for every ω0 on a set of P -measure one,

P

({
ω ∈ Ω

∣∣∣∣ lim
N→∞

(
1

N

N∑
i=1

[
g
(
γ∗,N
T

(yi), yi, ζi
)
− g

(
γ∗,∞
T

(yi), yi, ζi
)])

= 0

}∣∣∣∣∣ω0

)
=1.

(3.6)

Following from symmetry of the information structure and Lemma 3.1, every DM
applies an identical optimal policy γ∗,N

T
and since functions ft and ht are identical for

each DM, conditioned on ω0, (γ∗,N
T

(yi), yi, ζi) and (γ∗,∞
T

(yi), yi, ζi) are i.i.d. random
vectors. For every ε > 0 and for every function g continuous and bounded in actions
and observations, we have P–almost surely

lim
N→∞

P

(∣∣∣∣∫ gdQN −
∫
gdQ̃N

∣∣∣∣ ≥ ε∣∣∣∣ω0

)
≤ ε−1 lim

N→∞

1

N

N∑
i=1

E

[∣∣∣g (γ∗,N
T

(yi), yi, ζi
)
− g

(
γ∗,∞
T

(yi), yi, ζi
)∣∣∣ ∣∣∣∣ω0

]
(3.7)

= ε−1 lim
N→∞

E

[∣∣∣g (γ∗,N
T

(yi), yi, ζi
)
− g

(
γ∗,∞
T

(yi), yi, ζi
)∣∣∣ ∣∣∣∣ω0

]
(3.8)

= ε−1E

[
lim
N→∞

∣∣∣g (γ∗,N
T

(yi), yi, ζi
)
− g

(
γ∗,∞
T

(yi), yi, ζi
)∣∣∣ ∣∣∣∣ω0

]
= 0,(3.9)

where (3.7) follows from Markov’s inequality, the triangle inequality, and the definition

of the empirical measure, and (3.8) follows from the fact that (γ∗,N
T

(yi), yi, ζi) and

(γ∗,∞
T

(yi), yi, ζi) are i.i.d. random vectors. Since g is bounded and continuous, the

dominated convergence theorem implies (3.9). Hence, for every subsequence, there
exists a subsubsequence such that P–almost surely P ({ω ∈ Ω| limN→∞(

∫
gdQN −∫

gdQ̃N ) = 0}
∣∣ω0) = 1.

Now, we show that conditioned on ω0, {Q̃N}N converges weakly to Q P–almost

surely. Since conditioned on ω0, (γ∗,∞
T

(yi), yi, ζi) are i.i.d. random vectors, the strong
law of large numbers implies that P–almost surely

P

({
ω ∈ Ω

∣∣∣∣∣ lim
N→∞

(
1

N

N∑
i=1

g

(
γ∗,∞
T

(yi), yi, ζi
)

(3.10)

−E
[
g
(
γ∗,∞
T

(y1), y1, ζ1
) ∣∣∣∣ω0

])
= 0

}∣∣∣∣∣ω0

)
= 1,

hence, P ({ω ∈ Ω| limN→∞(
∫
gdQ̃N −

∫
gdQ) = 0}

∣∣ω0) = 1 P–almost surely.
Hence, through choosing a suitable subsequence, for every ω0 ∈ Ω0 on a set of P–

measure one, for every function g continous and bounded in actions and observations
and measurable and bounded in uncertainty and initial states

D
ow

nl
oa

de
d 

03
/2

2/
21

 to
 1

30
.1

5.
24

4.
16

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

788 SINA SANJARI AND SERDAR YÜKSEL

lim
N→∞

∣∣∣∣∫ gdQN−
∫
gdQ

∣∣∣∣≤ lim
N→∞

( ∣∣∣∣∫ gdQN −
∫
gdQ̃N

∣∣∣∣+

∣∣∣∣∫ gdQ̃N −
∫
gdQ

∣∣∣∣ )=0,

hence, conditioned on ω0, QN converges weakly to Q P–almost surely. We note that
the convergence is in the weak convergence topology, but since ζis are exogenous with
a fixed probability measure, the convergence is also in the w-s topology.

Step 2. Following from (3.1) and (3.2), we have

xit = ft−1

(
ft−2

(
. . . f0

(
xi0, u

i
0, w

i
0

))
, uit−1, w

i
t−1

)
= f̃t−1

(
ζi, ui0:t−1

)
,(3.11)

yit = ht

(
xi0, f̃0

(
ζi, ui0

)
, . . . , f̃t−1

(
ζi, ui0:t−1

)
, ui0:t−1, v

i
0:t

)
= h̃t

(
ζi, ui0:t−1

)
,(3.12)

where following from Assumption 3.1, f̃t−1 and h̃t are continuous in actions. Hence,
under Assumption 3.1(c), we have

1

N

N∑
i=1

T−1∑
t=0

Eγ
∗,1:N
T

[
c

(
ω0, x

i
t, u

i
t,

1

N

N∑
p=1

upt ,
1

N

N∑
p=1

xpt

)]

=
1

N

N∑
i=1

E

[
c̃

(
ω0, ζ

i, γ∗,N
T

(yi),
1

N

N∑
p=1

γ∗,N
T

(yp),
1

N

N∑
p=1

Λ
(
γ∗,N
T

(yp), ζp
))]

,(3.13)

where (3.13) is true following from (3.11) for some functions c̃ : Ω0×S×U×U×X→
R+ which are continuous in its last three arguments and a function Λ : U × S → X
which is continuous in actions. Hence, by induction and rewriting observations as a

functions of policies of the past DMs (γ∗,N↓t (yi↓t)) since γ∗,N
T

converges to γ∗,∞
T

, the

induced cost by γ∗,N
T

also converges to the cost induced by γ∗,∞
T

P–almost surely.
Step 3. We have

lim sup
N→∞

1

N

N∑
i=1

T−1∑
t=0

Eγ
∗,1:N
T

[
c

(
ω0, x

i
t, u

i
t,

1

N

N∑
p=1

upt ,
1

N

N∑
p=1

xpt

)]

= lim sup
N→∞

1

N

N∑
i=1

E

[
c̃

(
ω0, ζ

i, γ∗,N
T

(yi),
1

N

N∑
p=1

γ∗,N
T

(yp),
1

N

N∑
p=1

Λ
(
γ∗,N
T

(yp), ζp
))](3.14)

≥ lim inf
N→∞

E

[
E

[∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)(3.15)

×QN (du, dy, dζ)

∣∣∣∣ω0

]]

≥ E
[
E

[
lim inf
N→∞

∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)(3.16)

×QN (du, dy, dζ)

∣∣∣∣ω0

]]

≥ E
[
E

[ ∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)

)(3.17)

×Q(du, dy, dζ)

∣∣∣∣ω0

]]
,
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where (3.14) follows from (3.13). Inequality (3.15) follows from (3.5) and replacing
limsup with liminf, and (3.16) follows from Fatou’s lemma. In the following, we justify
(3.17). Since conditioned on ω0, QN converges weakly to Q P–almost surely, we have
QN (du×Y×S) converges weakly to Q(du×Y×S) P–almost surely conditioned on
ω0; hence, the compactness of U implies that conditioned on ω0, P–almost surely

1

N

N∑
i=1

γ∗,N
T

(yi)=

∫
U

uQN (du×Y × S)
N→∞−−−−→

∫
U

uQ(du×Y × S)=E
[
γ∗,∞
T

(y1)
∣∣∣ω0

]
.

(3.18)

Since conditioned on ω0, QN converges weakly toQ P–almost surely, we haveQN (du×
Y × dζ) converges P–almost surely to Q(du ×Y × dζ) in w-s topology conditioned
on ω0. Following from (3.11), since fts are bounded and continuous in actions, Λ
is bounded and continuous in actions; hence, this implies that conditioned on ω0,
P–almost surely∫

U×S
ΛQN (du×Y × dζ)

N→∞−−−−→
∫
U×S

ΛQ(du×Y × dζ).(3.19)

Since the cost function c̃ is continuous in its last three arguments, P–almost surely

lim
N→∞

c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)
= c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)

)
.

Define a nonnegative bounded function

GMN := min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)}
,

GM := min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)

)}
,

where the sequence {GM}M converges P–almost surely as M →∞ to

G := c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)

)
.

We have P–almost surely

lim inf
N→∞

∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)
QN (du, dy, dζ)

≥ lim
M→∞

lim inf
N→∞

∫
Z
GMN QN (du, dy.dζ)(3.20)

= lim
M→∞

∫
Z
GMQ(du, dy, dζ)(3.21)

=

∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)

)
Q(du, dy, dζ),(3.22)

where (3.20) is true since

c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)
≥ GMN .
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790 SINA SANJARI AND SERDAR YÜKSEL

Equality (3.21) follows from the generalized convergence theorem in [40, Theorem 3.5]
since GMN is bounded and continuously converges to GM , i.e., P–almost surely

lim
N→∞

min

{
M, c̃

(
ω0, ζ, uN ,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)}
= min

{
M, c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)

)}
,(3.23)

when uN → u as N →∞. The monotone convergence theorem implies (3.22). Hence,
(3.17) holds, which implies lim supN→∞ JNT (γ̃∗,N

T
) = J∞T (γ̃∗,∞

T
), and this completes

the proof following from [38, Theorem 5]. Here, for completeness we present the proof
which is similar to the analysis of the proof [38, Theorem 5] for dynamic teams,

inf
γ
T

J∞T (γ
T

) ≤ lim sup
N→∞

JNT

(
γ̃∗,∞
T

)
= lim sup

N→∞
JNT

(
γ∗,N
T

)
= lim sup

N→∞
inf
γ1:N
T

JNT

(
γ1:N
T

)
= lim sup

N→∞
inf
γ
T

JNT (γ
T

)(3.24)

≤ inf
γ
T

lim sup
N→∞

JNT (γ
T

) = inf
γ
T

J∞(γ
T

),

where (3.24) is true since the restriction γ
T

to the first N components is γ1:N
T

. This

implies that γ̃∗,∞
T

is globally optimal.

Remark 2. On the connection between finitely many DMs and infinitely many
DMs, we note a closely related work on mean-field games by Fischer [15], where
the information structure is assumed to be static since the policy of each player
is assumed to be adapted to the filtration generated by his/her initial states and
Wiener process (also called in the mean-field games literature, somewhat nonstan-
dard in the control literature, open-loop distributed controllers [23], [14, pp. 72–
76]). This means that the information of each DM is not affected by any of the
actions of the other DMs. For dynamic teams, there are two difficulties: (1) obtain-
ing variational equations is challenging since fixing policies of DMs and perturbing
only DM’s policies perturbs the observation of other DMs and hence the controls
u−i∗ = (γ1∗(y1), . . . , γi−1∗(yi−1), γi+1∗(yi+1), . . . , γN∗(yN )); (2) solutions of varia-
tional equations which give person-by-person optimal policies are inconclusive for
global optimality due to the lack of convexity in general.

Remark 3. We also note additional related works by Lacker [24, 25], where either
convergence of open-loop controllers or convergence of Nash equilibria induced by
closed-loop controllers (where controls are measurable path-dependent functions of
states, uit = φ(t,x0:t), where x0:t = (x1

0:t, . . . , x
N
0:t) and φ is a measurable function) or

Markovian controllers (uit = φ(t,xt), where xt = (x1
t , . . . , x

N
t )) have been considered.

In [25], the information structure is classical (a centralized problem) since players
have access to all the information available to previous DMs.

Remark 4. In Lemma 3.1 and Theorem 3.2, we considered a nonclassical informa-

tion structure for teams defined as (P∞,MF
T ) with a convex expected cost in policies.

For teams defined as (P∞,MF
T ) with a symmetric partially nested information struc-

ture which admit static reduction, the above result holds, and similar to the proof of
Theorem 3.2, it can be proven under the assumption that the cost functions is con-
vex in actions (since convexity of the cost function in actions is a sufficient condition
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for convexity of the expected cost function in policies for this class of problems [50,
Theorem 3.7]).

Remark 5. Assumptions that action spaces are compact and fts are bounded can
be relaxed by assuming that

(A1) supN≥1E[|γ∗,N
T

(y1)|1+δ] <∞ for some δ > 0,

(A2) supN≥1E[|Λ(γ∗,N
T

(y1), ζ1)|1+δ̃] <∞ for some δ̃ > 0.

That is because, following from the pointwise convergence of γ∗,N
T

and continuity of Λ
in actions, the above uniform integrability assumption justifies exchanging the limit
and the expectation required to establish the convergence in (3.18) and (3.19) using
a similar analysis of (3.9) and an argument of (3.10) based on the strong law of large
numbers. This result is particularly important for LQG models (we use this remark
in section 4).

Theorem 3.3. Consider a team defined as (P∞,MF
T ) with (PN,MF

T ) having a sym-
metric information structure for every N . Assume for every N the team problem is
convex in policies. Let the action space be compact and convex for each DM, and
assume Assumptions 3.1, 3.2(ii), and 3.3 hold. If there exists a sequence of optimal

policies for (PN,MF
T ), {γ∗,N

T
}N , which converges (for every DM due to the symme-

try) pointwise to γ∗,∞
T

as N → ∞, then γ∗,∞
T

(which is identically symmetric) is an

optimal policy for (P∞,MF
T ).

Proof. Under Assumptions 3.2(ii) and 3.3, for every Ai ∈ B(S), and Ai = Bi ×∏T−1
t=0 (Di

t × Eit) (where Bi ∈ B(X), Di
t ∈ B(W), and Eit ∈ B(V)), for all N ∈ N, and

permutations σ, we have P–almost surely

P
(
ζ1 ∈ A1,. . . , ζN ∈ AN |ω0

)
= P

(
x1

0 ∈ B1, . . . , xN0 ∈ BN |ω0

) N∏
i=1

T−1∏
t=0

P (wit ∈ Di
t)P (vit ∈ Eit)(3.25)

= P
(
(xσ0 )1 ∈ B1, . . . , (xσ0 )N ∈ BN |ω0

)
(3.26)

×
N∏
i=1

T−1∏
t=0

P ((wσt )i ∈ Di
t)P ((vσt )i ∈ Eit)

= P
(
(ζσ)1 ∈ A1, . . . , (ζσ)N ∈ AN |ω0

)
,

where (3.25) follows from Assumption 3.2(ii), and (3.26) follows from Assumption 3.3.
Hence, (ζ1, ζ2, . . . ) are exchangeable conditioned on ω0.

Hence, following from a similar argument as in the proof of Theorem 2.7 (by con-
sidering ω0 in the cost function and the law of total expectation (by first conditioning
on ω0), under Assumptions 3.2(ii) and 3.3, one can consider a sequence of N -DM

teams which are symmetrically optimal that defines (PN,MF
T ) and whose limit is iden-

tified with (P∞,MF
T ). Since initial states are not necessarily independent conditioned

on ω0, we cannot establish that (γ∗,∞
T

(yi), yi, ζi) are i.i.d. random vectors conditioned

on ω0 which has been used in (3.10) in Step 1 of the proof of Theorem 3.2 to show
that QN converges weakly to Q P–almost surely.

However, we note that since (ζ1, ζ2, . . . ) are exchangeable conditioned on ω0, for

every Ai ∈ B(S) and C ∈ B(Ω0), and for all N ∈ N, and permutations σ, we have

P
(
ζ1 ∈ A1,. . . , ζN ∈ AN , ω0 ∈ C

)
= P

(
(ζσ)1 ∈ A1, . . . , (ζσ)N ∈ AN , ω0 ∈ C

)
.(3.27)
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Let αi := (ω0, ζ
i). Hence, (3.27) implies that (α1, α2, . . . ) is exchangeable. Follow-

ing from [1, Proposition 3.8(a)], there exists a random vector z ∈ [0, 1] such that
(ζ1, ζ2, . . . ) are i.i.d. random vectors conditioned on (ω0, z).

Let ω̃0 := (ω0, z). Hence, under Assumptions 3.2(ii) and 3.3, conditioned on ω̃0,
(ζ1, ζ2, . . . ) are i.i.d. random vectors. Following from standard stochastic realization
results [10, Lemma 3.1], we can represent any stochastic kernel in a functional form,

with almost sure equivalence, ζi = g(ω̃0, θ
i) for some independent θi and measurable

g (note that following from exchangeability, g is identical for all i ∈ N and (θ1, θ2, . . . )
are i.i.d. random vectors).

Since conditioned on ω̃0, (ζ1, ζ2, . . . ) are i.i.d. random vectors, (γ∗,∞
T

(yi), yi, ζi)
are i.i.d. random vectors conditioned on ω̃0; hence for every ω̃0 on a set of P–measure
one, we have for every continuous and bounded function g in actions and observations,
by the strong law of large numbers,

P

({
ω ∈ Ω

∣∣∣∣ lim
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

g
(
γ∗,∞
T

(yi), yi, ζi
)
− E

[
g
(
γ∗,∞
T

(y1), y1, ζ1
) ∣∣∣∣ω̃0

]∣∣∣∣∣ = 0

}∣∣∣∣∣ω̃0

)
= 1.

Hence, following from an identical analysis as that of Step 1 of the proof of Theorem
3.2, conditioned on ω̃0, QN converges weakly to Q, for every ω̃0 on a set of P–measure
one.

Following from the representation ζi = g(ω̃0, θ
i), we have

lim sup
N→∞

E

[
E

[∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)
×QN (du, dy, dζ)

∣∣∣∣ω0

]]

= lim sup
N→∞

∫
Ω0×[0,1]

E

[∫
Z
c̃

(
ω̃0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)(3.28)

×QN (du, dy, dζ)

∣∣∣∣ω̃0

]
P (dω̃0),

where (3.28) follows from the fact that for all N ∈ N, and for every Ai ∈ B(S)∫
Ω0

P (ζ1 ∈ A1, . . . , ζN ∈ AN |ω0)P (dω0) =

∫
Ω0×[0,1]

N∏
i=1

η(ζi ∈ Ai|z, ω0)P (dz, dω0),

and with slight abuse of notation we use the same notation, c̃, for the cost function
after transformation in (3.28). The rest of the proof is identical to that of Theorem
3.2.

3.2. An existence theorem on globally optimal policies for dynamic
mean-field team problems with a symmetric information structure. An
implication of Theorem 3.2 is the following existence result on globally optimal policies
for mean-field team problems. In particular, we will establish the existence of a
converging subsequence, in an appropriate sense, for a sequence of optimal policies
for N -DM teams with an increasing number of DMs. For the following theorem, we do
not establish the pointwise convergence, but by Theorem 3.2, if a sequence of optimal

policies for (PN,MF
T ), {γ∗,N

T
}N , converges pointwise, a global optimal policy exists.

To this end, we allow DMs to apply randomized policies. For each DM (DMi for
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i ∈ N), a probability measure P ∈ P(Ω0 × X ×
∏T−1
t=0 (W × V) ×

∏T−1
t=0 (U × Y)) is a

policy induced by a randomized policy if and only if for every t = 0, . . . , T − 1 and
for all continuous and bounded function g∫

g
(
ω0, x

i
0, ζ

i
0:t−1, y

i
0:t, u

i
0:t

)
P
(
dω0, dx

i
0, dζ

i
0:t−1, dy

i
0:t, du

i
0:t

)
=

∫
g
(
ω0, x

i
0, ζ

i
0:t−1, y

i
0:t, u

i
0:t

)
µi
(
dxi0, dζ

i
0:t−1|ω0

)
P (dω0)(3.29)

×
t∏

k=0

Πi
k(duik|yik)pik

(
dyik|ω0, x

i
0, ζ

i
0:k−1, y

i
0:k−1, u

i
0:k−1

)
,

for a stochastic kernel Πi
k on U given Y, where pik is the transition kernel characterizing

the observations of DMi at time t,

pik
(
yik ∈ ·

∣∣ω0, x
i
0, ζ

i
0:k−1, y

i
0:k−1, u

i
0:k−1

)
:= P

(
hk(xi0:k, u

i
0:k−1, v

i
0:k) ∈ ·

∣∣ω0, x
i
0, ζ

i
0:k−1, y

i
0:k−1, u

i
0:k−1

)
,

and µi is a fixed probability measure on initial states and disturbances of DMi con-
ditioned on ω0. This equivalency follows from the fact that continuous and bounded
functions form a separating class [8, p. 12] and [48, Theorem 2.2].

First, we present an absolute continuity assumption on observations of DMs.

Assumption 3.4. For every DMi and t = 0, . . . , T − 1, there exists a function
ψit : Y× Ω0 × X×

∏t−1
k=0(W× V)×

∏t−1
k=0(Y× U)→ R+ continuous in actions, and a

probability measure νit on Y such that for all Borel sets A = A1 × · · · ×AN ,

P
(
y1:N
t ∈ A|ω0, x

1:N
0 , ζ1:N

0:t−1, y
1:N
0:t−1, u

1:N
0:t−1

)
=

N∏
i=1

∫
Ai

ψit
(
yit, ω0, x

i
0, ζ

i
0:t−1, y

i
0:t−1, u

i
0:t−1

)
νit(dy

i
t).

This assumption allows us to obtain an independent measurements reduction (see
[47, section 2.2]). For example, if vit for all i ∈ N and t = 0, . . . , T − 1 are i.i.d with a
probability measure admitting a density function so that the observation of each DMi

at time t is yit = h̃t(x
i
t, u

i
↓t) + vit, where h̃t is continuous, then Assumption 3.4 holds

[16, Lemma 5.1].

Theorem 3.4. Consider a team defined as (P∞,MF
T ) with (PN,MF

T ) having a sym-
metric information structure for every N . Assume for every N the team problem is
convex in policies and the action space is convex. Assume further that without any
loss, the optimal policies can be restricted to those with E(φi(u

i)) ≤ K for some fi-
nite K, where φi : U → R+ is lower semicontinuous (moment condition). Under
Assumptions 3.1 and 3.2 if either

(i) Assumption 3.4 holds (with no further assumptions on the information struc-
ture of each DMi for i ∈ N through time t = 0, . . . , T − 1), or

(ii) for each DMi for i ∈ N through time t = 0, . . . , T − 1, there exists a static
reduction with the classical information structure (i.e., under a static reduc-
tion, the information structure is expanding such that σ(yit) ⊂ σ(yit+1) where
σ denotes the σ-field),

then there exists an optimal policy for (P∞,MF
T ).

Since the space of policies that are deterministic (where Πi
k in (3.29) are indicator

functions) is not closed under the weak convergence topology (e.g., as an implication
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of [50, Theorem 2.7]), we allow for randomization in the policies and therefore the
limit policy is not necessarily deterministic according to the above result; however, it
is identical for each DM.

Proof. We use individually randomized policies and we show that for every se-
quence of N -DM optimal policies, there exists a subsequence which converges to an
optimal independently randomized policy for the mean-field limit under an appropri-
ate topology defined by the product topology where each coordinate is endowed with
the weak convergence topology. In Step 1, we show that for each finite N -DM team
problem, optimal policies are deterministic and symmetric and we consider the inde-
pendently randomized policies induced by such policies {PN}N (where PN ∈ P(Y×U)
for each DM satisfying (3.29)) as our sequence to be studied. We also define the se-
quence of empirical measures induced by these policies, QN , as (3.5).

In Step 2, we show that for every sequence of policies satisfying a moment con-
dition there exists a subsequence such that policies {Pn}n for each DM and a sub-
sequence of empirical measures {Qn}n induced by these policies (where n ∈ I is the
index set of a convergent subsequence) converge weakly to a limit P–almost surely,
that is, for a set of P–measure one, for every bounded function g which is continuous
in actions and observations and measurable in uncertainties,

P

({
ω ∈ Ω

∣∣∣∣ lim
n→∞

(∫
gdQn −

∫
gdQ

)
= 0

}∣∣∣∣ω0

)
= 1.

To this end, we first show that for each DM a sequence {Pn}n is tight; then we show
that the sequence of empirical measures {Qn}n induced by these policies converges
weakly to a limit P -almost surely.

In Step 3, we show that the set of policies for each DM is closed under the
weak convergence topology; hence, the limit policy satisfies the required measurabil-
ity/conditional independence constraints (that is, the limit policy satisfies (3.29)). In
Step 4, we use the lower semicontinuity argument to show that the expected cost
function under the induced limit policy is less than or equal to the expected cost
achieved by the sequence of N -DM optimal policies.

Step 1. Under Assumptions 3.1, 3.1(c), and 3.2, and by condition (i) using [47,
Theorem 5.2], or condition (ii) using [47, Theorem 5.6], there exists a deterministic
optimal policy for each finite N -DM team problem. Action spaces are convex and
the team problem is convex in policies, hence, using Lemma 3.1, one can consider a

sequence of N -DM teams which are symmetrically optimal that defines (PN,MF
T ) and

whose limit is identified with (P∞,MF
T ). Hence, for each N -DM team problem, we

consider symmetric randomized optimal policies.
Step 2. In the following, we first show that the set of policies PN ∈ P(Y ×U)

for each DM satisfying (3.29) and the moment condition is tight; then, by symme-
try, we show that {QN}N induced by this set of policies is tight. We use the fact

that conditioned on ω0, (γ∗,N
T

(yi), yi, ζi) are i.i.d. random vectors (this follows from
symmetry of the information structure and Lemma 3.1 since every DM applies the
identical policy γ∗,N

T
) and also since the space of control policies is tight under the

weak convergence for each DM (see, e.g., [47, proof of Theorem 4.7]).
Since actions of DMs do not affect the observations of others, the policy spaces are

decoupled from the actions of other DMs. Since we can restrict the search for optimal
policies over those satisfying the moment condition, the fact that ν →

∫
ν(dx)g(x) is

lower semicontinuous for a continuous function g [47, proof of Theorem 4.7] implies
that the marginals on U satisfying the moment condition are tight under the weak
convergence topology. Hence, the collection of all probability measures with these

D
ow

nl
oa

de
d 

03
/2

2/
21

 to
 1

30
.1

5.
24

4.
16

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL POLICIES FOR CONVEX SYMMETRIC TEAMS 795

tight marginals is also tight (see, e.g., [48, proof of Theorem 2.4]). This implies that
the sequence of randomized policies satisfying the moment condition is tight.

Since every DM applies an identical policy and since observations are condition-
ally i.i.d., a countably infinite product of space of policies of DMs is tight (where each
coordinate is tight in the weak convergence topology). Hence, there exists a subse-

quence of policies P̃n ∈ P(
∏
i(Y ×U)) (as a product of policies of DMs) converging

weakly to a limit P̃ (each coordinate converges weakly) P–almost surely. Further-
more, since every DM applies an identical policy, conditioned on ω0, actions induced
by an identical randomized policies, observations, and disturbances are i.i.d. through
DMs. Hence, following from a similar argument as in Step 1 of the proof of Theorem
3.2, a subsequence of empirical measures {Qn}n∈I converges P–almost surely to Q in
w-s topology. We note that the convergence is under the weak convergence topology,
but since ζis are exogenous with a fixed marginal, the convergence is also in the w-s
topology.

Step 3. In this step, we show that each coordinate of the space of policies (space
of policies for each DM) is closed under the weak convergence topology. This in
particular implies that the space of policies is closed under the product topology and
using (Step 1), we can conclude that the space of control policies is compact under
the product topology where each coordinate is weakly compact.

Assume Pn is a policy for DMi induced by a randomized policy converging weakly
to P∞. In fact, condition (i) or (ii) leads to the closedness of the set of policies (see
(3.29)) induced by Pn. If Assumption 3.4 holds, then by the discussion in the proof
of [47, Theorem 5.2], each coordinate of policy spaces corresponding to DMi acting
through time is closed under the weak convergence topology. Also, if condition (ii)
holds, then [47, Theorem 5.6] leads to the same conclusion. Hence, each coordinate
of space of policies (corresponding to DMi) is closed under the weak convergence
topology (since each coordinate of the space of policies is a finite product of space of
policies for each DM at time instances t = 0, . . . , T −1). Hence, following from Step 2,
there exists a subsequence {Qn}n∈I converging weakly to Q P–almost surely where Q
is induced by a randomized policy in the set of policies satisfying (3.29) and the limit
policy is admissible and satisfies the required measurability/conditional independence
constraints.

For every t = 0, . . . , T − 1, let P ∗,ω0
n be a probability measure on actions, ob-

servations, and uncertainties induced by optimal randomized policies for each DM
(which is identical because of symmetry) for N -DM teams conditioned on ω0, i.e., a
probability measure that satisfies∫

g
(
ω0, x

i
0, ζ

i
0:t−1, y

i
0:t, u

i,∗
n,0:t

)
P ∗,ω0
n

(
dxi0, dζ

i
0:t−1, dy

i
0:t, du

i,∗
n,0:t

)
=

∫
g
(
ω0, x

i
0, ζ

i
0:t−1, y

i
0:t, u

i,∗
n,0:t

)
µi
(
dxi0, dζ

i
0:t−1|ω0

)
(3.30)

×
t∏

k=0

Π∗,nk

(
du∗,in,k|y

i
k

)
pk

(
dyik|ω0, x

i
0, ζ

i
0:k−1, y

i
0:k−1, u

i,∗
n,0:k−1

)
,

for all bounded functions g which is continuous in actions and observations and mea-
surable in other arguments. We denote ui,∗n := (ui,∗n,0, . . . , u

i,∗
n,T−1) as the action of DMi

through time induced by Π∗,nt . Similarly, we denote P ∗,ω0 as a probability measure
induced by the limit policy, i.e., a probability measure satisfying (3.30) induced by

Π∗,∞k where ui,∗∞ := (ui,∗∞,0, . . . , u
i,∗
∞,T−1) is the action of DMi through time induced by

Π∗,∞k .
Step 4. Now, we show that the expected cost function under the limit random-

ized policy is less than or equal to the expected cost achieved by lim supn→∞ JnT (γ̃∗,n
T

).
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Since the cost function is continuous in states and actions, under the reduction (con-
ditions (i) or (ii)), we have P–almost surely

1

N

N∑
i=1

T−1∑
t=0

c

(
ω0, x

i
t, u

i
t,

1

N

N∑
p=1

upt ,
1

N

N∑
p=1

xpt

)
N∏
i=1

T−1∏
t=0

ψt
(
yit, ω0, x

i
0, ζ

i
0:t−1, y

i
0:t−1, u

i
0:t−1

)
=

1

N

N∑
i=1

c̄

(
ω0, ζ

i, ui,
1

N

N∑
p=1

up,
1

N

N∑
p=1

Λ(up, ζp)

)
N∏
i=1

ψ
(
yi, ω0, ζ

i, ui
)
,(3.31)

where (3.31) is true following from (3.2) and Assumption 3.1 for some functions c̄ :
Ω0 × S × U × U × X → R+ continuous in states and actions and a function Λ :
U× S→ X continuous in actions and

N∏
i=1

ψ
(
yi, ω0, ζ

i, ui
)

:=

N∏
i=1

T−1∏
t=0

ψt
(
yit, ω0, x

i
0, ζ

i
0:t−1, y

i
0:t−1, u

i
0:t−1

)
.

We have

lim sup
N→∞

1

N

N∑
i=1

T−1∑
t=0

Eγ
∗,1:N
T

[
c

(
ω0, x

i
t, u

i
t,

1

N

N∑
p=1

upt ,
1

N

N∑
p=1

xpt

)]

≥ lim
M→∞

lim sup
N→∞

∫ ∫
Z

min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)
)}(3.32)

×QN (du, dy, dζ)
∞∏
i=1

P ∗,ω0
N (dui,∗N , dyi, dζi)

∞∏
i=1

ψ(yi, ω0, ζ
i, ui,∗N )P (dω0)

≥ lim
M→∞

lim
n→∞

∫ ∫
Z

min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQn(du×Y × S),

∫
U×S

ΛQn(du×Y × dζ)
)}(3.33)

×Qn(du, dy, dζ)
∞∏
i=1

P ∗,ω0
n (dui,∗n , dyi, dζi)

∞∏
i=1

ψ(yi, ω0, ζ
i, ui,∗n )P (dω0)

= lim
M→∞

∫
lim
n→∞

∫
Z

min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQn(du×Y × S),

∫
U×S

ΛQn(du×Y × dζ)
)}(3.34)

×Qn(du, dy, dζ)
∞∏
i=1

P ∗,ω0
n (dui,∗n , dyi, dζi)

∞∏
i=1

ψ(yi, ω0, ζ
i, ui,∗n )P (dω0)

= lim
M→∞

∫ ∫
Z

min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)
)}(3.35)

×Q(du, dy, dζ)

∞∏
i=1

P ∗,ω0(dui,∗∞ , dy
i, dζi)

∞∏
i=1

ψ(yi, ω0, ζ
i, ui,∗∞ )P (dω0)

=

∫ ∫
Z
c̃

(
ω0, ζ, u,

∫
U

uQ(du×Y × S),

∫
U×S

ΛQ(du×Y × dζ)
)(3.36)

×Q(du, dy, dζ)
∞∏
i=1

P ∗,ω0(dui,∗∞ , dy
i, dζi)

∞∏
i=1

ψ(yi, ω0, ζ
i, ui,∗∞ )P (dω0),
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where (3.32) follows from the definition of empirical measures and by integrating over
the set (

∏∞
i=nl+1 Y × S) and since P–almost surely

min

{
M, c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)}
≤ c̃

(
ω0, ζ, u,

∫
U

uQN (du×Y × S),

∫
U×S

ΛQN (du×Y × dζ)

)
.

Inequality (3.33) is true since limsup is the greatest convergent subsequential limit
for a bounded sequence and (3.34) follows from the dominated convergence theorem.
We note that {Qn}n is induced by ui,∗n for each DM. Since {Qn}n∈I converges weakly
to Q P–almost surely, by the moment condition and Remark 5, a similar argument
as Step 3 of the proof of Theorem 3.2 implies that P–almost surely∫

U

uQn(du×Y × S)
n→∞−−−−→

∫
U

uQ(du×Y × S),∫
U×S

ΛQn(du×Y × dζ)
n→∞−−−−→

∫
U×S

ΛQ(du×Y × dζ).

Hence, (3.35) follows from [40, Theorem 3.5] since

min

{
M,c̃

(
ω0, ζ, u,

∫
U

uQn(du×Y × S),

∫
U×S

ΛQn(du×Y × dζ)

)}
is bounded and nonnegative and continuously converges in u P–almost surely (see
(3.23)). That is because, conditioned on ω0, yi are i.i.d. random vectors (thanks to
the symmetry), the space of policies is compact under the product topology (with the

weak convergence topology for each coordinate (for each DM)),
∏∞
i=1 ψ(yi, ω0, ζ

i, ui,∗n )
converges in the product topology, and the cost function and ψ are continuous. Fi-
nally, (3.36) follows from the monotone convergence theorem. Hence, the proof is
completed.

Remark 6. For the existence result, to show that the set of policies induced by
independently randomized policies for each DM through time t = 0, . . . , T − 1 (see
(3.29)) is closed under the weak convergence topology, we utilized the results in [47,
section 5.2] which are more general than those in [16, 50]. We note that the extension
of the existence results in [47, section 5.2] to our setup is not immediate since the
conclusion of Step 3 cannot be established rigorously without considering the technical
steps involving infinite dimensions and limit arguments.

4. Symmetric LQG dynamic teams. In the section, we consider the LQG
setup where the results of sections 2 and 3 can be applied. We first consider N -DM
LQG problems where we use Theorem 2.7 to show that the globally optimal policies
are symmetric. Then, based on symmetry, we calculate N -DM optimal policies for
such problems. Next, using Theorems 3.2 and 3.3, we show the convergence of N -DM
optimal policies to optimal policies of LQG mean-field teams with countably infinite
number of DMs. Finally, we consider infinite horizon problems where we use symmetry
and convergence results to obtain global optimal policies for such problems.

4.1. Symmetric partially nested LQG dynamic teams on a graph. In
the following, we consider decentralized problems where Theorem 2.7 can be utilized
and the optimal policy can be obtained. First, we formulate LQG problems with a
symmetric partially nested information structure. Consider the following dynamics.
Let i = 1, 2, and

xit+1 = Axit +Buit + wit.(4.1)
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Problem (PT ). Consider the expected cost function of (γ1
T
, γ2
T

) as

JT (γ1
T
, γ2
T

) = E(γ1

T
,γ2

T
)

[
1

T

T−1∑
t=0

2∑
i=1

(xit)
TQxit + (uit)

TRuit + (u1
t )
T R̃u2

t + (u2
t )
T R̃u1

t

]
,

(4.2)

where γi
T

= (γi0:T−1), and R, R̃ > 0 and Q ≥ 0. Let

yit = Htζ
i
0:t−1 +

t−1∑
j=0

Dtju
i
j ,(4.3)

where ζit = (wit, v
i
t) with ζi0 = (xi0, w

i
0, v

i
0). Let n,m, s ∈ N and X = Rn, Y = Rs,

U = Rm, wit ∈ Rn, vit ∈ Rn, A ∈ Mn,n, B ∈ Mn,m, R ∈ Mm,m, Q ∈ Mn,n,

R̃ ∈ Mm,m, Ht ∈ Ms,n(2t+1), and Dtj ∈ Ms,m. Let the information structure of

each DM be Iit = {yit, yi↓t}.
In the following, we show that the above dynamic teams are symmetrically optimal

under sufficient conditions on the observations and initial states.

Corollary 4.1. For a fixed T , consider a finite horizon team problem defined
above as (PT ). If x1

0 and x2
0 are exchangeable zero mean Gaussian random vectors

and wits and vits are i.i.d. Gaussian random vectors for i = 1, 2 and independent for
all t = 0, . . . , T − 1 and also independent of initial states, then the dynamic team is
symmetrically optimal.

Proof. Since the dynamic team is LQG with a partially nested information struc-
ture, a static reduction exists and the expected cost is convex in policies under static
reductions (see [18] and Theorem 2.4(iii)). Assumption 2.1 is satisfied following from
(4.2). We need to show assumptions of Theorem 2.7 hold. Following from the hy-
pothesis on disturbances and initial states, assumption (b) holds. Assumption (c)
holds following from Assumption 2.7 and since given (x1

0, x
2
0), (y1

0:T−1, y
2
0:T−1) are

independent. Hence, Theorem 2.7 completes the proof.

Here, we consider a class of LQG dynamic teams with a tree information structure
where we utilize Corollary 4.1 and we obtain an explicit recursion for the optimal
policy.

Problem (Ptree
T ). Consider a finite horizon expected cost (4.2) with Iit = {xi[0:t],

ui[0:t−1]}.
We note that this problem is a special case of (PT ) since we assumed that yit =

xit for all DMi and t = 0, . . . , T − 1 and also all DMs have a total recall (Iit =
{xi[0:t], u

i
[0:t−1]}). For this problem, we calculate an explicit recursion for optimal

policies using the symmetry established in Corollary 4.1.

Theorem 4.2. For a fixed T , consider a finite horizon team problem defined as
(Ptree

T ). If (x1
0, x

2
0) are exchangeable with an identical zero mean Gaussian distribution

and wits are i.i.d. zero mean Gaussian random vectors for i = 1, 2 and independent
for all t = 0, . . . , T − 1 and independent of initial states, then

u
1∗,(T )
t = K

(T )
t x1

t + L
(T )
t E[x2

0|x1
0],(4.4)

u
2∗,(T )
t = K

(T )
t x2

t + L
(T )
t E[x1

0|x2
0],(4.5)

where

K
(T )
t = −

(
R+BTP

(T )
t+1B

)−1

BTP
(T )
t+1A,(4.6)

P
(T )
t = −ATP (T )

t+1B
T
(
R+BTP

(T )
t+1B

)−1

BTP
(T )
t+1A+Q+ATP

(T )
t+1A,(4.7)
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L
(T )
t = −

(
R+BTP

(T )
t+1B

)−1
[
R̃K

(T )
t G

(T )
t + R̃L

(T )
t Σ(4.8)

+

T−1∑
s=t+1

BT (AT )s−tP
(T )
s+1BL

(T )
s

]
,

G
(T )
t =

t−1∏
s=0

(
A+BK(T )

s

)
+

t∑
s=1

t−1∏
j=s

(
A+BK

(T )
j

)
BL

(T )
s−1Σ,

where Σ = E[x1
0(x2

0)T ](E[x2
0(x2

0)T ])−1, P
(T )
T = 0, G

(T )
0 = I. Moreover, the optimal

cost is

JT (γ∗
T

) =
2

T

{
E

[
(x1

0)TP
(T )
0 x1

0

]
+

T−1∑
t=0

E

[
(w1

t )
TP

(T )
t w1

t

]
(4.9)

+

T−1∑
t=0

E

[(
E[x2

0|x1
0]

)T((
L

(T )
t

)T
BTP

(T )
t+1BL

(T )
t

)
E[x2

0|x1
0]

]

+

T−1∑
t=1

E

[
(x1

0)T (AT )tP
(T )
t+1BL

(T )
t E[x2

0|x1
0]

]}
.

Proof. Following from [18] and Radner’s theorem [31], person-by-person optimal-
ity implies global optimality due to the uniqueness of the person-by-person optimal
policy. That is because the information structure is partially nested, and LQG dy-
namic teams can be reduced to a static one using Ho and Chu’s static reduction [18].
Hence, we only need to show that the policy satisfying (4.4) and (4.5) is person-by-
person optimal. We show that for DM1, J(γ∗

T
, γ∗
T

) ≤ J((γ−t∗
T

, β), γ∗
T

) for all β ∈ Γt

where (γ−t∗
T

, β) = (γ∗0:t−1, β, γ
∗
t+1:T−1). This implies that (γ∗

T
, γ∗
T

) is person-by-person

optimal thanks to Corollary 4.1 since the dynamic team is symmetrically optimal (by
exchanging policies (γ−t∗

T
, β) with γ∗

T
which implies J(γ∗

T
, γ∗
T

) ≤ J(γ∗
T
, (γ−t∗

T
, β)) for

all β ∈ Γt and this implies that (γ∗
T
, γ∗
T

) is the fixed point of the equation). The
proof is completed by induction. Due to space constraints, we have removed the
calculation.

Remark 7. The optimal policies (4.4) and (4.5) contain two parts which can be

interpreted as follows. The first part, k
(T )
t xit, is equivalent to the optimal policy of

the branch (DM) by ignoring the other branch in the optimization problem (in this
case, this is equivalent to the centralized policies since the information structure of
each branch (DM) is centralized). The second part corresponds to the correlation
term between branches (DMs).

In the following, we generalize the result of Theorem 4.2 to N -DM LQG dynamic
teams. Assume that the dynamics for i = 1, 2, . . . , N are defined as in (4.1).

Problem (PN,treeT ). Consider the expected cost function of γ1:N
T

as

JNT

(
γ1:N
T

)
=

1

T

T−1∑
t=0

N∑
i=1

Eγ
1:N

T

[
(xit)

TQxit + (uit)
TRuit +

N∑
j=1,j 6=i

(uit)
T R̃ujt + (ujt )

T R̃uit

]
,

(4.10)

where γi
T

= γi0:T−1 for i = 1, . . . , N and R, R̃ > 0 and Q ≥ 0. Let Iit = {xi[0:t], u
i
[0:t−1]}.

Corollary 4.3. For a fixed T and N , consider a finite horizon team problem

defined as (PN,treeT ). If (x1:N
0 ) are exchangeable with an identical zero mean Gaussian
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distribution, and wits for i = 1, . . . , N are i.i.d. zero mean Gaussian random vectors,
independent for t = 0, . . . , T − 1, and independent of initial states, then

u
i∗,(T ),(N)
t = K

(T )
t xit + L

(N),(T )
t

N∑
j=1,j 6=i

E[xj0|xi0],

where K
(T )
t and P

(T )
t satisfy (4.6) and (4.7), and L

(N),(T )
t is a function of K

(T )
0:t .

Proof. The proof is similar to the one of Theorem 4.2.

Now we consider a more general setup where using Corollary 4.1, we establish a
structural result for the case where the information structure of each DM over time
satisfies a structure which is identical for all DMs and is partially nested. An example
of such a graph structure is depicted in Figure 2.2.

Problem (PNT ). Consider a finite horizon expected cost of γ1:N
T

as (4.10) with the

information structure Iit = {yit, yi↓t}, where yit is defined in (4.3) and dynamics is

defined in (4.1).

Theorem 4.4. For a fixed T and N , consider a finite horizon team problem de-
fined as (PNT ). If (x1

0, . . . , x
N
0 ) are exchangeable with an identical zero mean Gaussian

distribution and wits for i = 1, . . . , N are i.i.d. zero mean Gaussian random vectors,
independent for all t = 0, . . . , T − 1 and independent of initial states, then

u
i∗,(T ),(N)
t = K

(T )
t yit + L

(N),(T )
t

N∑
j=1,j 6=i

E[xj0|yit],

where K
(T )
t are obtained by considering only one DM and ignoring other DMs.

Proof. The proof is similar to that of Theorem 4.2 by [18] and Corollary 4.1.

Remark 8. A related work is [30], where structural results for optimal policy have
been obtained for finite horizon LQG problems on graphs. In our analysis above, the
structural result for the optimal policy is obtained without assuming that DMs who
have no common ancestors and no common descendants either have uncorrelated noise
or are decoupled through the cost function. Instead, exchangeable partially nested
LQG teams with correlated initial states and disturbances are considered. Moreover,
here, the graph structures may not be trees in general, as opposed to [30], where a
multitree structure has been imposed on a graph.

Now, we present results for LQG teams with a mean-field coupling through the
cost function. First, using Corollary 4.3, we obtain globally optimal policies for N -
DM teams with a mean-field coupling and correlated initial states and disturbances.
Next, as an implication of Theorem 3.2, we show the convergence of optimal policies
for LQG N -DM mean-field teams on a tree to the corresponding optimal policy of
mean-field teams. Let Iit = {xi[0:t], u

i
[0:t−1]} for i ∈ N, and dynamics be as (4.1).

Problem (PN,MF
T,LQG). Consider the expected cost function of γN

T
as

JNT

(
γN
T

)
=

1

T

T−1∑
t=0

N∑
i=1

Eγ
1:N

T

[
(xit)

TQxit + (uit)
TRuit(4.11)

+
1

N − 1

N∑
j=1,j 6=i

(uit)
T R̃ujt + (ujt )

T R̃uit

+
1

N − 1

N∑
j=1,j 6=i

(xit)
T Q̃xjt + (xjt )

T Q̃xit

]
,

where R, R̃ > 0 and Q, Q̃ ≥ 0.

D
ow

nl
oa

de
d 

03
/2

2/
21

 to
 1

30
.1

5.
24

4.
16

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL POLICIES FOR CONVEX SYMMETRIC TEAMS 801

Problem (P∞,MF
T,LQG). Consider the expected cost function of γ

T
as

J∞T

(
γ
T

)
= lim sup

N→∞
JNT

(
γ
T

)
.(4.12)

Corollary 4.5. For a fixed T and N , consider a finite horizon team problem

defined as (PN,MF
T,LQG). If (x1:N

0 ) are exchangeable zero mean Gaussian random vectors,

and wits are i.i.d. zero mean Gaussian random vectors for i = 1, . . . , N , independent
for t = 0, . . . , T − 1, and independent of initial states, then

u
i∗,(T ),(N)
t = K

(T )
t xit +

L
(N),(T )
t

N − 1

N∑
j=1,j 6=i

E[xj0|xi0],(4.13)

where K
(T )
t and P

(T )
t satisfy (4.6) and (4.7), and L

(N),(T )
t is a function of K

(T )
0:t .

Proof. The proof is similar to the one in Theorem 4.2.

Corollary 4.6. For a fixed T , consider a finite horizon team problem defined as
(P∞,MF

T,LQG). Assume {xi0}i∈N are exchangeable random vectors with zero mean Gauss-

ian distribution, and wits are i.i.d. zero mean Gaussian random vectors for i ∈ N,

independent for t = 0, . . . , T − 1, and independent of initial states. If L
(N),(T )
t in

(4.13) converges pointwise as N →∞ to L
(∞),(T )
t , then

u
i∗,(T ),(∞)
t = K

(T )
t xit + L

(∞),(T )
t Σxi0,

where K
(T )
t and P

(T )
t satisfy (4.6) and (4.7), and Σ = E[x1

0(x2
0)T ](E[x2

0(x2
0)T ])−1.

Proof. Following from [1, p. 9], since {xi0}i∈N are exchangeable Gaussian random
vectors, we can describe them explicitly as xi0 = ω0 + θi, where (θ1, θ2, . . . ) are i.i.d.
mean zero Gaussian and independent of mean zero Gaussian random vector ω0. Now,
we invoke Theorem 3.2 (or Theorem 3.3) and Corollary 4.5 and we use Remark 5 to
complete the proof.

4.2. Average cost infinite horizons problems for partially nested
dynamic teams. In the following, we consider average cost problems with a sym-
metric partially nested information structure. We note that the optimality of linear
policies for infinite horizon LQG problems is an open problem in its generality. In
this subsection, we provide a positive result for a class of such problems.

Now, we consider an infinite horizon team problem and we use the result in
section 4.1.

Problem (Ptree
∞ ). Consider the expected cost function of (γ1, γ2) as

J(γ1:2) = lim sup
T→∞

E(γ1,γ2)
[
c
(
x1:2

0:T−1, u
1:2
0:T−1

)]
,(4.14)

where the cost function is defined as (4.2) and Iit = {xi[0:t], u
i
[0:t−1]}.

First, we introduce a lemma essential for Theorem 4.8.

Lemma 4.7. Consider the sequence {aiT }Ti=1. Assume limT→∞ aiT = a for i =

0, . . . , T − 1. If for every fixed T ∈ N, alT = al+1
T+1 for all l = 0 . . . , T − 1, then

limT→∞
1
T

∑T
i=1 a

i
T = a.

Proof. We have

lim
T→∞

1

T

T∑
i=1

aiT = lim
T→∞

1

T

T−1∑
i=0

a1
T−i = lim

T→∞

1

T

T∑
k=1

a1
k = a,
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where the second equality follows from alT = al+1
T+1 and the last equality follows from

the Cesáro mean argument.

Theorem 4.8. Consider average cost infinite horizon team problems defined as
(Ptree∞ ). Assume (A,B) are stabilizable and (A,Q

1
2 ) are detectable. Assume x1

0 and x2
0

are exchangeable with an identical zero mean Gaussian distribution and wits are i.i.d.
zero mean Gaussian random variables for i = 1, 2 and for all t = 0, . . . , T − 1 and

independent of initial states. If L
(T )
t in (4.8) converges pointwise to L

(∞)
t as T →∞,

then the pointwise limit of the sequence of optimal policies for (Ptree
T ) is team optimal

for (Ptree∞ ) and stabilizes the closed-loop system,

u
1∗,(∞)
t = Kx1

t + L
(∞)
t E[x2

0|x1
0],

u
2∗,(∞)
t = Kx2

t + L
(∞)
t E[x1

0|x2
0],

where K,P,L
(∞)
t and G

(∞)
t are the pointwise limit of the ones for (PtreeT ) as T →∞.

Proof. We show lim supT→∞ JT (γ∗
T

) = J(γ∗∞) and invoke [38, Theorem 5] or [29,

Theorem 1] to complete the proof. From (4.9), we have

lim
T→∞

|JT (γ∗∞)− JT (γ∗
T

)|

= lim
T→∞

2

T

∣∣∣∣E[(x1
0)T

(
P

(T )
0 − P

)
x1

0

]
+

2

T

T−1∑
t=0

E

[
(w1

t )
T
(
P

(T )
t − P

)
w1
t

](4.15)

+
2

T

T−1∑
t=0

E

[(
E[x2

0|x1
0]

)T((
L

(T )
t

)T
BTP

(T )
t+1BL

(T )
t − (L

(∞)
t )TBTPBL

(∞)
t

)
E[x2

0|x1
0]

](4.16)

+
2

T

T−1∑
t=0

E

[
(x1

0)T (AT )t−1

(
P

(T )
t+1BL

(T )
t − PBL(∞)

t

)
E[x2

0|x1
0]

]∣∣∣∣
(4.17)

= 0,
(4.18)

where (4.15) is zero since P
(T )
0 converges to P using Lemma 4.7 since P

(T+1)
t+1 =

P
(T )
t . Expression (4.17) converges to zero since L

(T )
t in (4.8) converges pointwise to

L
(∞)
t as T → ∞, we have

∑∞
s=t+1B

T (AT )s−tPBL
(∞)
s < ∞, and this implies that

lims→∞ L
(∞)
s = 0. Hence, we have that for every ε > 0, there exists N̂ > T such that

for every t > N̂ , |Tr[L
(∞)
t (L

(∞)
t )T ]| < ε. We define L

(T )
t = 0 for t > T . Expression

(4.16) is equal to zero following from Lemma 4.7 and the fact that |Tr[L
(∞)
t (L

(∞)
t )T ]| <

ε for every t > N̂ . Hence, equality (4.18) is true and global optimality follows from
[38, Theorem 5]. The closed loop system is stable since lim supt→∞E(||x1

t ||2) < ∞
following from ||A + BK|| < 1 (all the eigenvalues of A + BK are inside of the unit

circle) and since ||L(∞)
t || is uniformly bounded.

5. Conclusion. In this paper, we studied dynamic teams with symmetric infor-
mation structures. We presented a characterization for symmetrically optimal teams
for convex exchangeable team problems. For mean-field teams with symmetric infor-
mation structures, we showed the convergence of optimal policies for mean-field teams
with N DMs to the corresponding optimal policy of mean-field teams. We obtained
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globally optimal solutions for LQG dynamic team problems with symmetric partially
nested information structures. Moreover, we obtained globally optimal policies for
average cost infinite horizon problems of LQG dynamic teams.

In this paper since we worked under the convexity assumption, the information
structure does not allow for the mean-field coupling in the dynamics. In our recent
work [35], we relaxed the convexity assumption to arrive at complementary existence
and structural results.
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