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Abstract. Calculating optimal policies is known to be computationally difficult for
Markov decision processes (MDPs) with Borel state and action spaces. This paper studies
finite-state approximations of discrete time Markov decision processes with Borel state
and action spaces, for both discounted and average costs criteria. The stationary policies
thus obtained are shown to approximate the optimal stationary policy with arbitrary
precision under quite general conditions for discounted cost and more restrictive con-
ditions for average cost. For compact-state MDPs, we obtain explicit rate of convergence
bounds quantifying how the approximation improves as the size of the approximating
finite state space increases. Using information theoretic arguments, the order optimality
of the obtained convergence rates is established for a large class of problems. We also
show that as a pre-processing step, the action space can also be finitely approximated
with sufficiently large number points; thereby, well known algorithms, such as value or
policy iteration, Q-learning, etc., can be used to calculate near optimal policies.
Funding: This research was supported in part by the Natural Sciences and Engineering Research

Council (NSERC) of Canada.
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1. Introduction
In this paper, our goal is to study the finite-state approximation problem for computing near optimal poli-
cies for discrete time Markov decision processes (MDPs) with Borel state and action spaces, under discounted
and average costs criteria. Although the existence and structural properties of optimal policies have been stud-
ied extensively in the literature, computing such policies is generally a challenging problem for systems with
uncountable state spaces. This situation also arises in the fully observed reduction of a partially observed
Markov decision process even when the original system has finite state and action spaces (see, e.g., Yu and
Bertsekas [45]).
As has been extensively studied in the literature (see, e.g., Chow and Tsitsiklis [11] and the literature review

below), one way to compute approximately optimal solutions for such MDPs is to construct a reduced model
with a new transition probability and a one-stage cost function by quantizing the state/action spaces, i.e., by
discretizing them on a finite grid. We exhibit that under quite general continuity conditions on the one-stage
cost function and the transition probability for the discounted cost and under some additional restrictions on
the ergodicity properties of Markov chains induced by deterministic stationary policies for the average cost, the
optimal policy for the approximating finite model applied to the original model has a cost that converges to
the optimal cost as the discretization becomes finer. Moreover, under additional continuity conditions on the
transition probability and the one-stage cost function we also obtain bounds for a rate of approximation in terms
of the number of points used to discretize the state space, thereby providing a trade-off between the computation
cost and the performance loss in the system. In particular, we study the following two problems.

(Q1) Under what conditions on the components of the MDP do the true costs corresponding to the optimal
policies obtained from finite models converge to the optimal value function as the number of grid points goes
to infinity? For this problem, we are only concerned with the convergence of the approximation; that is, we do
not establish bounds for a rate of approximation.

(Q2) Can we obtain explicit bounds on the performance loss due to the discretization in terms of the number
of grid points if we strengthen the conditions sufficient in (Q1)?

Combined with our recent works (Saldi et al. [33, 34]), where we investigated the asymptotic optimality of the
quantization of action sets, the results in this paper lead to a constructive algorithm for obtaining approximately
optimal solutions. First the action space is quantized with small error and then the state space is quantized

1

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
4.

14
8.

10
.1

2]
 o

n 
24

 M
ar

ch
 2

01
7,

 a
t 0

3:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://pubsonline.informs.org/journal/moor/
mailto:nsaldi@illinois.edu
mailto:yuksel@mast.queensu.ca
mailto:linder@mast.queensu.ca


Saldi, Yüksel, and Linder: Asymptotic Optimality of Finite Approximations to MDPs
2 Mathematics of Operations Research, Articles in Advance, pp. 1–34, ©2017 INFORMS

with small error, which results in a finite model that well approximates the original MDP. When the state space
is compact, we also obtain rates of convergence for both approximations, and using information theoretic tools
we establish that the obtained rates of convergence are order-optimal for a given class of MDPs. Since there
exist various computational algorithms for finite-state Markov decision problems, the analysis in this paper can
be considered to be constructive.
Various methods have been developed to compute approximate value functions and near optimal policies.

A partial list of these techniques is as follows: approximate dynamic programming, approximate value or policy
iteration, simulation-based techniques, neuro-dynamic programming (or reinforcement learning), state aggre-
gation, etc. For rather complete surveys of these techniques, we refer the reader to Fox [17], White [42, 43],
Langen [28], Bertsekas and Tsitsiklis [6], Ren and Krogh [32], Ortner [30], White [40, 41], Bertsekas [3], Dufour
and Prieto-Rumeau [14, 15], and references therein. With the exception of Dufour and Prieto-Rumeau [15] and
Ortner [30], these papers in general study either the finite horizon cost or the discounted infinite horizon cost.
Also, the majority of these results are for MDPs with discrete (i.e., finite or countable) state and action spaces,
or a bounded one-stage cost function (e.g., Fox [17], White [42, 43], Van Roy [37], White [40, 41], Cavazos-
Cadena [9], Bertsekas and Tsitsiklis [6], Ren and Krogh [32], Ortner [30], Bertsekas [3]). Those that consider
general state and action spaces (see, e.g., Dufour and Prieto-Rumeau [13, 14, 15], Bertsekas [3], Chow and
Tsitsiklis [11]) assume in general Lipschitz type continuity conditions on the components of the control model
to provide a rate of convergence analysis for the approximation error. Some of the results only consider approx-
imating the value function and do not provide a procedure to compute near optimal policies (e.g., Langen [28],
White [43], Dufour and Prieto-Rumeau [14]).

Our paper differs from these results in the following ways: (i) we consider a general setup, where the state
and action spaces are Borel (with the action space being compact), and the one-stage cost function is possibly
unbounded; (ii) since we do not aim to provide rate of convergence result in the first problem (Q1), the continu-
ity assumptions we impose on the components of the control model are weaker than the conditions imposed in
prior works that considered general state and action spaces; and (iii) we also consider the challenging average
cost criterion under reasonable assumptions. The price we pay for imposing weaker assumptions in (Q1) is that
we do not obtain explicit performance bounds in terms of the number of grid points used in the approxima-
tions. However, such bounds can be obtained under further assumptions on the transition probability and the
one-stage cost functions; this is considered in problem (Q2) for compact-state MDPs.

Our approach to solve problem (Q1) can be summarized as follows: (i) first, we obtain approximation results
for the compact-state case, (ii) we find conditions under which a compact representation leads to near optimality
for noncompact state MDPs, and (iii) we prove the convergence of the finite-state models to noncompact models.
As a byproduct of this analysis, we obtain compact-state-space approximations for an MDP with noncompact Borel
state space. In particular, our findings directly lead to finite models if the state space is countable; similar
problems in the countable context have been studied in the literature for the discounted cost; see Puterman [31,
Section 6.10.2].
We note that the proposed method for solving the approximation problem for compact-state MDPs with the

discounted cost is partly inspired by Van Roy [37]. Specifically, we generalize the operator proposed for an
approximate value iteration algorithm in Van Roy [37] to uncountable state spaces. Next, unlike in Van Roy [37],
we use this operator as a transition step between the original optimality operator and the optimality opera-
tor of the approximate model. In Ortner [30], a similar construction was given for finite-state action MDPs.
Our method to obtain finite-state MDPs from the compact-state model can be regarded as a generalization
of this construction. We note that a related work of Dufour and Prieto-Rumeau [15] develops a sequence of
approximations using empirical distributions of an underlying probability measure with respect to which the
transition probability of the MDP is absolutely continuous. By imposing Lipschitz type continuity conditions
on the components of the control model, Dufour and Prieto-Rumeau [15] obtain a concentration inequality type
upper bound on the accuracy of the approximation based on the Wasserstein distance of order 1 between the
probability measure and its empirical estimate. These conditions are stronger than what we impose for the
problem (Q1). We note that Dufour and Prieto-Rumeau [15] adopts a simulation-based approximation leading
to probabilistic guarantees on the approximation, whereas we adopt a quantization based approach leading to
deterministic approximation guarantees. For a review of further simulation based methods, see, e.g., Chang
et al. [10], Jain and Varaiya [25].

The approach developed in the paper is also useful in networked control applications where transmission of
real-valued actions to an actuator is not realistic when there is an information transmission constraint between a
plant, a controller, and an actuator (see, e.g., Yüksel and Başar [46]). On the other hand, the elements of a finite
action set can be transmitted across a finite capacity information channel. Even though the problem of optimal
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quantization for information transmission from a plant/sensor to a controller has been studied extensively (see,
e.g., references in Yüksel and Başar [46]), these type of results appear to be new in the networked control
literature when the problem of transmitting signals from a controller to an actuator is considered. Furthermore,
tools from information theory allow for obtaining lower bounds on the approximation performance; using such
an argument we show that the construction in this paper is order optimal for a large class of models.
The rest of the paper is organized as follows. In Section 2 we study the approximation problem (Q1) for

MDPs with compact state space. In Section 3 an analogous approximation result is obtained for MDPs with
noncompact state space. Discretization of the action space is considered in Section 4 for a general state space.
In Section 5 we derive quantitative bounds on the approximation error in terms of the number of points used
to discretize the state space for the compact-state case. In Section 6 the order optimality of the obtained bounds
on the approximation errors is established. In Section 7 we present an example to numerically illustrate our
results. Section 8 concludes the paper.

1.1. Notation and Conventions
For a metric space E, the Borel σ-algebra (the smallest σ-algebra that contains the open sets of E) is denoted
by B(E). We let B(E) and Cb(E) denote the set of all bounded Borel measurable and continuous real functions
on E, respectively. For any u ∈ Cb(E) or u ∈ B(E), let ‖u‖ :� supe∈E |u(e)|, which turns Cb(E) and B(E) into Banach
spaces. Given any Borel measurable function w: E→ [1,∞) and any real valued Borel measurable function u
on E, we define the w-norm of u as

‖u‖w :� sup
e∈E

|u(e)|
w(e)

and let Bw(E) denote the Banach space of all real valued measurable functions u on E with finite w-norm;
see Hernández-Lerma and Lasserre [22]. Let P(E) denote the set of all probability measures on E. A sequence
{µn} of probability measures on E is said to converge weakly (respectively, setwise; see Hernández-Lerma and
Lasserre [23]) to a probability measure µ if

∫
E g(e)µn(de) →

∫
E g(e)µ(de) for all g ∈ Cb(E) (respectively, for all

g ∈ B(E)). For any µ, ν ∈P(E), the total variation distance between µ and ν, denoted as ‖µ− ν‖TV, is equivalently
defined as

‖µ− ν‖TV :� 2 sup
D∈B(E)

|µ(D) − ν(D)| � sup
‖g‖≤1

����∫
E

g(e)µ(de) −
∫
E

g(e)ν(de)
����.

Unless otherwise specified, the term “measurable” will refer to Borel measurability in the rest of the paper.

1.2. Markov Decision Processes
A discrete-time Markov decision process can be described by a five-tuple

(X,A, {A(x): x ∈ X}, p , c),

where Borel spaces (i.e., Borel subsets of complete and separable metric spaces) X and A denote the state and
action spaces, respectively. The collection {A(x): x ∈ X} is a family of nonempty subsets A(x) of A that give the
admissible actions for the state x ∈ X. The stochastic kernel p(· | x , a) denotes the transition probability of the next
state given that previous state-action pair is (x , a); see Hernández-Lerma and Lasserre [21]. Hence, it satisfies
the following: (i) p(· | x , a) is an element of P(X) for all (x , a), and (ii) p(D | ·, ·) is a measurable function from
X×A to [0, 1] for each D ∈B(X). The one-stage cost function c is a measurable function from X×A to �. In this
paper, it is assumed that A(x)� A for all x ∈ X.
Define the history spaces H0 �X and Ht � (X×A)t ×X, t � 1, 2, . . . endowed with their product Borel σ-algebras

generated by B(X) and B(A). A policy is a sequence π � {πt} of stochastic kernels on A given Ht . The set of all
policies is denoted by Π. Let Φ denote the set of stochastic kernels ϕ on A given X, and let � denote the set of
all measurable functions f from X to A. A randomized Markov policy is a sequence π � {πt} of stochastic kernels
on A given X. A deterministic Markov policy is a sequence of stochastic kernels π � {πt} on A given X such that
πt(· | x)� δ ft (x)( · ) for some ft ∈ �, where δz denotes the point mass at z. The set sof randomized and deterministic
Markov policies are denoted by RM and M, respectively. A randomized stationary policy is a constant sequence
π � {πt} of stochastic kernels on A given X such that πt(· | x) � ϕ(· | x) for all t for some ϕ ∈ Φ. A deterministic
stationary policy is a constant sequence of stochastic kernels π� {πt} on A given X such that πt(· | x)� δ f (x)( · ) for
all t for some f ∈ �. The set of randomized and deterministic stationary policies are identified with the sets Φ
and �, respectively.
According to the Ionescu Tulcea theorem (see Hernández-Lerma and Lasserre [21]), an initial distribution µ

on X and a policy π define a unique probability measure Pπ
µ on H∞ � (X × A)∞. The expectation with respect
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to Pπ
µ is denoted by Ɛπµ . If µ� δx , we write Pπ

x and Ɛπx instead of Pπ
δx

and Ɛπδx
. The cost functions to be minimized

in this paper are the β-discounted cost and the average cost, respectively given by

J(π, x)� Ɛπx

[ ∞∑
t�0
βt c(xt , at)

]
, V(π, x)� lim sup

T→∞

1
T
Ɛπx

[T−1∑
t�0

c(xt , at)
]
.

With this notation, the discounted and average value functions of the control problem are defined as

J∗(x) :� inf
π∈Π

J(π, x), V ∗(x) :� inf
π∈Π

V(π, x).

A policy π∗ is said to be optimal if J(π∗ , x) � J∗(x) (or V(π∗ , x) � V ∗(x) for the average cost) for all x ∈ X. Under
fairly mild conditions, the set � of deterministic stationary policies contains an optimal policy for discounted cost
(see, e.g., Hernández-Lerma and Lasserre [21], Feinberg et al. [16]) and average cost optimal control problems
(under somewhat stronger continuity/recurrence conditions; see, e.g., Feinberg et al. [16]).
Remark 1.1. We note that the pathwise infinite sum ∑∞

t�0 β
t c(xt , at) may not be well defined in the definition

of J if c is only assumed to be measurable. However, further assumptions that will be imposed in later sections
ensure that J is a well-defined function.

1.3. Auxiliary Results
To avoid measurability problems associated with the operators that will be defined for the approximation
problem in the discounted cost case, it is necessary to enlarge the set of functions on which these operators can
act. To this end, in this section we review the notion of analytic sets and lower semi-analytic functions, and state
the main results that will be used in the sequel to tackle these measurability problems. For a detailed treatment
of analytic sets and lower semi-analytic functions, we refer the reader to Shreve and Bertsekas [36], Blackwell
et al. [7], Kuratowski [27, Chapter 39], and Bertsekas and Shreve [5, Chapter 7].
Let �∞ be the set of sequences of natural numbers endowed with the product topology. With this topology,

�∞ is a complete and separable metric space. A subset A of a Borel space E is said to be analytic if it is a
continuous image of �∞. Note that Borel sets are always analytic.

A function g: E→� is said to be universally measurable if for any µ ∈P(E), there is a Borel measurable function
gµ: E→ � such that g � gµ µ almost everywhere. It is said to be lower semi-analytic if the set {e: g(e) < c}
is analytic for any c ∈ �. Any Borel measurable function is lower semi-analytic and any lower semi-analytic
function is universally measurable. The latter property implies that the integral of any lower semi-analytic
function with respect to any probability measure is well defined. We let B l(E) and B l

w(E) denote the set of all
bounded lower semi-analytic functions and lower semi-analytic functions with finite w-norm, respectively. Since
any pointwise limit of a sequence of lower semi-analytic functions is lower semi-analytic (see Kuratowski [27,
Theorem 1, p. 512]), (B l(E), ‖ · ‖) and (B l

w(E), ‖ · ‖w) are Banach spaces.
We now state the results that will be used in the sequel.

Proposition 1.1 (Bertsekas and Shreve [5, Proposition 7.47, p. 179]). Suppose E1 and E2 are Borel spaces. Let g: E1 ×
E2→� be lower semi-analytic. Then, g∗(e1) :� infe2∈E2

g(e1 , e2) is also lower semi-analytic.

Proposition 1.2 (Bertsekas and Shreve [5, Proposition 7.48, p. 180]). Suppose E1 and E2 as in Proposition 1.1. Let
g: E1 ×E2→� be lower semi-analytic and q(de2 | e1) be a stochastic kernel on E2 given E1; then the function

h(e1) :�
∫
E2

g(e2) q(de2 | e1).

is lower semi-analytic.

2. Finite-State Approximations of MDPs with Compact State Space
In this section we consider (Q1) for the MDPs with compact state space. To distinguish compact-state MDPs
from noncompact ones, the state space of the compact-state MDPs will be denoted by Z instead of X. We impose
the assumptions below on the components of the Markov decision process; additional new assumptions will be
made for the average cost problem in Section 2.2.
Assumption 2.1. (a) The one-stage cost function c is in Cb(Z×A).

(b) The stochastic kernel p(· | z , a) is weakly continuous in (z , a); i.e., for all z and a, p(· | zk , ak)→ p(· | z , a) weakly
when (zk , ak)→ (z , a).
(c) Z and A are compact.
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Before proceeding with the main results, we first describe the procedure used to obtain finite-state models.
Let dZ denote the metric on Z. Since the state space Z is assumed to be compact and thus totally bounded, one
can find a sequence ({zn , i}

kn
i�1)n≥1 of finite grids in Z such that for all n,

min
i∈{1,...,kn }

dZ(z , zn , i) < 1/n , for all z ∈ Z.

The finite grid {zn , i}
kn
i�1 is called an (1/n)-net in Z. Let Zn :� {zn ,1 , . . . , zn , kn

} and define function Qn mapping Z
to Zn by

Qn(z) :� arg min
zn , i∈Zn

dZ(z , zn , i),

where ties are broken so that Qn is measurable. In the literature, Qn is often called a nearest neighborhood
quantizer with respect to distortion measure dZ; see Gray and Neuhoff [19]. For each n, Qn induces a partition
{Sn , i}

kn
i�1 of the state space Z given by

Sn , i � {z ∈ Z : Qn(z)� zn , i},

with diameter diam(Sn , i) :� supz , y∈Sn , i
dZ(z , y) < 2/n. Let {νn} be a sequence of probability measures on Z satis-

fying
νn(Sn , i) > 0, for all i , n. (1)

We let νn , i be the restriction of νn to Sn , i defined by

νn , i( · ) :�
νn( · )
νn(Sn , i)

.

The measures νn , i will be used to define a sequence of finite-state MDPs, denoted as MDPn (n ≥ 1), to approx-
imate the original model. To this end, for each n define the one-stage cost function cn : Zn × A→ � and the
transition probability pn on Zn given Zn ×A by

cn(zn , i , a) :�
∫
Sn , i

c(z , a)νn , i(dz), pn(· | zn , i , a) :�
∫
Sn , i

Qn × p(· | z , a)νn , i(dz),

where Qn × p(· | z , a) ∈P(Zn) is the pushforward of the measure p(· | z , a) with respect to Qn ; that is,

Qn × p(zn , j | z , a)� p(Sn , j | z , a)

for all zn , j ∈ Zn . For each n, we define MDPn as a Markov decision process with the following components:
Zn is the state space, A is the action space, pn is the transition probability, and cn is the one-stage cost function.
History spaces, policies, and cost functions are defined in a similar way as in the original model.

2.1. Discounted Cost
Here we consider (Q1) for the discounted cost criterion with a discount factor β ∈ (0, 1). Throughout this section,
it is assumed that Assumption 2.1 holds.
Define the operator T on B(Z) by

Tu(z) :� min
a∈A

[
c(z , a)+ β

∫
Z

u(y)p(dy | z , a)
]
. (2)

In the literature T is called the Bellman optimality operator. It can be proved that under Assumption 2.1(a)
and 2.1(b), T is a contraction operator with modulus β mapping Cb(Z) into itself (see Hernández-Lerma [20,
Theorem 2.8, p. 23]); that is, Tu ∈ Cb(Z) for all u ∈ Cb(Z) and

‖Tu −Tv‖ ≤ β‖u − v‖ , for all u , v ∈ Cb(Z).

The following theorem is a widely known result in the theory of Markov decision processes (see again
Hernández-Lerma [20, Theorem 2.8, p. 23]) that also holds without a compactness assumption on the state
space.
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Theorem 2.1. The value function J∗ is the unique fixed point in Cb(Z) of the contraction operator T; i.e.,

J∗ � T J∗.

Furthermore, a deterministic stationary policy f ∗ is optimal if and only if it satisfies the optimality equation; i.e.,

J∗(z)� c(z , f ∗(z))+ β
∫
Z

J∗(y) p(dy | z , f ∗(z)). (3)

Finally, there exists a deterministic stationary policy f ∗ that is optimal, so it satisfies (3).
Define, for all n ≥ 1, the operator Tn , which is the Bellman optimality operator for MDPn , by

Tn u(zn , i) :� min
a∈A

[
cn(zn , i , a)+ β

kn∑
j�1

u(zn , j)pn(zn , j | zn , i , a)
]
;

equivalently,

Tn u(zn , i)� min
a∈A

∫
Sn , i

[
c(z , a)+ β

∫
Z

û(y)p(dy | z , a)
]
νn , i(dz),

where u: Zn → � and û is the piecewise constant extension of u to Z given by û(z) � u ◦ Qn(z). For each n,
under Assumption 2.1, Hernández-Lerma [20, Theorem 2.8, p. 23] implies the following: (i) Tn is a contraction
operator with modulus β mapping B(Zn) (� Cb(Zn)) into itself, (ii) the fixed point of Tn is the value function J∗n
of MDPn , and (iii) there exists an optimal stationary policy f ∗n for MDPn , which therefore satisfies the optimality
equation. Hence, we have

J∗n � Tn J∗n � Tn Jn( f ∗n , ·)� Jn( f ∗n , ·),
where Jn denotes the discounted cost for MDPn . Let us extend the optimal policy f ∗n for MDPn to X by letting
f̂n(z)� f ∗n ◦Qn(z) ∈ �.
The following theorem is the main result of this section. It states that the cost function of the policy f̂n

converges to the value function J∗ as n→∞.
Theorem 2.2. The discounted cost of the policy f̂n , obtained by extending the optimal policy f ∗n of MDPn to Z, converges
to the optimal value function J∗ of the original MDP

lim
n→∞
‖ J( f̂n , ·) − J∗‖ � 0.

Hence, to find a near optimal policy for the original MDP, it is sufficient to compute the optimal policy of MDPn for
sufficiently large n and then extend this policy to the original state space.
To prove Theorem 2.2 we need a series of technical results. We first define an operator T̂n on B l(Z) by extend-

ing Tn to B l(Z):
T̂n u(z) :� inf

a∈A

∫
Sn , in (z)

[
c(x , a)+ β

∫
Z

u(y)p(dy | x , a)
]
νn , in (z)(dx), (4)

where in : Z→ {1, . . . , kn} maps z to the index of the partition {Sn , i} it belongs to. To see that this operator is
well defined, let the stochastic kernel rn(dx | z) on Z given Z be defined as

rn(dx | z) :�
kn∑
i�1
νn , i(dx)1Sn , i

(z),

where 1B denotes the indicator function of the set B. Next, we can write the right-hand side of (4) as

inf
a∈A

∫
Z

[
c(x , a)+ β

∫
Z

u(y)p(dy | x , a)
]
rn(dx | z).

Therefore, by Propositions 1.1 and 1.2, we can conclude that T̂n maps B l(Z) into B l(Z). Furthermore, it is a
contraction operator with modulus β that can be shown using Hernández-Lerma [20, Proposition A.2, p. 122].
Hence, it has a unique fixed point Ĵ∗n that belongs to B(Z), and this fixed point must be constant over the sets Sn , i
because of the averaging operation on each Sn , i . Furthermore, since T̂n(u ◦Qn) � (Tn u) ◦Qn for all u ∈ B(Zn),
we have

T̂n(J∗n ◦Qn)� (Tn J∗n) ◦Qn � J∗n ◦Qn .

Hence, the fixed point of T̂n is the piecewise constant extension of the fixed point of Tn ; i.e.,

Ĵ∗n � J∗n ◦Qn .
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Remark 2.1. In the rest of this paper, when we take the integral of any function with respect to νn , in (z), it is
tacitly assumed that the integral is taken over all set Sn , in (z). Hence, we can drop Sn , in (z) in the integral for the
ease of notation.

We now define another operator Fn on B l(Z) by simply interchanging the order of the infimum and the
integral in (4); i.e.,

Fn u(z) :�
∫

inf
a∈A

[
c(x , a)+ β

∫
Z

u(y) p(dy | x , a)
]
νn , in (z)(dx)

� ΓnTu(z),

where
Γn u(z) :�

∫
u(x)νn , in (z)(dx).

We note that Fn is the extension (to infinite state spaces) of the operator defined in Van Roy [37, p. 236] for
the proposed approximate value iteration algorithm. However, unlike in Van Roy [37], Fn will serve here as an
intermediate point between T and T̂n (or Tn) to solve (Q1) for the discounted cost. To this end, we first note
that Fn is a contraction operator on B l(Z) with modulus β. Indeed, it is clear that Fn maps B l(Z) into itself by
Propositions 1.1 and 1.2. Furthermore, for any u , v ∈ B l(Z), we clearly have ‖Γn u−Γn v‖ ≤ ‖u− v‖. Hence, since T
is a contraction operator on B l(Z) with modulus β, Fn is also a contraction operator on B l(Z) with modulus β.

Remark 2.2. Since we only assume that the stochastic kernel p is weakly continuous, it is not true that T̂n and Fn
map B(Z) into itself (see Hernández-Lerma and Lasserre [21, Proposition D.5, p. 182]). This is the point where
we need to enlarge the set of functions on which these operators act.

The following theorem states that the fixed point, say u∗n , of Fn converges to the fixed point J∗ (i.e., the value
function) of T as n goes to infinity. Note that although T is originally defined on Cb(Z), it can be proved that T,
when acting on B l(Z), maps B l(Z) into itself.

Theorem 2.3. If u∗n is the unique fixed point of Fn , then limn→∞ ‖u∗n − J∗‖ � 0.

The proof of Theorem 2.3 requires two lemmas.

Lemma 2.1. For any u ∈ B l(Z), we have
‖u −Γn u‖ ≤ 2 inf

r∈Zkn
‖u −Φr ‖ ,

where Φr(z)�Σ
kn
i�1ri1Sn , i

(z), r � (r1 , . . . , rkn
).

Proof. Fix any r ∈ Zkn . Next, using the identity ΓnΦr �Φr , we obtain

‖u −Γn u‖ ≤ ‖u −Φr ‖ + ‖Φr −Γn u‖ � ‖u −Φr ‖ + ‖ΓnΦr −Γn u‖ ≤ ‖u −Φr ‖ + ‖Φr − u‖.

Since r is arbitrary, this completes the proof. �

Notice that because of the operator Γn , the fixed point u∗n of Fn must be constant over the sets Sn , i . We use
this property to prove the next lemma.

Lemma 2.2. We have
‖u∗n − J∗‖ ≤ 2

1− β inf
r∈Zkn
‖ J∗ −Φr ‖.

Proof. Note that Γn u∗n � u∗n since u∗n is constant over the sets Sn , i . Thus, we have

‖u∗n − J∗‖ ≤ ‖u∗n −Γn J∗‖ + ‖Γn J∗ − J∗‖
� ‖Fn u∗n −ΓnT J∗‖ + ‖Γn J∗ − J∗‖
� ‖ΓnTu∗n −ΓnT J∗‖ + ‖Γn J∗ − J∗‖ (by the definition of Fn)
≤ ‖Tu∗n −T J∗‖ + ‖Γn J∗ − J∗‖ (since ‖Γn u −Γn v‖ ≤ ‖u − v‖)
≤ β‖u∗n − J∗‖ + ‖Γn J∗ − J∗‖.

Hence, we obtain ‖u∗n − J∗‖ ≤ (1/(1− β))‖Γn J∗ − J∗‖. The result now follows from Lemma 2.1. �
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Proof of Theorem 2.3. Recall that since Z is compact, the function J∗ is uniformly continuous and diam(Sn , i) <
2/n for all i � 1, . . . , kn . Hence, limn→∞ infr∈Zkn ‖ J∗ − Φr ‖ � 0, which completes the proof in view of
Lemma 2.2. �
The next step is to show that the fixed point Ĵ∗n of T̂n converges to the fixed point J∗ of T. To this end, we first

prove the following result.
Lemma 2.3. For any u ∈ Cb(Z), ‖T̂n u − Fn u‖ → 0 as n→∞.

Proof. Note that since
∫
Z u(x)p(dx | y , a) is continuous as a function of (y , a) by Assumption 2.1(b), it is sufficient

to prove that for any l ∈ Cb(Z×A)min
a

∫
l(y , a)νn , in (z)(dy) −

∫
min

a
l(y , a)νn , in (z)(dy)


:� sup

z∈Z

����min
a

∫
l(y , a)νn , in (z)(dy) −

∫
min

a
l(y , a)νn , in (z)(dy)

����→ 0

as n→∞. Fix any ε > 0. Define {zi}∞i�1 :� ⋃
n Zn and let {ai}∞i�1 be a sequence in A such that mina∈A l(zi , a) �

l(zi , ai); such ai exists for each zi because l(zi , · ) is continuous and A is compact. Define g(y) :� mina∈A l(y , a),
which can be proved to be continuous and therefore uniformly continuous since Z is compact. Thus by the
uniform continuity of l, there exists δ > 0 such that dZ×A((y , a), (y′, a′)) < δ implies |g(y) − g(y′)| < ε/2 and
|l(y , a) − l(y′, a′)| < ε/2. Choose n0 such that 2/n0 < δ. Then for all n ≥ n0, maxi∈{1,...,kn } diam(Sn , i) < 2/n < δ.
Hence, for all y ∈ Sn , i we have |l(y , ai) −mina∈A l(y , a)| ≤ |l(y , ai) − l(zi , ai)| + |mina∈A l(zi , a) −mina∈A l(y , a)| �
|l(y , ai) − l(zi , ai)| + |g(zi) − g(y)| < ε. This impliesmin

a

∫
l(y , a)νn , in (z)(dy) −

∫
min

a
l(y , a)νn , in (z)(dy)


≤

∫ l(y , ai)νn , in (z)(dy) −
∫

min
a

l(y , a)νn , in (z)(dy)


≤ sup
z∈Z

∫
sup

y∈Sn , in (z)

���l(y , ai) −min
a

l(y , a)
���νn , in (z)(dy) < ε.

This completes the proof. �
Theorem 2.4. The fixed point Ĵ∗n of T̂n converges to the fixed point J∗ of T.
Proof. We have

‖ Ĵ∗n − J∗‖ ≤ ‖T̂n Ĵ∗n − T̂n J∗‖ + ‖T̂n J∗ − Fn J∗‖ + ‖Fn J∗ − Fn u∗n ‖ + ‖Fn u∗n − J∗‖
≤ β‖ Ĵ∗n − J∗‖ + ‖T̂n J∗ − Fn J∗‖ + β‖ J∗ − u∗n ‖ + ‖u∗n − J∗‖.

Hence
‖ Ĵ∗n − J∗‖ ≤

‖T̂n J∗ − Fn J∗‖ + (1+ β)‖ J∗ − u∗n ‖
1− β .

The theorem now follows from Theorem 2.3 and Lemma 2.3. �
Recall the optimal stationary policy f ∗n for MDPn and its extension f̂n(z) � f ∗n ◦Qn(z) to Z. Since Ĵ∗n � J∗n ◦Qn ,

it is straightforward to prove that f̂n is the optimal selector of T̂n Ĵ∗n ; that is,

T̂n Ĵ∗n � Ĵ∗n � T̂ f̂n
Ĵ∗n ,

where T̂ f̂n
is defined as

T̂ f̂n
u(z) :�

∫ [
c(x , f̂n(x))+ β

∫
Z

u(y)p(dy | x , f̂n(x))
]
νn , in (z)(dx).

Define analogously
T f̂n

u(z) :� c(z , f̂n(z))+ β
∫
Z

u(y)p(dy | z , f̂n(z)).

It can be proved that both T̂ f̂n
and T f̂n

are contraction operators on B l(Z) with modulus β, and it is known that
the fixed point of T f̂n

is the true cost function of the stationary policy f̂n (i.e., J( f̂n , z)).
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Lemma 2.4. ‖T̂ f̂n
u −T f̂n

u‖ → 0 as n→∞, for any u ∈ Cb(Z).

Proof. The statement follows from the uniform continuity of the function c(z , a)+β
∫
Z u(y) p(dy | z , a) and that f̂n

is constant over the sets Sn , i . �
Now, we prove the main result of this section.

Proof of Theorem 2.2. We have

‖ J( f̂n , ·) − J∗‖ ≤ ‖T f̂n
J( f̂n , ·) −T f̂n

J∗‖ + ‖T f̂n
J∗ − T̂ f̂n

J∗‖ + ‖T̂ f̂n
J∗ − T̂ f̂n

Ĵ∗n ‖ + ‖ Ĵ∗n − J∗‖
≤ β‖ J( f̂n , ·) − J∗‖ + ‖T f̂n

J∗ − T̂ f̂n
J∗‖ + β‖ J∗ − Ĵ∗n ‖ + ‖ Ĵ∗n − J∗‖.

Hence, we obtain

‖ J( f̂n , ·) − J∗‖ ≤
‖T f̂n

J∗ − T̂ f̂n
J∗‖ + (1+ β)‖ Ĵ∗n − J∗‖

1− β .

The result follows from Lemma 2.4 and Theorem 2.4. �

2.2. Average Cost
In this section we impose some new conditions on the components of the original MDP in addition to Assump-
tion 2.1 to solve (Q1) for the average cost. A version of the first two conditions was imposed in Vega-Amaya [38]
and Jaśkiewicz and Nowak [26] to show the existence of the solution to the Average Cost Optimality Equation
(ACOE) and the optimal stationary policy.
Assumption 2.2. Suppose Assumption 2.1 holds with item (b) replaced by condition (f) below. In addition, there exist a
nontrivial finite measure ζ on Z, a nonnegative measurable function θ on Z×A, and a constant λ ∈ (0, 1) such that for
all (z , a) ∈ Z×A,
(d) p(B | z , a) ≥ ζ(B)θ(z , a) for all B ∈B(Z),
(e) (1− λ)/(ζ(Z)) ≤ θ(z , a), and
(f) the stochastic kernel p(· | z , a) is continuous in (z , a) with respect to the total variation distance.
Throughout this section, it is assumed that Assumption 2.2 holds. Observe that any deterministic stationary

policy f defines a stochastic kernel p( · | z , f (z)) on Z given Z which is the transition probability of the Markov
chain {zt}∞t�1 (state process) induced by f . For any t ≥ 1, let us write p t(· | z , f (z)) to denote the t-step transition
probability of this Markov chain given the initial point z; that is, p t(· | z , f (z)) is recursively defined as

p t+1(· | z , f (z))�
∫
Z

p(· | x , f (x))p t(dx | z , f (z)).

To study average cost optimal control problems, it is in general assumed that there exists an invariant distri-
bution under any stationary control policy, so that the average cost of any stationary policy can be written as
an integral of the one-stage cost function with respect to this invariant distribution. With this representation,
one can then deduce the optimality of stationary policies using the linear programming or the convex analytic
methods (see Hernández-Lerma and Lasserre [21], Borkar [8]). However, to solve the approximation problem
for the average cost, we need, in addition to the existence of an invariant distribution, the convergence of t-step
transition probabilities to the invariant distribution, at some rate, for both the original and the reduced prob-
lems. Therefore, it is crucial to impose proper conditions on the original model so that, on the one hand, they
guarantee the convergence of t-step transition probabilities to the invariant distribution for all stationary policies
for the original system and, on the other hand, one is able to show that similar conditions are satisfied by the
reduced problems. Conditions (d) and (e) in Assumption 2.2 are examples of such conditions that were also
used in the literature extensively. Indeed, if we define the weight function w ≡ 1, then condition (e) corresponds
to the so-called “drift inequality”: for all (z , a) ∈ Z×A,∫

Z
w(y) p(dy | z , a) ≤ λw(z)+ ζ(w)θ(z , a),

and condition (d) corresponds to the so-called “minorization” condition, both of which were used in litera-
ture for studying geometric ergodicity of Markov chains (see Hernández-Lerma and Lasserre [22], Meyn and
Tweedie [29], and references therein).
The following theorem is a consequence of Vega-Amaya [38, Theorem 3.3], Gordienko and Hernandez-

Lerma [18, Lemma 3.4], and Jaśkiewicz and Nowak [26, Theorem 3] and also holds with Assumption 2.2(f)
replaced by Assumption 2.1(b).
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Theorem 2.5. For any f ∈ �, the stochastic kernel p(· | z , f (z)) is positive Harris recurrent with unique invariant proba-
bility measure µ f . Therefore, we have

V( f , z)�
∫
Z

c(z , f (z))µ f (dz)�: ρ f .

The Markov chain {zt}∞t�1 induced by f is geometrically ergodic; that is, there exist positive real numbers R and κ < 1
such that for every z ∈ Z

sup
f ∈�
‖p t(· | z , f (z)) − µ f ‖TV ≤ Rκt ,

where R and κ continuously depend on ζ(Z) and λ. Finally, there exist f ∗ ∈ � and h∗ ∈ B(Z) such that the triplet (h∗ , f ∗ , ρ f ∗)
satisfies the average cost optimality equality (ACOE); i.e.,

ρ f ∗ + h∗(z) � min
a∈A

[
c(z , a)+

∫
Z

h∗(y)p(dy | z , a)
]
� c(z , f ∗(z))+

∫
Z

h∗(y)p(dy | z , f ∗(z)),

and therefore,
inf
π∈Π

V(π, z)�: V ∗(z)� ρ f ∗ .

For each n, define the one-stage cost function bn : Z×A→[0,∞) and the stochastic kernel qn on Z given Z×A as

bn(z , a) :�
∫

c(x , a)νn , in (z)(dx), qn(· | z , a) :�
∫

p(· | x , a)νn , in (z)(dx).

Observe that cn (i.e., the one-stage cost function of MDPn) is the restriction of bn to Zn , and pn (i.e., the stochastic
kernel of MDPn) is the pushforward of the measure qn with respect to Qn ; that is, cn(zn , i , a) � bn(zn , i , a) for all
i � 1, . . . , kn and pn(· | zn , i , a)� Qn × qn(· | zn , i , a).
For each n, let �MDPn be defined as a Markov decision process with the following components: Z is the state

space, A is the action space, qn is the transition probability, and c is the one-stage cost function. Similarly, let�MDPn be defined as a Markov decision process with the following components: Z is the state space, A is the
action space, qn is the transition probability, and bn is the one-stage cost function. History spaces, policies, and
cost functions are defined in a similar way as before. The models �MDPn and �MDPn are used as transitions
between the original MDP and MDPn in a similar way as the operators Fn and T̂n were used as transitions
between T and Tn for the discounted cost. We note that a similar technique was used in the proof of Ortner [30,
Theorem 2], which studied the approximation problem for finite state-action MDPs. In Ortner [30] the one-stage
cost function is first perturbed and then the transition probability is perturbed. We first perturb the transition
probability and then the cost function. However, our proof method is otherwise quite different from that of
Ortner [30, Theorem 2] since Ortner [30] assumes finite state and action spaces.
We note that a careful analysis of �MDPn reveals that its Bellman optimality operator is essentially the oper-

ator T̂n . Hence, the value function of �MDPn is the piecewise constant extension of the value function of MDPn
for the discounted cost. A similar conclusion will be made for the average cost in Lemma 2.5.
First, notice that if we define

θn(z , a) :�
∫
θ(y , a)νn , in (z)(dy),

ζn :� Qn × ζ (i.e., pushforward of ζ with respect to Qn),

then it is straightforward to prove that for all n, both �MDPn and �MDPn satisfy Assumption 2.2(d), (e) when θ
is replaced by θn , and Assumption 2.2(d), (e) is true for MDPn when θ and ζ are replaced by the restriction of
θn to Zn and ζn , respectively.
Hence, Theorem 2.5 holds (with the same R and κ) for �MDPn , �MDPn , and MDPn for all n. Therefore, we

denote by f̂ ∗n , f̃ ∗n and f ∗n the optimal stationary policies of �MDPn , �MDPn , and MDPn with the corresponding
average costs ρ̂n

f̂ ∗n
, ρ̃n

f̃ ∗n
, and ρn

f ∗n
, respectively.

Furthermore, we also write ρ̂n
f , ρ̃

n
f , and ρn

f to denote the average cost of any stationary policy f for �MDPn ,�MDPn , and MDPn , respectively. The corresponding invariant probability measures are also denoted in a similar
manner, with µ replacing ρ.
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The following lemma essentially says that MDPn and �MDPn are not very different.
Lemma 2.5. The stationary policy given by the piecewise constant extension of the optimal policy f ∗n of MDPn to Z (i.e.,
f ∗n ◦Qn) is optimal for �MDPn with the same cost function ρn

f ∗n
. Hence, f̃ ∗n � f ∗n ◦Qn and ρ̃n

f̃ ∗n
� ρn

f ∗n
.

Proof. Note that by Theorem 2.5 there exists h∗n ∈ B(Zn) such that the triplet (h∗n , f ∗n , ρ
n
f ∗n
) satisfies the ACOE for

MDPn . But it is straightforward to show that the triplet (h∗n ◦Qn , f ∗n ◦Qn , ρ
n
f ∗n
) satisfies the ACOE for �MDPn . By

Gordienko and Hernandez-Lerma [18, Lemma 5.2], this implies that f ∗n ◦Qn is an optimal stationary policy for�MDPn with cost function ρn
f ∗n
. Hence f̃ ∗n � f ∗n ◦Qn and ρ̃n

f̃ ∗n
� ρn

f ∗n
. �

The following theorem is the main result of this section. It states that if one applies the piecewise constant
extension of the optimal stationary policy of MDPn to the original MDP, the resulting cost function will converge
to the value function of the original MDP.

Theorem 2.6. The average cost of the optimal policy f̃ ∗n for �MDPn , obtained by extending the optimal policy f ∗n of MDPn
to Z, converges to the optimal value function J∗ � ρ f ∗ of the original MDP; i.e.,

lim
n→∞
|ρ f̃ ∗n − ρ f ∗ | � 0.

Hence, to find a near optimal policy for the original MDP, it is sufficient to compute the optimal policy of MDPn for
sufficiently large n, and then extend this policy to the original state space.
To show the statement of Theorem 2.6 we will prove a series of auxiliary results.

Lemma 2.6. For all t ≥ 1 we have

lim
n→∞

sup
(y , f )∈Z×�

‖p t(· | y , f (y)) − q t
n(· | y , f (y))‖TV � 0.

Proof. We will prove the lemma by induction. Note that if one views the stochastic kernel p(· | z , a) as a mapping
from Z × A to P(Z), then Assumption 2.2(f) implies that this mapping is continuous, and therefore uniformly
continuous, when P(Z) is equipped with the metric induced by the total variation distance.

For t � 1 the claim holds by the following argument:

sup
(y , f )∈Z×�

‖p(· | y , f (y)) − qn(· | y , f (y))‖TV :� 2 sup
(y , f )∈Z×�

sup
D∈B(Z)

|p(D | y , f (y)) − qn(D | y , f (y))|

≤ 2 sup
(y , f )∈Z×�

sup
D∈B(Z)

∫
|p(D | y , f (y)) − p(D | z , f (y))|νn , in (y)(dz)

≤ sup
(y , f )∈Z×�

∫
‖p(· | y , f (y)) − p(· | z , f (y))‖TVνn , in (y)(dz)

≤ sup
y∈Z

sup
(z , a)∈Sn , in (y)×A

‖p(· | y , a) − p(· | z , a)‖TV.

As the mapping p(· | z , a): Z×A→P(Z) is uniformly continuous with respect to the total variation distance and
maxn , i diam(Sn , i)→ 0 as n→∞, the result follows. Assume the claim is true for t ≥ 1; then we have

sup
(y , f )∈Z×�

‖p t+1(· | y , f (y)) − q t+1
n (· | y , f (y))‖TV

:� sup
(y , f )∈Z×�

sup
‖g‖≤1

����∫
Z

g(x)p t+1(dx | y , f (y)) −
∫
Z

g(x)q t+1
n (dx | y , f (y))

����
≤ sup
(y , f )∈Z×�

(
sup
‖g‖≤1

����∫
Z

∫
Z

g(x)p(dx | z , f (z))p t(dz | y , f (y)) −
∫
Z

∫
Z

g(x)p(dx | z , f (z))q t
n(dz | y , f (y))

����
+ sup
‖g‖≤1

����∫
Z

∫
Z

g(x)p(dx | z , f (z))q t
n(dz | y , f (y)) −

∫
Z

∫
Z

g(x)qn(dx | z , f (z))q t
n(dz | y , f (y))

����)
≤ sup
(y , f )∈Z×�

‖p t(· | y , f (y)) − q t
n(· | y , f (y))‖TV + sup

(z , f )∈Z×�
‖p(· | z , f (z)) − qn(· | z , f (z))‖TV (5)

where the last inequality follows from the following property of the total variation distance: for any h ∈B(Z) and
µ, ν ∈P(Z) we have |

∫
Z h(z)µ(dz) −

∫
Z h(z)ν(dz)| ≤ ‖h‖‖µ− ν‖TV. By the first step of the proof and the induction

hypothesis, the last term converges to zero as n→∞. This completes the proof. �
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Remark 2.3. This is the point where we need the continuity of the transition probability p with respect to the
total variation distance. If we assume that the stochastic kernel p is only weakly or setwise continuous, then it
does not seem possible to prove a result similar to Lemma 2.6 for the weak and the setwise topologies.
Using Lemma 2.6 we prove the following result.

Lemma 2.7. We have sup f ∈� |ρ̂n
f − ρ f | → 0 as n→∞, where ρ̂n

f is the cost function of the policy f for �MDPn and ρ f is
the cost function of the policy f for the original MDP.
Proof. For any t ≥ 1 and y ∈ Z we have

sup
f ∈�
|ρ̂n

f − ρ f | � sup
f ∈�

����∫
Z

c(z , f (z))µ̂n
f (dz) −

∫
Z

c(z , f (z))µ f (dz)
����

≤ sup
f ∈�

����∫
Z

c(z , f (z))µ̂n
f (dz) −

∫
Z

c(z , f (z)) q t
n(dz | y , f (y))

����
+ sup

f ∈�

����∫
Z

c(z , f (z)) q t
n(dz | y , f (y)) −

∫
Z

c(z , f (z)) p t(dz | y , f (y))
����

+ sup
f ∈�

����∫
Z

c(z , f (z)) p t(dz | y , f (y)) −
∫
Z

c(z , f (z))µ f (dz)
����

≤ 2Rκt ‖c‖ + ‖c‖ sup
(y , f )∈Z×�

‖q t
n(· | y , f (y)) − p t(· | y , f (y))‖TV (by Theorem 2.5(ii)),

where R and κ are the constants in Theorem 2.5. Thus, the result follows from Lemma 2.6. �
The following theorem states that the value function of �MDPn converges to the value function of the origi-

nal MDP.
Lemma 2.8. We have |ρ̂n

f̂ ∗n
− ρ f ∗ | → 0 as n→∞.

Proof. Notice that

|ρ̂n
f̂ ∗n
− ρ f ∗ | � max(ρ̂n

f̂ ∗n
− ρ f ∗ , ρ f ∗ − ρ̂n

f̂ ∗n
) ≤max(ρ̂n

f ∗ − ρ f ∗ , ρ f̂ ∗n − ρ̂
n
f̂ ∗n
) ≤ sup

f
|ρ̂n

f − ρ f |.

Thus, the result follows from Lemma 2.7. �
Lemma 2.9. We have sup f ∈� |ρ̃n

f − ρ̂n
f | → 0 as n→∞.

Proof. It is straightforward to show that bn→ c uniformly. Since the probabilistic structure of �MDPn and �MDPn
are the same (i.e., µ̂n

f � µ̃
n
f for all f ), we have

sup
f ∈�
|ρ̃n

f − ρ̂n
f | � sup

f ∈�

����∫
Z

bn(z , f (z))µ̂n
f (dz) −

∫
Z

c(z , f (z))µ̂n
f (dz)

���� ≤ sup
f ∈�

∫
Z
|bn(z , f (z)) − c(z , f (z))|µ̂n

f (dz)

≤ ‖bn − c‖.

This completes the proof. �

The next lemma states that the difference between the value functions of �MDPn and �MDPn converges to zero.
Lemma 2.10. We have |ρ̃n

f̃ ∗n
− ρ̂n

f̂ ∗n
| → 0 as n→∞.

Proof. See the proof of Lemma 2.8. �

The following result states that if we apply the optimal policy of �MDPn to �MDPn , then the resulting cost
converges to the value function of �MDPn .
Lemma 2.11. We have |ρ̂n

f̃ ∗n
− ρ̂n

f̂ ∗n
| → 0 as n→∞.

Proof. Since |ρ̂n
f̃ ∗n
− ρ̂n

f̂ ∗n
| ≤ |ρ̂n

f̃ ∗n
− ρ̃n

f̃ ∗n
| + |ρ̃n

f̃ ∗n
− ρ̂n

f̂ ∗n
|, the result follows from Lemmas 2.9 and 2.10. �

Now we are ready to prove the main result of this section.
Proof of Theorem 2.6. We have |ρ f̃ ∗n − ρ f ∗ | ≤ |ρ f̃ ∗n − ρ̂

n
f̃ ∗n
| + |ρ̂n

f̃ ∗n
− ρ̂n

f̂ ∗n
| + |ρ̂n

f̂ ∗n
− ρn

f ∗ |. The result now follows from
Lemmas 2.7, 2.11, and 2.8. �
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3. Finite State Approximations of MDPs with Noncompact State Space
In this section we consider (Q1) for noncompact state MDPs with unbounded one-stage cost. To solve (Q1), we
use the following strategy: (i) first, we define a sequence of compact-state MDPs to approximate the original
MDP; (ii) we use Theorems 2.2 and 2.6 to approximate the compact-state MDPs by finite-state models; and
(iii) we prove the convergence of the finite-state models to the original model. In fact, steps (ii) and (iii) will be
accomplished simultaneously.
We impose the assumptions below on the components of the Markov decision process; additional assump-

tions will be imposed for the average cost problem. With the exception of the local compactness of the state
space, these are the usual assumptions used in the literature for studying Markov decision processes with
unbounded cost.

Assumption 3.1. (a) The one-stage cost function c is continuous.
(b) The stochastic kernel p(· | x , a) is weakly continuous in (x , a).
(c) X is locally compact and A is compact.
(d) There exist nonnegative real numbers M and α ∈ [1, 1/β) and a continuous weight function w: X→ [1,∞) such

that for each x ∈ X, we have

sup
a∈A
|c(x , a)| ≤Mw(x), (6)

sup
a∈A

∫
X

w(y) p(dy | x , a) ≤ αw(x), (7)

and
∫
X w(y)p(dy | x , a) is continuous in (x , a).

Since X is locally compact separable metric space, there exists a nested sequence of compact sets {Kn} such
that Kn ⊂ int Kn+1 and X�

⋃∞
n�1 Kn Aliprantis and Border [1, Lemma 2.76, p. 58].

Lemma 3.1. For any compact subset K of X and for any ε > 0, there exists a compact subset Kε of X such that

sup
(x , a)∈K×A

∫
Kc
ε

w(y) p(dy | x , a) < ε,

where Dc denotes the complement of the set D.

Proof. We prove the lemma by contradiction. Assume the claim is wrong. Since every compact subset K of X
is a subset of Kn for some n, the negation of the above lemma is equivalent to the following statement: there
exists a compact set K ⊂ X and ε > 0 such that for all n ≥ 1 we have

sup
(x , a)∈K×A

∫
Kc

n

w(y) p(dy | x , a) ≥ ε.

Note that w is integrable with respect to the probability measures in the set {p(· | x , a): (x , a) ∈ K ×A} since

sup
(x , a)∈K×A

∫
X

w(y) p(dy | x , a) ≤ α sup
x∈K

w(x) <∞.

For each n, we prove that
∫
(int Kn )c

w(y)p(dy | x , a) is an upper semicontinuous function on K × A. Recall that∫
X w(y)p(dy | x , a) is a continuous function of (x , a). Let (xk , ak) → (x , a) in K × A; then p(· | xk , ak) → p(· | x , a)
weakly and

∫
X w(y)p(dy | xk , ak) →

∫
X w(y)p(dy | x , a) by our assumption. If we take fk � gk � f � g � w in

Serfozo [35, Theorem 3.3], this result implies that νk( · )→ ν( · ) weakly, where

νk(D)�
∫

D
w(y)p(dy | xk , ak) ν(D)�

∫
D

w(y)p(dy | x , a),

for all D ∈B(X). Thus, by Bartoszynski [2, Theorem A] we have∫
(int Kn )c

w(y) p(dy | x , a) :� ν((int Kn)c) ≥ lim sup
k→∞

νk((int Kn)c) :� lim sup
k→∞

∫
(int Kn )c

w(y) p(dy | xk , ak).
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Hence,
∫
(int Kn )c

w(y) p(dy | x , a) is upper semicontinuous. Since K × A is compact, there exists (xn , an) ∈ K × A
such that

sup
(x , a)∈K×A

∫
(int Kn )c

w(y) p(dy | x , a)�
∫
(int Kn )c

w(y) p(dy | xn , an).

The sequence {(xn , an)} (being a sequence in a compact set K × A) has an converging subsequence {(xnk
, ank
)}

with the limit (x , a) ∈ K ×A. Thus, for all m ≥ 2, we have∫
Kc

m−1

w(y) p(dy | x , a) ≥
∫
(int Km )c

w(y) p(dy | x , a)

≥ lim sup
k→∞

∫
(int Km )c

w(y) p(dy | xnk
, ank
)

≥ lim sup
k→∞

∫
(int Knk

)c
w(y) p(dy | xnk

, ank
) ≥ ε,

where the third inequality follows from the fact that (int Km)c ⊃ (int Knk
)c for k sufficiently large. But this is a

contradiction because w is p(· | x , a) integrable. �

Let {νn} be a sequence of probability measures such that for each n ≥ 1, νn ∈P(Kc
n) and

γn :�
∫

Kc
n

w(x)νn(dx) <∞, (8)

γ � sup
n
τn :� sup

n
max

{
0, sup
(x , a)∈X×A

∫
Kc

n

(γn −w(y))p(dy | x , a)
}
<∞. (9)

For example, such probability measures can be constructed by choosing xn ∈ Kc
n such that w(xn)< infx∈Kc

n
w(x)+

1/n and letting νn( · )� δxn
( · ).

Similar to the finite-state MDP construction in Section 2, we define a sequence of compact-state MDPs, denoted
as c-MDPn , to approximate the original model. To this end, for each n let Xn � Kn ∪ {∆n}, where ∆n ∈ Kc

n is a
so-called pseudostate. We define the transition probability pn on Xn given Xn ×A and the one-stage cost function
cn : Xn ×A→[0,∞) by

pn(· | x , a)�


p(· ∩Kn | x , a)+ p(Kc

n | x , a)δ∆n
, if x ∈ Kn ,∫

Kc
n

(p( · ∩Kn | z , a)+ p(Kc
n | z , a)δ∆n

)νn(dz), if x �∆n ,

cn(x , a)�


c(x , a), if x ∈ Kn ,∫

Kc
n

c(z , a)νn(dz), if x �∆n .

With these definitions, c-MDPn is defined as a Markov decision process with the components (Xn ,A, pn , cn).
History spaces, policies, and cost functions are defined in a similar way as in the original model. Let Πn , Φn ,
and �n denote the set of all policies, randomized stationary policies, and deterministic stationary policies of
c-MDPn , respectively. For each policy π ∈Πn and initial distribution µ ∈P(Xn), we denote the cost functions for
c-MDPn by Jn(π, µ) and Vn(π, µ).

To obtain the main result of this section, we introduce, for each n, another MDP, denoted by MDPn , with the
components (X,A, qn , bn) where

qn(· | x , a)�


p(· | x , a), if x ∈ Kn ,∫

Kc
n

p(· | z , a)νn(dz), if x ∈ Kc
n ,

bn(x , a)�


c(x , a), if x ∈ Kn ,∫

Kc
n

c(z , a)νn(dz), if x ∈ Kc
n .

For each policy π ∈Π and initial distribution µ ∈ P(X), we denote the cost functions for MDPn by J̄n(π, µ) and
V̄n(π, µ).
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3.1. Discounted Cost
In this section we consider (Q1) for the discounted cost criterion with a discount factor β ∈ (0, 1). Throughout
this section, it is assumed that Assumption 3.1 holds. The following result states that c-MDPn and MDPn are
equivalent for the discounted cost.

Lemma 3.2. We have

J̄∗n(x)�
{

J∗n(x), if x ∈ Kn ,

J∗n(∆n), if x ∈ Kc
n ,

(10)

where J̄∗n is the discounted value function of MDPn and J∗n is the discounted value function of c-MDPn , provided that there
exist optimal deterministic stationary policies for MDPn and c-MDPn . Furthermore, if, for any deterministic stationary
policy f ∈ �n , we define f̄ (x)� f (x) on Kn and f̄ (x)� f (∆n) on Kc

n , then

J̄n( f̄ , x)�
{

Jn( f , x), if x ∈ Kn ,

Jn( f ,∆n), if x ∈ Kc
n .

(11)

In particular, if the deterministic stationary policy f ∗n ∈ �n is optimal for c-MDPn , then its extension f̄ ∗n to X is also optimal
for MDPn .

Proof. The proof of (11) is a consequence of the following facts: bn(x , a) � bn(y , a) and qn(· | x , a) � qn(· | y , a)
for all x , y ∈ Kc

n and a ∈ A. In other words, Kc
n in MDPn behaves like the pseudostate ∆n in c-MDPn when f̄ is

applied to MDPn .
Let �̄n denote the set of all deterministic stationary policies in � that are obtained by extending policies in �n

to X. If we can prove that min f ∈� J̄n( f , x)� min f ∈�̄n
J̄n( f , x) for all x ∈ X, then (10) follows from (11). Let f ∈ �\�̄n .

We have two cases: (i) J̄n( f , z)� J̄n( f , y) for all z , y ∈ Kc
n or (ii) there exists z , y ∈ Kc

n such that J̄n( f , z) < J̄n( f , y).
For the case (i), if we define the deterministic Markov policy π0 as π0 � { f0 , f , f , . . .}, where f0(x)� f (z) on Kc

n
for some fixed z ∈ Kc

n and f0(x)� f (x) on Kn , then using the expression

J̄n(π0 , x)� bn(x , f0(x))+ β
∫
X

J̄n( f , x′) qn(dx′ | x , f0(x)), (12)

it is straightforward to show that J̄n(π0 , x) � J̄n( f , x) on Kn and J̄n(π0 , x) � J̄n( f , z) on Kc
n . Therefore, J̄n(π0 , x) �

J̄n( f , x) for all x ∈ X since J̄n( f , x)� J̄n( f , z) for all x ∈ Kc
n . For all t ≥ 1 define the deterministic Markov policy πt

as πt � { f0 , π
t−1}. Analogously, one can prove that J̄n(πt , x) � J̄n(πt+1 , x) for all x ∈ X. Since J̄n(πt , x) → J̄n( f0 , x)

as t→∞, we have J̄n( f0 , x)� J̄n( f , x) for all x ∈ X, where f0 ∈ �̄n .
For the second case, if we again consider the deterministic Markov policy π0 � { f0 , f , f , . . .}, then by (12) we

have J̄n(π0 , y)� J̄n( f , z) < J̄n( f , y). Since min f ∈� J̄n( f , y) ≤ J̄n(π0 , y), this completes the proof. �

For each n, let us define wn by letting wn(x) � w(x) on Kn and wn(x) �
∫

Kc
n

w(z)νn(dz) �: γn on Kc
n . Hence,

wn ∈ B(X) by (8).

Lemma 3.3. For all n and x ∈ X, the components of MDPn satisfy the following:

sup
a∈A
|bn(x , a)| ≤Mwn(x), (13)

sup
a∈A

∫
X

wn(y) qn(dy | x , a) ≤ αwn(x)+ γ, (14)

where γ is the constant in (9).

Proof. It is straightforward to prove (13) by using the definitions of bn and wn and Equation (6). To prove (14),
we have to consider two cases: x ∈ Kn and x ∈ Kc

n . For the first case, qn(· | x , a)� p(· | x , a), and therefore, we have

sup
a∈A

∫
X

wn(y) p(dy | x , a) � sup
a∈A

{∫
X

w(y) p(dy | x , a)+
∫

Kc
n

(γn −w(y)) p(dy | x , a)
}

≤ sup
a∈A

∫
X

w(y) p(dy | x , a)+ γ (by (9))

≤ αw(x)+ γ � αwn(x)+ γ (as wn � w on Kn).
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For x ∈ Kc
n , we have

sup
a∈A

∫
X

wn(y) qn(dy | x , a) � sup
a∈A

∫
Kc

n

(∫
X

wn(y) p(dy | z , a)
)
νn(dz)

≤
∫

Kc
n

(
sup
a∈A

∫
X

wn(y) p(dy | z , a)
)
νn(dz)

≤
∫

Kc
n

(αw(z)+ γ) νn(dz) (15)

� αwn(x)+ γ,

where (15) can be proved following the same arguments as for the case x ∈ Kn . This completes the proof. �

Note that if we define cn , 0(x)� 1+ supa∈A |bn(x , a)| and cn , t(x)� supa∈A

∫
X cn ,t−1(y) qn(dy | x , a), by (13) and (14)

and an induction argument, we obtain (see Hernández-Lerma and Lasserre [22, p. 46])

cn , t(x) ≤ Lwn(x)αt
+ Lγ

t−1∑
j�0
α j for all x ∈ X, (16)

where L � 1+ M. Let β0 > β be such that αβ0 < 1 and let Cn : X→[1,∞) be defined by

Cn(x)�
∞∑

t�0
βt

0cn , t(x).

For all x ∈ X, by (16), we then have

Cn(x) :�
∞∑

t�0
βt

0cn , t(x) ≤
L

1− β0α
wn(x)+

Lβ0

(1− β0)(1− β0α)
γ �: L1wn(x)+ L2. (17)

Hence Cn ∈ B(X) as wn ∈ B(X). Moreover, for all (x , a) ∈ X × A, Cn satisfies (see Hernández-Lerma and
Lasserre [22, p. 45])∫

X
Cn(y) qn(dy | x , a) �

∞∑
t�0
βt

0

∫
X

cn , t(y) qn(dy | x , a) ≤
∞∑

t�0
βt

0cn , t+1(x) ≤
1
β0

∞∑
t�0
βt

0cn , t(x)� α0Cn(x),

where α0 :� 1/β0 and α0β < 1 since β0 > β. Therefore, for all x ∈ X, components of MDPn satisfy

sup
a∈A
|bn(x , a)| ≤ Cn(x) (18)

sup
a∈A

∫
X

Cn(y) qn(dy | x , a) ≤ α0Cn(x). (19)

Since Cn ∈ B(X), the Bellman optimality operator T̄n of MDPn maps B l(X) into B l(X) and is given by

T̄n u(x) � inf
a∈A

[
bn(x , a)+ β

∫
X

u(y) qn(dy | x , a)
]
�


inf
a∈A

[
c(x , a)+ β

∫
X

u(y) p(dy | x , a)
]
, if x ∈ Kn ,

inf
a∈A

∫
Kc

n

[
c(z , a)+ β

∫
X

u(y) p(dy | z , a)
]
νn(dz), if x ∈ Kc

n .

Then successive approximations to the discounted value function of MDPn are given by v0
n � 0 and v t+1

n � T̄n v t
n

(t ≥ 1). Since α0β < 1, it can be proved as in Hernández-Lerma and Lasserre [22, Theorem 8.3.6, p. 47] and
Hernández-Lerma and Lasserre [22, (8.3.34), p. 52] that

|v t
n(x)|, | J̄∗n(x)| ≤

Cn(x)
1− σ0

, for all x, (20)

‖v t
n − J̄∗n ‖Cn

≤
σt

0

1− σt
0
, (21)

where σ0 � βα0 < 1.
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Similar to v t
n , let us define v0 � 0 and v t+1 �Tv t , where T: Bw(X)→ Bw(X), the Bellman optimality operator for

the original MDP, is given by

Tu(x)� inf
a∈A

[
c(x , a)+ β

∫
X

u(y) p(dy | x , a)
]
.

Again by Hernández-Lerma and Lasserre [22, Theorem 8.3.6, p. 47] and Hernández-Lerma and Lasserre [22,
(8.3.34), p. 52], we have

|v t(x)|, | J∗(x)| ≤M
w(x)
1− σ , for all x, (22)

‖v t − J∗‖w ≤M
σt

1− σ , (23)

where σ � βα < 1.

Lemma 3.4. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K
|v t

n(x) − v t(x)| � 0 (24)

for all t ≥ 1.

Proof. We prove (24) by induction on t. For t � 1, the claim trivially holds since any compact set K ⊂ X is
inside Kn for sufficiently large n, and therefore, bn � c on K for sufficiently large n (recall v0

n � v0 � 0). Assume
the claim is true for t ≥ 1. Fix any compact set K. Recall the definition of compact subsets Kε of X in Lemma 3.1.
By definition of qn , bn , and wn , there exists n0 ≥ 1 such that for all n ≥ n0, qn � p, bn � c, and wn � w on K. With
these observations, for each n ≥ n0 we have

sup
x∈K
|v t+1

n (x) − v t+1(x)| � sup
x∈K

����inf
A

[
c(x , a)+ β

∫
X

v t
n(y)p(dy | x , a)

]
−min

A

[
c(x , a)+ β

∫
X

v t(y)p(dy | x , a)
] ����

≤ β sup
(x , a)∈K×A

����∫
X

v t
n(y)p(dy | x , a) −

∫
X

v t(y)p(dy | x , a)
����

� β sup
(x , a)∈K×A

����∫
Kε

(v t
n(y) − v t(y))p(dy | x , a)+

∫
Kc
ε

(v t
n(y) − v t(y))p(dy | x , a)

����
≤ β

{
sup
x∈Kε

|v t
n(x) − v t(x)| + sup

(x , a)∈K×A

����∫
Kc
ε

(v t
n(y) − v t(y))p(dy | x , a)

����}
Note that we have |v t | ≤M(w/(1− σ)) by (22). Since wn ≤ γmaxw, where γmax :� max{1, γ}, we also have |v t

n | ≤
(L1γmaxw + L2)/(1− σ0) ≤ (L1γmax + L2)w/(1− σ0) by (17) and (20) (as w ≥ 1). Let us define

R :�
L1γmax + L2

1− σ0
+

M
1− σ .

Thus by Lemma 3.1 we have

sup
x∈K
|v t+1

n (x) − v t+1(x)| ≤ β sup
x∈Kε

|v t
n(x) − v t(x)| + βRε.

Since the first term converges to zero as n→∞ by the induction hypothesis, and ε is arbitrary, the claim is true
for t + 1. This completes the proof. �

The following theorem states that the discounted value function of MDPn converges to the discounted value
function of the original MDP uniformly on each compact set K ⊂ X.

Theorem 3.1. For any compact set K ⊂ X we have

lim
n→∞

sup
x∈K
| J̄∗n(x) − J∗(x)| � 0. (25)
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Proof. Fix any compact set K ⊂ X. Since w is continuous and therefore bounded on K, it is sufficient to prove
limn→∞ supx∈K(| J̄∗n(x) − J∗(x)|/(w(x))). Let n be chosen such that K ⊂ Kn , and so wn � w on K. We then have

sup
x∈K

| J̄∗n(x) − J∗(x)|
w(x) ≤ sup

x∈K

| J̄∗n(x) − v t
n(x)|

w(x) + sup
x∈K

|v t
n(x) − v t(x)|

w(x) + sup
x∈K

|v t(x) − J∗(x)|
w(x)

≤ sup
x∈K

| J̄∗n(x) − v t
n(x)|

Cn(x)
Cn(x)
w(x) + sup

x∈K

|v t
n(x) − v t(x)|

w(x) + M
σt

1− σt (by (23))

≤ sup
x∈K

| J̄∗n(x) − v t
n(x)|

Cn(x)
(L1wn(x)+ L2)

w(x) + sup
x∈K

|v t
n(x) − v t(x)|

w(x) +
Mσt

1− σt (by (17))

≤ (L1 + L2) sup
x∈K

| J̄∗n(x) − v t
n(x)|

Cn(x)
+ sup

x∈K

|v t
n(x) − v t(x)|

w(x) +
Mσt

1− σt (wn � w on K)

≤ (L1 + L2)
σt

0

1− σ0
+ sup

x∈K

|v t
n(x) − v t(x)|

w(x) +
Mσt

1− σt (by (21)).

Since w ≥ 1 on X, supx∈K(|v t
n(x)− v t(x)|/(w(x)))→ 0 as n→∞ for all t by Lemma 3.4. Hence, the last expression

can be made arbitrarily small. This completes the proof. �

In the remainder of this section, we use the above results and Theorem 2.2 to compute a near optimal
policy for the original MDP. It is straightforward to check that for each n, c-MDPn satisfies the assumptions in
Theorem 2.2. Let {εn} be a sequence of positive real numbers such that limn→∞ εn � 0.
By Theorem 2.2, for each n ≥ 1, there exists a deterministic stationary policy fn ∈ �n , obtained from the finite

state approximations of c-MDPn , such that

sup
x∈Xn

| Jn( fn , x) − J∗n(x)| ≤ εn ,

where for each n, finite-state models are constructed replacing (Z,A, p , c) with the components (Xn ,A, pn , cn) of
c-MDPn in Section 2. By Lemma 3.2, for each n ≥ 1 we also have

sup
x∈X
| J̄n( fn , x) − J̄∗n(x)| ≤ εn , (26)

where, with an abuse of notation, we also denote the extended (to X) policy by fn . Let us define operators
R̄n : BCn

(X)→ BCn
(X) and Rn : Bw(X)→ Bw(X) by

R̄n u(x) �


c(x , fn(x))+ β

∫
X u(y)p(dy | x , fn(x)), if x ∈ Kn ,∫

Kc
n

[c(z , fn(z))+ β
∫
X

u(y)p(dy | z , fn(z))]νn(dz), if x ∈ Kc
n ,

Rn u(x) � c(x , fn(x))+ β
∫
X

u(y)p(dy | x , fn(x)).

By Hernández-Lerma and Lasserre [22, Remark 8.3.10, p. 54], R̄n is a contraction operator with modulus σ0
and Rn is a contraction operator with modulus σ. Furthermore, the fixed point of R̄n is J̄n( fn , x) and the fixed
point of Rn is J( fn , x). For each n ≥ 1, let us define ū0

n � u0
n � 0 and ū t+1

n � R̄n ū t
n , u t+1

n � Rn u t
n (t ≥ 1). One can

prove the following (see the proof of Hernández-Lerma and Lasserre [22, Theorem 8.3.6, p. 51]):

|ū t
n(x)|, | J̄n( fn , x)| ≤

Cn(x)
1− σ0

, ‖ū t
n − J̄n( fn , ·)‖Cn

≤
σt

0

1− σ0
, |u t

n(x)|, | J( fn , x)| ≤M
w(x)
1− σ , ‖u

t
n − J( fn , ·)‖w ≤M

σt

1− σ .

Lemma 3.5. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K
|ū t

n(x) − u t
n(x)| � 0.

Proof. The lemma can be proved using the same arguments as in the proof of Lemma 3.4 and so we omit the
details. �
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Lemma 3.6. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K
| J̄n( fn , x) − J( fn , x)| � 0. (27)

Indeed, this is true for all sequences of policies in �.

Proof. The lemma can be proved using the same arguments as in the proof of Theorem 3.1. �

The following theorem is the main result of this section that states that the true cost functions of the policies
obtained from finite state models converge to the value function of the original MDP. Hence, to obtain a near
optimal policy for the original MDP, it is sufficient to compute the optimal policy for the finite state model that
has sufficiently large number of grid points.

Theorem 3.2. For any compact set K ⊂ X, we have

lim
n→∞

sup
x∈K
| J( fn , x) − J∗(x)| � 0.

Therefore,
lim
n→∞
| J( fn , x) − J∗(x)| � 0 for all x ∈ X.

Proof. The result follows from (25)–(27). �

3.2. Average Cost
In this section we obtain approximation results, analogous to Theorems 3.1 and 3.2, for the average cost cri-
terion. To do this, we impose some new assumptions on the components of the original MDP in addition to
Assumption 3.1. These assumptions are the unbounded counterpart of Assumption 2.2. With the exception of
Assumption 3.2(j), versions of these assumptions were imposed in Vega-Amaya [38], Gordienko and Hernandez-
Lerma [18], and Jaśkiewicz and Nowak [26] to study the existence of the solution to the Average Cost Optimality
Equality (ACOE) and Inequality (ACOI). In what follows, for any finite signed measure ϑ and measurable
function h on X, we let ϑ(h) :�

∫
X h(x)ϑ(dx) and

‖ϑ‖w :� sup
‖g‖w≤1

����∫
X

g(x)ϑ(dx)
����.

Here ‖ϑ‖w is called the w-norm of ϑ.

Assumption 3.2. Suppose Assumption 3.1 holds with item (b) and (7) replaced by conditions (j) and (e) below, respec-
tively. In addition, there exist a probability measure η on X and a positive measurable function φ: X× A→ (0,∞) such
that for all (x , a) ∈ X×A

(e)
∫
X w(y)p(dy | x , a) ≤ αw(x)+ η(w)φ(x , a), where α ∈ (0, 1).

(f) p(D | x , a) ≥ η(D)φ(x , a) for all D ∈B(X).
(g) The weight function w is η-integrable; i.e., η(w) <∞.
(h) For each n ≥ 1, inf(x , a)∈Kn×A φ(x , a) > 0.
(j) The stochastic kernel p(· | x , a) is continuous in (x , a) with respect to the w-norm.

Throughout this section, it is assumed that Assumption 3.2 holds. Conditions (e), (f), and (g) of Assump-
tion 3.2 are unbounded counterparts of conditions (d) and (e) in Assumption 2.2. Recall that condition (e) corre-
sponds to the so-called “drift inequality” and condition (f) corresponds to the so-called “minorization” condition
that guarantees the geometric ergodicity of Markov chains induced by stationary policies (see Hernández-Lerma
and Lasserre [22], Meyn and Tweedie [29], and references therein). These assumptions are quite general for
studying average cost problems with unbounded one-stage costs. In addition, they are proper for the approxi-
mation problem in the sense that it can be shown that if the original problem satisfies these, then the reduced
models constructed in the sequel satisfy similar conditions. There is only one minor difference between Assump-
tion 3.2(f) and the standard minorization condition: in the literature φ is in general required to be nonnegative
instead of positive.
Note that although Assumption 3.2(j) seems to be restrictive, it is weaker than the assumptions imposed

in the literature for studying approximation of average cost problems with unbounded cost (see Dufour and
Prieto-Rumeau [15]). Indeed, it is assumed in Dufour and Prieto-Rumeau [15] that the transition probability p
is Lipschitz continuous in (x , a) with respect to w-norm. The reason for imposing such a strong condition on
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the transition probability is to obtain convergence rate for the approximation problem. Since we do not aim
to provide rate of convergence result in this section, it is natural to impose continuity instead of Lipschitz
continuity of the transition probability. However, it does not seem possible to replace continuity with respect
to the w-norm by a weaker convergence notion. One reason is that with a weaker continuity notion it is not
possible to prove that the transition probability of c-MDPn is continuous with respect to the total variation
distance, which is needed if one wants to use Theorem 2.6 and cannot be relaxed as explained in Remark 2.3.
Analogous with Theorem 2.5, the following theorem is a consequence of Vega-Amaya [38, Theorems 3.3];

Gordienko and Hernandez-Lerma [18, Lemma 3.4] (see also Hernández-Lerma and Lasserre [22, Proposi-
tion 10.2.5, p. 126]); and Jaśkiewicz and Nowak [26, Theorem 3], which also holds with Assumption 3.2(j)
replaced by Assumption 3.1(b).

Theorem 3.3. For each f ∈ �, the stochastic kernel p(· | x , f (x)) is positive Harris recurrent with unique invariant
probability measure µ f . Furthermore, w is µ f -integrable, and therefore, ρ f :�

∫
X c(x , f )µ f (dx) <∞. There exist positive

real numbers R and κ < 1 such that
sup

f ∈�
‖p t(· | x , f (x)) − µ f ‖w ≤ Rw(x)κt (28)

for all x ∈ X, where R and κ continuously depend on α, η(w), and inf f ∈� η(φ(y , f (y))). Finally, there exist f ∗ ∈ � and
h∗ ∈ Bw(X) such that the triplet (h∗ , f ∗ , ρ f ∗) satisfies the average cost optimality equality (ACOE), and therefore,

inf
π∈Π

V(π, x) :� V ∗(x)� ρ f ∗ ,

for all x ∈ X.

Note that (28) implies that for each f ∈ �, the average cost is given by V( f , x)�
∫
X c(y , f (y))µ f (dy) for all x ∈ X

(instead of µ f -a.e.); that is, the average cost is independent of the initial point.
Recall that Vn and V̄n denote the average costs of c-MDPn and MDPn , respectively. The value functions for

average cost are denoted analogously to the discounted cost case. Similar to Lemma 3.2, the following result
states that MDPn and MDPn are not too different for the average cost.

Lemma 3.7. Suppose Theorem 3.3 holds for MDPn and Theorem 2.5 holds for MDPn; then we have

V̄ ∗n(x)�
{

V ∗n(x), if x ∈ Kn ,

V ∗n(∆n), if x ∈ Kc
n .

(29)

Furthermore, if for any deterministic stationary policy f ∈ �n , we define f̄ (x)� f (x) on Kn and f̄ (x)� f (∆n) on Kc
n , then

V̄n( f̄ , x)�
{

Vn( f , x), if x ∈ Kn ,

Vn( f ,∆n), if x ∈ Kc
n .

(30)

In particular, if the deterministic stationary policy f ∗n ∈ �n is optimal for MDPn , then its extension f̄ ∗n to X is also optimal
for MDPn .

Proof. Let the triplet (h∗n , f ∗n , ρ
n
f ∗n
) satisfy the ACOE for c-MDPn so that f ∗n is an optimal policy and ρn

f ∗n
is the

average value function for c-MDPn . It is straightforward to show that the triplet (h̄∗n , f̄ ∗n , ρ
n
f ∗n
) satisfies the ACOE

for �MDPn , where

h̄∗n(x)�
{

h∗n(x), if x ∈ Kn ,

h∗n(∆n), if x ∈ Kc
n ,

and

f̄ ∗n(x)�
{

f ∗n(x), if x ∈ Kn ,

f ∗n(∆n), if x ∈ Kc
n .

By Gordienko and Hernandez-Lerma [18, Lemma 5.2] (see also Hernández-Lerma and Lasserre [21, Section 5.2]),
this implies that f̄ ∗n is an optimal stationary policy for MDPn with cost function ρn

f ∗n
. This completes the proof

of the first part.
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For the second part, let f ∈ �n with an unique invariant probability measure µ f ∈ P(Xn) and let f̄ ∈ � denote
its extension to X with an unique invariant probability measure µ f̄ . It can be proved that

µ f ( · )� µ f̄ (· ∩Kn)+ µ f̄ (Kc
n)δ∆n

( · ).

We then have

V̄n( f , x) �
∫
X

bn(x , f̄ (x))µ f̄ (dx)�
∫

Kn

cn(x , f̄ (x))µ f̄ (dx)+ µ f̄ (Kc
n)cn(∆n , f̄ (∆n))�

∫
Xn

cn(x , f (x))µ f (dx)� Vn( f , x).

This completes the proof. �

By Lemma 3.7, in the remainder of this section we need only consider MDPn in place of MDPn . Later we
will show that Theorem 3.3 holds for MDPn for n sufficiently large and that Theorem 2.5 holds for c-MDPn for
all n.
Recall the definition of constants γn and τn from (8) and (9). For each n ≥ 1, we define φn : X×A→(0,∞) and

ςn ∈ � as

φn(x , a) :�


φ(x , a), if x ∈ Kn ,∫

Kc
n

φ(y , a)νn(dy), if x ∈ Kc
n ,

ςn :�
∫

Kc
n

w(y)η(dy).

Since η(w) < ∞ and τn can be made arbitrarily small by properly choosing νn , we assume, without loss of
generality, the following.

Assumption 3.3. The sequence of probability measures {νn} is chosen such that the following holds

lim
n→∞
(τn + ςn)� 0. (31)

Let αn :� α+ ςn + τn .

Lemma 3.8. For all n and (x , a) ∈ X×A, the components of MDPn satisfy the following:

sup
a∈A
|bn(x , a)| ≤Mwn(x),∫

X
wn(y) qn(dy | x , a) ≤ αn wn(x)+ η(wn)φn(x , a), (32)

qn(D | x , a) ≥ η(D)φn(x , a), for all D ∈B(X).

Proof. The proof of the first inequality follows from Assumption 3.2 and definitions of bn and wn . To prove the
remaining two inequalities, we have to consider the cases x ∈ Kn and x ∈ Kc

n separately.
Let x ∈ Kn , and therefore qn(· | x , a)� p(· | x , a). The second inequality holds since∫

X
wn(y)p(dy | x , a) �

∫
X

w(y) p(dy | x , a)+
∫

Kc
n

(γn −w(y)) p(dy | x , a)

≤
∫
X

w(y) p(dy | x , a)+ τn

≤ αw(x)+ η(w)φ(x , a)+ τn

≤ αwn(x)+ η(wn)φn(x , a)+ ςnφn(x , a)+ τn (as wn � w and φn � φ on Kn)
≤ αn wn(x)+ η(wn)φn(x , a), (as φn ≤ 1 and wn ≥ 1).

For the last inequality, for all D ∈B(X), we have

qn(D | x , a)� p(D | x , a) ≥ η(D)φ(x , a)� η(D)φn(x , a) (as φn � φ on Kn).

Hence, inequalities hold for x ∈ Kn .
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For x ∈ Kc
n , we have∫

X
wn(y)qn(dy | x , a) �

∫
Kc

n

(∫
X

wn(y)p(dy | z , a)
)
νn(dz)

≤
∫

Kc
n

(αw(z)+ η(wn)φ(x , a)+ ςnφ(x , a)+ τn)νn(dz)

� αwn(x)+ η(wn)φn(x , a)+ ςnφn(x , a)+ τn

≤ αn wn(x)+ η(wn)φn(x , a), (since φn ≤ 1 and wn ≥ 1) (33)

where (33) can be obtained following the same arguments as for the case x ∈ Kn . The last inequality holds for
x ∈ Kc

n since

qn(D | x , a) �
∫

Kc
n

p(D | z , a)νn(dz) ≥
∫

Kc
n

η(D)φ(z , a)νn(dz)� η(D)φn(x , a).

This completes the proof. �

We note that by (31), there exists n0 ≥ 1 such that αn < 1 for n ≥ n0. Hence, for each n ≥ n0, Theorem 3.3
holds for MDPn with w replaced by wn for some Rn > 0 and κn ∈ (0, 1), and we have Rmax :� supn≥n0

Rn <∞ and
κmax :� supn≥n0

κn < 1.
In the remainder of this section, it is assumed that n ≥ n0.

Lemma 3.9. Let g: X× A→ � be any measurable function such that supa∈A |g(x , a)| ≤Mg w(x) for some Mg ∈ �. For
all t ≥ 1 and any compact set K ⊂ X, we then have

sup
(y , f )∈K×�

����∫
X

gn(x , f (x)) q t
n(dx | y , f (y)) −

∫
X

g(x , f (x)) p t(dx | y , f (y))
����→ 0

as n→∞, where gn(x , a)� g(x , a) on Kn ×A and gn(x , a)�
∫

Kc
n

g(z , a)νn(dz) on Kc
n ×A.

Proof. We will prove the lemma by induction. Fix any compact set K ⊂ X. We note that in the inequalities
below, we repeatedly use that φ, φn ≤ 1 without explicitly referring to this fact. Recall the definition of the
compact subsets Kε of X in Lemma 3.1 and the constant γmax �max{1, γ}. Note that supa∈A |gn(x , a)| ≤Mg wn(x) ≤
Mgγmaxw(x) for all x ∈ X.
The claim holds for t � 1 by the following argument:

sup
(y , f )∈K×�

����∫
X

gn(x , f (x)) qn(dx | y , f (y)) −
∫
X

g(x , f (x)) p(dx | y , f (y))
����

� sup
(y , f )∈K×�

����∫
X

gn(x , f (x)) p(dx | y , f (y)) −
∫
X

g(x , f (x)) p(dx | y , f (y))
���� (for n sufficiently large)

� sup
(y , f )∈K×�

����∫
Kc
ε

gn(x , f (x)) p(dx | y , f (y)) −
∫

Kc
ε

g(x , f (x)) p(dx | y , f (y))
���� (for n sufficiently large)

≤Mg(1+ γmax)ε,

where the last inequality follows from Lemma 3.1. Since ε is arbitrary, the result follows.
Assume the claim is true for t ≥ 1. Let us define l f (z) :�

∫
X g(x , f (x)) p t(dx | z , f (z)) and ln

f (z) :�∫
X gn(x , f (x)) q t

n(dx | z , f (z)). By recursively applying the inequalities in Assumption 3.2(e) and in (32) we obtain

sup
f ∈�
|l f (z)| ≤Mgα

t w(z)+ Mgη(w)
t−1∑
j�0
α j

and

sup
f ∈�
|ln

f (z)| ≤ Mgα
t
n wn(z)+ Mgη(wn)

t−1∑
j�0
α

j
n ≤Mgα

t
maxγmaxw(z)+ Mgη(w)γmax

t−1∑
j�0
α

j
max ,
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where αmax :� supn≥n0
αn < 1. We then have

sup
(y , f )∈K×�

����∫
X

gn(x , f (x))q t+1
n (dx | y , f (y)) −

∫
X

g(x , f (x))p t+1(dx | y , f (y))
����

� sup
(y , f )∈K×�

����∫
X

ln
f (z)qn(dz | y , f (y)) −

∫
X

l f (z)p(dz | y , f (y))
����

� sup
(y , f )∈K×�

����∫
X

ln
f (z)p(dz | y , f (y)) −

∫
X

l f (z)p(dz | y , f (y))
���� (for n sufficiently large)

≤ sup
(y , f )∈K×�

����∫
Kc
ε

ln
f (z)p(dz | y , f (y)) −

∫
Kc
ε

l f (z)p(dz | y , f (y))
����+ sup
(z , f )∈Kε×�

|ln
f (z) − l f (z)|

≤ Rε+ sup
(z , f )∈Kε×�

|ln
f (z) − l f (z)|, (34)

where R is given by

R :� Mg

(
αt

+ αt
maxγmax + η(w)

t−1∑
j�0
α j

+ η(w)γmax

t−1∑
j�0
α

j
max

)
and the last inequality follows from Lemma 3.1. Since the claim holds for t and Kε, the second term in (34)
goes to zero as n→∞. Since ε is arbitrary, the result follows. �
In the remainder of this section, the above results are used to compute a near optimal policy for the original

MDP. Let {εn} be a sequence of positive real numbers converging to zero.
For each f ∈ �, let µn

f denote the unique invariant probability measure of the transition kernel qn(· | x , f (x))
and let ρn

f denote the associated average cost; that is, ρn
f :� V̄n( f , x) �

∫
X bn(y , f (y))µn

f (dy) for all initial points
x ∈ X. Therefore, the value function of MDPn , denoted by V̄ ∗n , is given by V ∗n(x) � inf f ∈� ρ

n
f ; i.e., it is constant

on X.
Before making the connection with Theorem 2.6, we prove the following result.

Lemma 3.10. The transition probability pn of c-MDPn is continuous in (x , a) with respect to the total variation distance.
Proof. To ease the notation, we define M(Xn), M(X), and Mw(X) as the subsets of B(Xn), B(X), and Bw(X),
respectively, whose elements have (corresponding) norm less than one. Let (xk , ak)→ (x , a) in Xn ×A. Since the
pseudostate ∆n is isolated and Kn is compact, we have two cases: (i) xk � x � ∆n for all k large enough or
(ii) xk→ x in Kn .
For the first case we have

‖pn(· | ∆n , ak) − pn(· | ∆n , a)‖TV � sup
g∈M(Xn )

����∫
Xn

g(y) pn(dy | ∆n , ak) −
∫
Xn

g(y) pn(dy | ∆n , a)
����

≤ sup
g∈M(X)

����∫
X

g(y) qn(dy | ∆n , ak) −
∫
X

g(y) qn(dy | ∆n , a)
���� (35)

� sup
g∈M(X)

����∫
Kc

n

(∫
X

g(y) p(dy | z , ak) −
∫
X

g(y) p(dy | z , a)
)
νn(dz)

����
≤

∫
Kc

n

sup
g∈M(X)

����∫
X

g(y) p(dy | z , ak) −
∫
X

g(y) p(dy | z , a)
����νn(dz)

≤
∫

Kc
n

sup
g∈Mw (X)

����∫
X

g(y) p(dy | z , ak) −
∫
X

g(y) p(dy | z , a)
����νn(dz)

�

∫
Kc

n

‖p(· | z , ak) − p(· | z , a)‖wνn(dz), (36)

where (35) follows since if for any g ∈M(Xn) we define ḡ � g on Kn and ḡ � g(∆n) on Kc
n , then we have ḡ ∈M(X)

and
∫
Xn

g(y)pn(dy | x , a)�
∫
X ḡ(y)qn(dy | x , a) for all (x , a) ∈ Xn ×A. Note that we have

sup
g∈Mw (X)

����∫
X

g(y)p(dy | z , ak) −
∫
X

g(y)p(dy | z , a)
���� ≤ ∫

X
w(y)p(dy | z , ak)+

∫
X

w(y)p(dy | z , a)

≤ 2(α+ η(w))w(z)
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by Assumption 3.2(e), φ ≤ 1, and w ≥ 1. Since w (restricted to Kc
n) is νn-integrable, by the dominated convergence

theorem (36) goes to zero as k→∞.
For the second case we have

‖pn(· | xk , ak) − pn(· | x , a)‖TV � sup
g∈M(Xn )

����∫
Xn

g(y)pn(dy | xk , ak) −
∫
Xn

g(y)pn(dy | x , a)
����

≤ sup
g∈M(X)

����∫
X

g(y)qn(dy | xk , ak) −
∫
X

g(y)qn(dy | x , a)
����

� sup
g∈M(X)

����∫
X

g(y)p(dy | xk , ak) −
∫
X

g(y)p(dy | x , a)
���� (since xk , x ∈ Kn)

≤ sup
g∈Mw (X)

����∫
X

g(y)p(dy | xk , ak) −
∫
X

g(y)p(dy | x , a)
����

� ‖p(· | xk , ak) − p(· | x , a)‖w .

By Assumption 3.2(j) the last term goes to zero as k→∞. �

Thus we obtain that for each n ≥ 1, c-MDPn satisfies the assumption in Theorem 2.6 for

ζ( · )� η(· ∩Kn)+ η(Kc
n)δ∆n

( · ), θ(x , a)�


φ(x , a), if x ∈ Kn ,∫

Kc
n

φ(y , a)νn(dy), if x �∆n ,

and some λ ∈ (0, 1), where the existence of λ follows from Assumption 3.2(h) and the fact that φ > 0.
Consequently, there exists a deterministic stationary policy fn ∈ �n , obtained from the finite state approxima-

tions of c-MDPn , such that
sup
x∈Xn

|Vn( fn , x) −V ∗n(x)| ≤ εn , (37)

where finite-state models are constructed replacing (Z,A, p , c) with the components (Xn ,A, pn , cn) of c-MDPn in
Section 2. By Lemma 3.7, we also have

|ρn
fn
− V̄ ∗n | ≤ εn , (38)

where, by an abuse of notation, we also denote the policy extended to X by fn .

Lemma 3.11. We have
sup

f ∈�
|ρn

f − ρ f | → 0 (39)

as n→∞.

Proof. Fix any compact set K ⊂ X. For any t ≥ 1 and y ∈ K, we have

sup
f ∈�
|ρn

f − ρ f | � sup
f ∈�

����∫
X

bn(x , f (x))µn
f (dx) −

∫
X

c(x , f (x))µ f (dx)
����

≤ sup
f ∈�

����∫
X

bn(x , f (x))µn
f (dx) −

∫
X

bn(x , f (x))q t
n(dx | y , f (y))

����
+ sup

f ∈�

����∫
X

bn(x , f (x))q t
n(dx | y , f (y)) −

∫
X

c(x , f (x))p t(dx | y , f (y))
����

+ sup
f ∈�

����∫
X

c(x , f (x))p t(dx | y , f (y)) −
∫
X

c(x , f (x))µ f (dx)
����

≤ MRmaxw(y)κt
max + MRw(y)κt

+ sup
(y , f )∈K×�

����∫
X

bn(x , f (x))q t
n(dx | y , f (y)) −

∫
X

c(x , f (x))p t(dx | y , f (y))
����,

where the last inequality follows from Theorem 3.3(ii) and (6) in Assumption 3.1. The result follows from
Lemma 3.9. �
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Theorem 3.4. The value function of MDPn converges to the value function of the original MDP; i.e., |V̄ ∗n −V ∗ | → 0, as
n→∞.
Proof. Since

|V̄ ∗n −V ∗ | �
��� inf

f ∈�
ρn

f − inf
f ∈�
ρ f

��� ≤ sup
f ∈�
|ρn

f − ρ f |,

the result follows from Lemma 3.11. �
The following is this section’se main result, which states that the true average cost of the policies fn obtained

from finite state approximations of c-MDPn converges to the average value function V ∗ of the original MDP.
Theorem 3.5. We have |ρ fn

−V ∗ | → 0, as n→∞.
Proof. We have

|ρ fn
−V ∗ | ≤ |ρ fn

− ρn
fn
| + |ρn

fn
− V̄ ∗n | + |V̄ ∗n −V ∗ | ≤ sup

f ∈�
|ρ f − ρn

f | + εn + |V̄ ∗n −V ∗ | (by (38))

The result follows from Lemma 3.11 and Theorem 3.4. �

4. Discretization of the Action Space
For computing near optimal policies using well-known algorithms, such as value iteration, policy iteration, and
Q-learning, the action space must be finite. In this section, we show that, as a preprocessing step, the action
space can taken to be finite if it has a sufficiently large number of points for accurate approximation. Throughout
this section, it is assumed that Assumption 3.1 holds for the discounted cost and Assumption 3.2 holds for the
average cost.
It was shown in Saldi et al. [33, 34] that any MDP with (infinite) compact action space can be well approx-

imated by an MDP with finite action space under assumptions that are satisfied by c-MDPn for both the
discounted cost and the average cost cases. Specifically, let dA denote the metric on A. Since A is compact, one
can find a sequence of finite subsets {Λk} of A such that for all k

min
â∈Λk

dA(a , â) < 1/k , for all a ∈ A.

We define c-MDPn , k as the Markov decision process having the components {Xn ,Λk , pn , cn} and we let �n(Λk)
denote the set of all deterministic stationary policies for c-MDPn , k . Note that �n(Λk) is the set of policies in �n
taking values only in Λk . Therefore, in a sense, c-MDPn , k and c-MDPn can be viewed as the same MDP, where
the former has constraints on the set of policies. For each n and k, by an abuse of notation, let f ∗n and f ∗n , k denote
the optimal stationary policies of c-MDPn and c-MDPn , k , respectively, for both the discounted and average costs.
Saldi et al. [33, 34, Theorem 3.2] show that for all n, we have

lim
k→∞

Jn( f ∗n , k , x)� Jn( f ∗n , x) :� J∗n(x), lim
k→∞

Vn( f ∗n , k , x)� Vn( f ∗n , x), :� V ∗n(x)

for all x ∈ Xn . In other words, the discounted and average value functions of c-MDPn , k converge to the dis-
counted and average value functions of c-MDPn as k→∞. We note that although Saldi et al. [34, Theorem 3.2];
[33, Theorem 3.2] are proved for nonnegative one-stage cost function, it is straightforward to check that these
theorems are also valid for any real valued one-stage cost function.
Theorem 4.1. For any x ∈ X, there exists a subsequence {kn} such that

lim
n→∞

J( f ∗n , kn
, x)� J∗(x), lim

n→∞
V( f ∗n , kn

, x)� V ∗(x),

where f ∗n , kn
∈ �(Λkn

) is the optimal stationary policy of c-MDPn , kn
.

Proof. Let us fix x ∈ X. For n sufficiently large (so x ∈ Kn), we choose kn such that | Jn( f ∗n , kn
, x) − Jn( f ∗n , x)| <

1/n (or |Vn( f ∗n , kn
, x) − Vn( f ∗n , x)| < 1/n for the average cost). We note that if A is a compact subset of a finite

dimensional Euclidean space, then by using Saldi et al. [33, Theorems 4.1 and 4.2] one can obtain an explicit
expression for kn in terms of n under further continuity conditions on c and p. By Lemmas 3.6 and 3.11, we have
| J̄n( f ∗n , kn

, x) − J( f ∗n , kn
, x)| → 0 and |V̄n( f ∗n , kn

, x) −V( f ∗n , kn
, x)| → 0 as n→∞, where again by an abuse of notation,

the policies extended to X are also denoted by f ∗n , kn
. Since J̄n( f ∗n , kn

, x) � Jn( f ∗n , kn
, x) and V̄n( f ∗n , kn

, x) � Vn( f ∗n , kn
, x),

using Theorems 3.1 and 3.4 one can immediately obtain

lim
n→∞

J( f ∗n , kn
, x)� J∗(x), lim

n→∞
V( f ∗n , kn

, x)� V ∗(x). �
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Theorem 4.1 implies that before discretizing the state space to compute the near optimal policies, one can
discretize, without loss of generality, the action space A in advance on a finite grid using a sufficiently large
number of grid points.

5. Rate of Convergence Analysis for Compact-State MDPs
In this section we consider (Q2) for MDPs with compact state space; that is, we derive an upper bound on the
performance loss due to discretization in terms of the cardinality of the set Zn (i.e., number of grid points) . To
do this, we will impose some new assumptions on the components of the MDP in addition to Assumptions 2.1
and 2.2. First, we present some definitions that are needed in the development.
For each g ∈ Cb(Z), let

‖g‖Lip :� sup
(z ,y)∈Z×Z

|g(z) − g(y)|
dZ(z , y) .

If ‖g‖Lip is finite, then g is called Lipschitz continuous with Lipschitz constant ‖g‖Lip. Lip(Z) denotes the set of
all Lipschitz continuous functions on Z; i.e.,

Lip(Z) :� {g ∈ Cb(Z): ‖g‖Lip <∞}

and Lip(Z,K) denotes the set of all g ∈ Lip(Z) with ‖g‖Lip ≤ K. The Wasserstein distance of order 1 Villani [39,
p. 95] between two probability measures ζ and ξ over Z is defined as

W1(ζ, ξ) :� sup
{����∫

Z
gdζ−

∫
Z

gdξ
����: g ∈ Lip(Z, 1)

}
.

W1 is also called the Kantorovich-Rubinstein distance. It is known that if Z is compact, then W1(ζ, ξ) ≤ diam(Z) ·
‖ζ − ξ‖TV; see Villani [39, Theorem 6.15, p. 103]. For compact Z, the Wasserstein distance of order 1 is weaker
than total variation distance. Furthermore, for compact Z, the Wasserstein distance of order 1 metrizes the weak
topology on the set of probability measures P(Z) (see Villani [39, Corollary 6.13, p. 97]), which also implies that
convergence in this sense is weaker than is setwise convergence.
In this section we impose the following supplementary assumptions in addition to Assumptions 2.1 and 2.2.

Assumption 5.1. (g) The one-stage cost function c satisfies c(·, a) ∈ Lip(Z,K1) for all a ∈ A for some K1.
(h) The stochastic kernel p satisfies W1(p(· | z , a), p(· | y , a)) ≤ K2dZ(z , y) for all a ∈ A for some K2.
(j) Z is an infinite compact subset of �d for some d ≥ 1, equipped with the Euclidean norm.

We note that Assumption 5.1(j) implies the existence of a constant α > 0 and finite subsets Zn ⊂ Z with
cardinality n such that

max
z∈Z

min
y∈Zn

dZ(z , y) ≤ α(1/n)1/d (40)

for all n, where dZ is the Euclidean distance on Z. In the remainder of this section, we replace Zn defined in
Section 2 with Zn satisfying (40) to derive explicit bounds on the approximation error in terms of the cardinality
of Zn .

5.1. Discounted Cost
Assumptions 2.1 and 5.1 are imposed throughout this section. Additionally, we assume that K2β < 1. The last
assumption is the key to prove the next result, which states that the value function J∗ of the original MDP for
the discounted cost is in Lip(Z). Although this result is known in the literature (see Hinderer [24]), we give a
short proof for the sake of completeness using a simple application of the value iteration algorithm.

Theorem 5.1. The value function J∗ for the discounted cost is in Lip(Z,K), where K � K1(1/(1− βK2)).

Proof. Let u ∈ Lip(Z,K) for some K > 1; then g � u/K ∈ Lip(Z, 1), and therefore for all a ∈ A and z , y ∈ Z, we have����∫
Z

u(x)p(dx | z , a) −
∫
Z

u(x)p(dx | y , a)
���� � K

����∫
Z

g(x)p(dx | z , a) −
∫
Z

g(x)p(dx | y , a)
����

≤ KW1(p(· | z , a), p(· | y , a)) ≤ KK2dZ(z , y),
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by Assumption 5.1(h). Hence, the contraction operator T defined in (2) maps u ∈ Lip(Z,K) to Tu ∈ Lip(Z,K1 +

βKK2) since for all z , y ∈ Z

|Tu(z) −Tu(y)| ≤ max
a∈A

{
|c(z , a) − c(y , a)| + β

����∫
Z

u(x)p(dx | z , a) −
∫
Z

u(x)p(dx | y , a)
����}

≤ K1dZ(z , y)+ βKK2dZ(z , y)� (K1 + βKK2)dZ(z , y).

Now we apply T recursively to obtain the sequence {Tn u} by letting Tn u � T(Tn−1u), which converges to the
value function J∗ by the Banach fixed point theorem. Clearly, by induction we have for all n ≥ 1

Tn u ∈ Lip(Z,Kn),

where Kn �K1
∑n−1

i�0 (βK2)i +K(βK2)n . If we choose K<K1, then Kn ≤Kn+1 for all n, and therefore Kn ↑K1(1/(1−βK2))
since K2β < 1. Hence, Tn u ∈ Lip(Z,K1(1/(1 − βK2))) for all n, and therefore J∗ ∈ Lip(Z,K1(1/(1 − βK2))) since
Lip(Z,K1(1/(1− βK2))) is closed with respect to the sup-norm ‖ · ‖. �

The following theorem is the main result of this section. Recall that the policy f̂n ∈ � is obtained by extending
the optimal policy f ∗n of MDPn to Z.

Theorem 5.2. We have

‖ J( f̂n , ·) − J∗‖ ≤
τ(β,K2)K1(1/(1− βK2))+ 2K1/(1− β)

1− β 2α(1/n)1/d ,

where τ(β,K2)� (2+ β)βK2 + (β2 + 4β+ 2)/(1− β)2 and α is the coefficient in (40).

Proof. To prove the theorem, we obtain upper bounds on the expressions derived in Section 2.1 in terms of the
cardinality n of Zn . The proof of Theorem 2.2 gives

‖ J( f̂n , ·) − J∗‖ ≤
‖T f̂n

J∗ − T̂ f̂n
J∗‖ + (1+ β)‖ Ĵ∗n − J∗‖

1− β .

To prove the theorem we upper bound ‖T f̂n
J∗ − T̂ f̂n

J∗‖ and ‖ Ĵ∗n − J∗‖ in terms n. For the first term we have

‖T f̂n
J∗ − T̂ f̂n

J∗‖ � sup
z∈Z
|T f̂n

J∗(z) − T̂ f̂n
J∗(z)|

≤ sup
z∈Z

∫ ����c(z , f̂n(z))+ β
∫
Z

J∗(y)p(dy | z , f̂n(z)) − c(x , f̂n(x)) − β
∫
Z

J∗(y)p(dy | x , f̂n(x))
����νn , in (z)(dx)

≤ sup
z∈Z

∫ (
K1dZ(x , z)+ β

����∫
Z

J∗(y)p(dy | z , f̂n(z)) −
∫
Z

J∗(y)p(dy | x , f̂n(z))
����)νn , in (z)(dx)

(since f̂n(x)� f̂n(z) for all x ∈Sn , in (z))

≤ sup
z∈Z

∫
(K1 + β‖ J∗‖LipK2)dZ(x , z)νn , in (z)(dx)

≤ (K1 + β‖ J∗‖LipK2) max
i∈{1,...,n}

diam(Sn , i)

≤ (K1 + β‖ J∗‖LipK2)2α(1/n)1/d . (41)

For the second term, the proof of Theorem 2.4 gives

‖ Ĵ∗n − J∗‖ ≤
‖T̂n J∗ − Fn J∗‖ + (1+ β)‖ J∗ − u∗n ‖

1− β .

First consider ‖T̂n J∗ − Fn J∗‖. Define

l(z , a) :� c(z , a)+ β
∫
X

J∗(y)p(dy | z , a),

so that
J∗(z)� min

a∈A
l(z , a).
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It is straightforward to show that l(·, a) ∈ Lip(Z,Kl) for all a ∈ A, where Kl � K1 + β‖ J∗‖LipK2. By adapting the
proof of Lemma 2.3 to the value function J∗, we obtain

‖T̂n J∗ − Fn J∗‖ � sup
z∈Z

����min
a∈A

∫
l(x , a)νn , in (z)(dx) −

∫
min

a∈A
l(x , a)νn , in (z)(dx)

����
≤ sup

z∈Z

∫
sup

y∈Sn , in (z)

|l(y , ai) − J∗(y)|νn , in (z)(dy)

≤ max
i∈{1,...,n}

∫
sup
y∈Sn , i

{|l(y , ai) − l(zi , ai)| + | J∗(zi) − J∗(y)|}νn , i(dy)

≤ max
i∈{1,...,n}

∫
sup

y∈Sn , in

{Kl dZ(y , zi)+ ‖ J∗‖LipdZ(zi , y)}νn , i(dy)

≤ (Kl + ‖ J∗‖Lip) max
i∈{1,...,n}

diam(Sn , i)

≤ (Kl + ‖ J∗‖Lip)2α(1/n)1/d . (42)

For the expression ‖ J∗ − u∗n ‖, by Lemma 2.2 we have

‖u∗n − J∗‖ ≤ 2
1− β inf

r∈Zkn
‖ J∗ −Φr ‖ , where Φr(z)�

kn∑
i�1

ri1Sn , i
(z), r � (r1 , . . . , rkn

).

Since ‖ J∗‖Lip <∞, we have infr∈Zkn ‖ J∗ −Φr ‖ ≤ ‖ J∗‖Lip maxi∈{1,...,n} diam(Sn , i) ≤ ‖ J∗‖Lip2α(1/n)1/d . Hence,

‖u∗n − J∗‖ ≤ 2
1− β ‖ J

∗‖Lip2α(1/n)1/d . (43)

Hence, by (42) and (43) we obtain

‖ Ĵ∗n − J∗‖ ≤
((
βK2 +

β+ 3
(1− β)2

)
‖ J∗‖Lip +

K1

1− β

)
2α(1/n)1/d . (44)

Thus, the result follows from (41) and (44), and the fact ‖ J∗‖Lip ≤ K1(1/(1− βK2)). �

Remark 5.1. It is important to point out that if we replace Assumption 5.1(h) with the uniform Lipschitz con-
tinuity of p(· | z , a) in z with respect to total variation distance, then Theorem 5.2 remains valid (with possibly
different constants in front of the term (1/n)1/d). However, in this case, we do not need the assumption K2β < 1.

Remark 5.2. For the average cost case, instead of assuming from the outset the uniform Lipschitz continuity
of c and p in the z variable, we first derive a rate of convergence result in terms of the moduli of continuity
of the functions ωc and ωp in the z variable of c(z , a) and p(· | z , a), where the total variation distance is used
to define ωp . We next state that explicit rate of convergence result can be given if we impose some structural
assumptions on ωc and ωp such as linearity, which corresponds to the uniform Lipschitz continuity of c(z , a)
and p(· | z , a) in z. However, this is not the right approach for the discounted cost case as the modulus of
continuity function ωp is calculated using the Wasserstein distance of order 1. Indeed, to obtain a similar result
as in the average cost case, we must relate ωc and ωp to the modulus of continuity ωJ∗ of the value function J∗.
This can be established if ωc and ωp are affine functions (i.e., ωc(r) � K1r + L1 and ωp(r) � K2r + L2) using the
dual formulation of the Wasserstein distance of order 1 (Villani [39, Theorem 5.10]):

W1(µ, ν)� sup
(ψ, ϕ)∈Cb (Z)×Cb (Z)
ψ(x)−ϕ(y)≤dZ(x , y)

����∫
Z
ψ(z)µ(dz) −

∫
Z
ϕ(z)ν(dz)

����.
However, in this situation we can explicitly compute the convergence rate only if L1 � L2 � 0, which is the
uniform Lipschitz continuity case.
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5.2. Average Cost
In this section, we suppose that Assumptions 2.2 and 5.1(j) hold. We define the modulus of continuity functions
in the z variable of c(z , a) and p(· | z , a) as follows

ωc(r) :� sup
a∈A

sup
z , y∈Z: dZ(z , y)≤r

|c(z , a) − c(y , a)|, ωp(r) :� sup
a∈A

sup
z , y∈Z: dZ(z , y)≤r

‖p(· | z , a) − p(· | y , a)‖TV.

Since c(z , a) and p(· | z , a) are uniformly continuous, we have limr→0 ωc(r) � 0 and limr→0 ωp(r) � 0. Note that
when ωc and ωp are linear, c(z , a) and p(· | z , a) are uniformly Lipschitz in z. In the remainder of this section,
we first derive a rate of convergence result in terms of ωc and ωp . Next, we explicitly compute the convergence
rate for the Lipschitz case as a corollary of this result.
To obtain convergence rates for the average cost, we first prove a rate of convergence result for Lemma 2.6.

To this end, for each n ≥ 1, let dn :� 2α(1/n)1/d , where α is the coefficient in (40).
Lemma 5.1. For all t ≥ 1, we have

sup
(y , f )∈Z×�

‖p t(· | y , f (y)) − q t
n(· | y , f (y))‖TV ≤ tωp(dn).

Proof. Similar to the proof of Lemma 2.6, we use induction. For t � 1, recalling the proof of Lemma 2.6, the
claim holds by the following argument:

sup
(y , f )∈Z×�

‖p(· | y , f (y)) − qn(· | y , f (y))‖TV ≤ sup
y∈Z

sup
(x , a)∈Sn , in (y)×A

‖p(· | y , a) − p(· | x , a)‖TV ≤ ωp(dn).

Now, assume the claim is true for t ≥ 1. Again recalling the proof of Lemma 2.6, we have

sup
(y , f )∈Z×�

‖p t+1(· | y , f (y)) − q t+1
n (· | y , f (y))‖TV ≤ sup

(y , f )∈Z×�
‖p t(· | y , f (y)) − q t

n(· | y , f (y))‖TV

+ sup
(z , f )∈Z×�

‖p(· | z , f (z)) − qn(· | z , f (z))‖TV

≤ tωp(dn)+ωp(dn)� (t + 1)ωp(dn).

This completes the proof. �
The following theorem is the main result of this section. A somewhat similar result was obtained in

Hernández-Lerma [20, Section 3.5], where identical assumptions are imposed on both the original model and
the approximating model (see Hernández-Lerma [20, Assumption 5.1]). Moreover, the approximating transi-
tion probability and one-stage cost function are assumed to converge to the original transition probability
and one-stage cost function with respect to some rate; that is, ρ(n) :� sup(x , a)∈X×A |bn(x , a) − c(x , a)| and π(n) :�
sup(x , a)∈X×A ‖qn(· | x , a) − p(· | x , a)‖TV with ρ(n), π(n) → 0 as n→∞. Although our result may appear to be a
special case of the results in Hernández-Lerma [20, Section 3.5], there are several differences: (i) our assump-
tions are only imposed for the original model and (ii) in Hernández-Lerma [20, Section 3.5], the approximating
models do not have finite state space, whereas our approximating models are obtained by extending finite
state models to the original state space, thereby allowing for a constructive numerical method to calculate near
optimal policies.
Recall that the optimal policy f̃ ∗n for �MDPn is obtained by extending the optimal policy f ∗n for MDPn to Z,

and R and κ are the constants in Theorem 2.5.
Theorem 5.3. For all t ≥ 1, we have

|ρ f̃ ∗n − ρ f ∗ | ≤ 4‖c‖Rκt
+ 2ωc(dn)+ 2‖c‖tωp(dn).

Proof. The proof of Theorem 2.6 gives

|ρ f̃ ∗n − ρ f ∗ | ≤ |ρ f̃ ∗n − ρ̂
n
f̃ ∗n
| + |ρ̂n

f̃ ∗n
− ρ̂n

f̂ ∗n
| + |ρ̂n

f̂ ∗n
− ρ f ∗ |.

Hence, to prove the theorem we obtain an upper bounds on the three terms in the sum. Consider the first term
(recall the proof of Lemma 2.7)

|ρ f̃ ∗n − ρ̂
n
f̃ ∗n
| ≤ sup

f ∈�
|ρ̂n

f − ρ f | ≤ 2Rκt ‖c‖ + ‖c‖ sup
(y , f )∈Z×�

‖q t
n(· | y , f (y)) − p t(· | y , f (y))‖TV

≤ 2Rκt ‖c‖ + ‖c‖tωp(dn) (by Lemma 5.1). (45)
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For the second term, the proof of Lemma 2.11 gives

|ρ̂n
f̃ ∗n
− ρ̂n

f̂ ∗n
| ≤ |ρ̂n

f̃ ∗n
− ρ̃n

f̃ ∗n
| + |ρ̃n

f̃ ∗n
− ρ̂n

f̂ ∗n
|

≤ sup
f ∈�
|ρ̂n

f − ρ̃n
f | + | inf

f ∈�
ρ̃n

f − inf
f ∈�
ρ̂n

f |

≤ 2 sup
f ∈�
|ρ̂n

f − ρ̃n
f |

≤ 2‖bn − c‖ (see the proof of Lemma 2.9)

≤ 2 sup
(z , a)∈Z×A

∫
|c(x , a) − c(z , a)|νn , in (z)(dx)

≤ 2ωc(dn). (46)

For the last term, we have

|ρ̂n
f̂ ∗n
− ρ f ∗ | �

��� inf
f ∈�
ρ̂n

f − inf
f ∈�
ρ f

��� ≤ sup
f ∈�
|ρ̂n

f − ρ f | ≤ 2Rκt ‖c‖ + ‖c‖tωp(dn) (by (45)). (47)

Combining (45)–(47) implies the result. �

To explicitly calculate a convergence rate, we need to impose some structural assumptions on ωc and ωp .
One such assumption is linearity, which corresponds to the uniform Lipschitz continuity of c(z , a) and p(· | z , a)
in z. This means that ωc(r)� K1r and ωp(r)� K2r or, equivalently, |c(z , a) − c(y , a)| ≤ K1dZ(z , y) and ‖p(· | z , a) −
p(· | y , a)‖ ≤ K2dZ(z , y) for all z , y ∈ Z and a ∈ Z. In this case, by Theorem 5.3, for all t ≥ 1 we have

|ρ f̃ ∗n − ρ f ∗ | ≤ 4‖c‖Rκt
+ 4K1α(1/n)1/d + 4‖c‖K2α(1/n)1/d t . (48)

To obtain a proper rate of convergence result (i.e., an upper bound that only depends on n), the dependence
of the upper bound on t has to be written as a function of n. This can be done by (approximately) minimizing
the upper bound in (48) with respect to t for each n. Let us define the constants I1 :� 4‖c‖R, I2 :� 4K1α, and
I3 :� 4‖c‖K2α. The upper bound in (48) then becomes

I1κ
t
+ I2(1/n)1/d + I3(1/n)1/d t . (49)

For each n, it is straightforward to compute that

t′(n) :� ln
(

n1/d

I4

)
1

ln(1/κ)

is the zero of the derivative of the convex term in (49), where I4 :� I3/(I1 ln(1/κ)). Letting t � dt′(n)e in (49), we
obtain the following result.

Corollary 1. Suppose that c(z , a) and p(· | z , a) are uniformly Lipschitz continuous in z in addition to the assumptions
imposed at the beginning of this section. Thus, we have

|ρ f̃ ∗n − ρ f ∗ | ≤ (I1I4 + I2)(1/n)1/d +
I3

ln(1/κ) (1/n)
1/d ln

(
n1/d

I4

)
.

6. Order Optimality for Approximation Errors in the Rate of Quantization
The following example demonstrates that the order of the performance losses in Theorem 5.2 and Corollary 1
cannot be better than O((1/n)1/d). More precisely, we exhibit a simple standard example where we can lower
bound the performance loss by L(1/n)1/d for some positive constant L. A similar result was obtained in Saldi
et al. [33, Section IV] for the case of quantization of action space, where the action space was a compact subset
of �m for some m ≥ 1. Therefore, when both state and action spaces are quantized, the resulting construction
is order optimal in the above sense as the approximation error, in this case, is bounded by the sum of the
approximation errors in quantization of state space and quantization of action space.
In what follows h( · ) and h(· | ·) denote differential and conditional differential entropies, respectively; see

Cover and Thomas [12, Chapter 8].
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Consider the additive-noise system:

zt+1 � F(zt , at)+ vt , t � 0, 1, 2, . . . ,

where zt , at , vt ∈ �d . We assume that sup(z , a)∈�d×�d (‖F(z , a)‖/(‖z‖ + ‖a‖)) < 1/2. The noise process {vt} is a
sequence of i.i.d. random vectors whose common distribution has density g supported on some compact sub-
set V of �d . We choose V such that Z�A can be taken to be compact subsets of �d . For simplicity suppose that the
initial distribution µ has the same density g. It is assumed that the differential entropy h(g) :�−

∫
Z g(z) log g(z)dz

is finite. Let the one-stage cost function be c(z , a) :� ‖z − a‖. Clearly, the optimal stationary policy f ∗ is induced
by the identity f ∗(z) � z, having the optimal cost J( f ∗ , µ) � 0 and V( f ∗ , µ) � 0. Let f̂n be the piecewise constant
extension of the optimal policy f ∗n of the MDPn to the set Z. Fix n ≥ 1 and define Dt :� E f̂n

µ [c(zt , at)] for all t.
Since at � f̂n(zt) can take at most n values in A, by the Shannon lower bound (SLB) (see Yamada et al. [44, p. 12])
we have for t ≥ 1

log n ≥ R(Dt) ≥ h(zt)+ θ(Dt) � h(F(zt−1 , at−1)+ vt−1)+ θ(Dt)
≥ h(F(zt−1 , at−1)+ vt−1 | zt−1 , at−1)+ θ(Dt) (50)
� h(vt−1)+ θ(Dt), (51)

where θ(Dt) � −d + log((1/(dVdΓ(d)))(d/Dt)d), R(Dt) is the rate-distortion function of zt , Vd is the volume of
the unit sphere Sd � {z: ‖z‖ ≤ 1}, and Γ is the gamma function. Here, (50) follows from the fact that con-
ditioning reduces the entropy (see Cover and Thomas [12, Theorem 2.6.5, p. 29]) and (51) follows from the
independence of vt−1 and the pair (zt−1 , at−1). Note that h(vt−1) � h(g) for all t. Thus, Dt ≥ L(1/n)1/d , where
L :� (d/2)(2h(g)/(dVdΓ(d)))1/d . Since we have obtained stagewise error bounds, these give | J( f ∗ , µ) − J( f̂n , µ)| ≥
(L/(1− β))(1/n)1/d and |V( f ∗ , µ) −V( f̂n , µ)| ≥ L(1/n)1/d .
Remark 6.1. We note that if h(xt+1 | xt , at) can be lower bounded by some constant k for all t ≥ 1, the above
analysis still holds by replacing h(g) with k. For instance, this is the case if the transition probability p(· | x , a)
admits a density that is bounded from above uniformly in (x , a).

7. Numerical Examples
In this section, we consider two examples, the additive noise model and fisheries management problem, in
order to illustrate our results numerically. Since computing true costs of the policies obtained from the finite
models is intractable, we only compute the value functions of the finite models and illustrate their converge to
the value function of the original MDP as n→∞.
Before proceeding to the examples, we note that all results in this paper apply with straightforward modifi-

cations for the case of maximizing reward instead of minimizing cost.

7.1. Additive Noise System
In this example, the additive noise system is given by

xt+1 � F(xt , at)+ vt , t � 0, 1, 2, . . .

where xt , at , vt ∈ � and X � �. The noise process {vt} is a sequence of �-valued i.i.d. random variables with
common density g. Hence, the transition probability p(· | x , a) is given by

p(D | x , a)�
∫

D
g(v − F(x , a))m(dv), for all D ∈B(�),

where m is the Lebesgue measure. The one-stage cost function is c(x , a)� (x− a)2, the action space is A� [−L, L]
for some L > 0, and the cost function to be minimized is the discounted cost.
We assume that (i) g is a Gaussian probability density function with zero mean and variance σ2,

(ii) supa∈A |F(x , a)|2 ≤ k1x2 + k2 for some k1 , k2 ∈�+, (iii) β < 1/α for some α ≥ k1, and (iv) F is continuous. Hence,
Assumption 3.1 holds for this model with w(x)� k + x2 and M � 4(L2/k + x2) for some k ∈ �+.
For the numerical results, we use the following parameters: F(x , a)� x + a, β � 0.3, L � 0.5, and σ � 0.1.
We selected a sequence {[−ln , ln]}15

n�1 of nested closed intervals, where ln � 0.5 + 0.25n, to approximate �.
Each interval is uniformly discretized using d2kdn/3e lne grid points, where km � 5m for m � 1, . . . , 5 and dqe
denotes the smallest integer greater than or equal to q ∈ �. Therefore, the discretization is gradually refined.
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Figure 1. Optimal Costs of the Finite Models When the Initial State Is x � 0.7

35 120 200

0.4

0.8

1.2

Number of grid points

O
pt

im
al

 c
os

ts

For each n, the finite state space is given by {xn , i}
kn
i�1 ∪ {∆n}, where {xn , i}

kn
i�1 are the representation points in

the uniform quantization of the closed interval [−ln , ln] and ∆n is a pseudostate. We also uniformly discretize
the action space A � [−0.5, 0.5] by using 2kdn/3e grid points. For each n, the finite state models are constructed
as in Section 2 by replacing Z with [−ln , ln] and by setting νn( · ) � 1

2 mn( · )+ 1
2 δ∆n
( · ), where mn is the Lebesgue

measure normalized over [−ln , ln].
We use the value iteration algorithm to compute the value functions of the finite models. Figure 1 displays

the graph of these value functions corresponding to the different values for the number of grid points when the
initial state is x � 0.7. The figure illustrates that the value functions of the finite models converge to the value
function of the original model.

7.2. Fisheries Management Problem
In this example we consider the following population growth model, called a Ricker model; see Hernández-
Lerma and Lasserre [21, Section 1.3]:

xt+1 � θ1at exp{−θ2at + vt}, t � 0, 1, 2, . . . (52)

where θ1 , θ2 ∈ �+, xt is the population size in season t, and at is the population to be left for spawning for
the next season; in other words, xt − at is the amount of fish captured in the season t. The one-stage “reward”
function is u(xt− at), where u is some utility function. In this model, the goal is to maximize the average reward.

The state and action spaces are X�A� [κmin , κmax] for some κmin , κmax ∈�+. Since the population left for spawn-
ing cannot be greater than the total population, for each x ∈ X, the set of admissible actions is A(x) � [κmin , x]
which is not consistent with our assumptions. However, we can (equivalently) reformulate above problem so
that the admissible actions A(x) will become A for all x ∈ X. In this case, instead of dynamics in Equation (52)
we have

xt+1 � θ1 min(at , xt)exp{−θ2 min(at , xt)+ vt}, t � 0, 1, 2, . . .

and A(x)� [κmin , κmax] for all x ∈ X. The one-stage reward function is u(xt − at)1{xt≥at }.
Since X is already compact, it is sufficient to discretize [κmin , κmax]. The noise process {vt} is a sequence of

i.i.d. random variables that have common density g supported on [0, λ]. Therefore, the transition probability
p(· | x , a) is given by

p(D | x , a) � Pr{xt+1 ∈ D | xt � x , at � a}
� Pr{θ1 min(a , x)exp{−θ2 min(a , x)+ v} ∈ D}

�

∫
D

g(log(v) − log(θ1 min(a , x))+ θ2 min(a , x)) 1
v

m(dv),

for all D ∈B(�). To make the model consistent, we must have θ1 y exp{−θ2 y + v} ∈ [κmin , κmax] for all (y , v) ∈
[κmin , κmax] × [0, λ].
We assume that (i) g > ε for some ε ∈�+ on [0, λ], (ii) g is continuous on [0, λ], and (iii) the utility function u

is continuous. Define h(v , x , a) :� g(log(v) − log(θ1 min(a , x)) + θ2 min(a , x))(1/v), and for each (x , a) ∈ X × A,
let Sx ,a denote the support of h(·, x , a). Assumption 2.2 then holds for this model with θ(x , a)� infv∈Sa

h(v , x , a)
(provided that it is measurable), ζ � mκ (Lebesgue measure restricted on [κmin , κmax]), and for some λ ∈ (0, 1).
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Figure 2. Optimal Rewards of the Finite Models When the Initial State Is x � 2
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For the numerical results, we use the following values of the parameters:

θ1 � 1.1, θ2 � 0.1, κmax � 7, κmin � 0.005, λ � 0.5.

We assume that the noise process is distributed uniformly over [0, 0.5]. Hence, g ≡ 1 on [0, 0.5] and other-
wise zero. The utility function u is taken to be the shifted isoelastic utility function (see Dufour and Prieto-
Rumeau [13, Section 4.1])

u(z)� 3((z + 0.5)1/3 − (0.5)1/3).
We selected 25 different values for the number n of grid points to discretize the state space: n �10, 20, 30, . . . , 250.
The grid points are chosen uniformly over the interval [κmin , κmax]. We also uniformly discretize the action
space A by using the following number of grid points: 5n � 50, 100, 150, . . . , 1,250.

We use the relative value iteration algorithm (see Bertsekas [4, Chapter 4.3.1]) to compute the value functions
of the finite models. For each n, the finite state models are constructed as in Section 2 by replacing Z with
[κmin , κmax] and by setting νn( · )� mκ( · ).

Figure 2 shows the graph of the value functions of the finite models corresponding to the different values
of n (number of grid points) when the initial state is x � 2. It can be seen that the value functions converge (to
the value function of the original model).

8. Conclusion
The approximation of a discrete time MDP by finite-state MDPs was considered for discounted and average
costs for both compact and noncompact state spaces. Under usual conditions imposed for studying Markov
decision processes, it was shown that if one uses a sufficiently large number of grid points to discretize the
state space, then the resulting finite-state MDP yields a near optimal policy. Under the Lipschitz continuity of
the transition probability and the one-stage cost function, explicit bounds were derived on the performance loss
due to discretization in terms of the number of grid points for the compact state case. These results were then
illustrated numerically by considering two different MDP models.
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