

Event-triggered stabilization over digital channels

Mohammad Javad Khojasteh

Wireless Information and Network Sciences Laboratory Laboratory for Information and Decision Systems Massachusetts Institute of Technology mkhojast@mit.edu

 \square

Outline

• Preliminaries

- Cyber-physical systems
- Data-rate theorem
- Event-triggered stabilization over digital channels
 - Scalar systems
 - Experimental Validation
 - Zeno Behavior
 - Event-triggered vs. Time-triggered
 - Vector systems
 - Exponential convergence
- Discussion and future work

PRELIMINARIES

Cyber-physical systems (CPS)

- Largely regarded as the next-generation engineering systems
- Integration of computing, communication, and control
- Arising in diverse areas such as robotics, energy, and transportation

Cloud robots and automation systems

- An example of CPS
 - An emerging field in robotics and automation
 - Cloud enables robots to use shared resources
 - Feedback loop is closed over
 a communication channel
 Noisy and subject to delay

Networked Control Systems

• Plant is scalar

$$\dot{X} = aX(t) + bU(t) + W(t)$$
$$|W(t)| \le m$$

- Plant is unstable
- Communication channel is subjected to a finite data rate and bounded unknown delay

Communication Channel

Transmission with delay

- Packet transmission time t_s
- Packet reception time t_c
- Delay

$$t_c - t_s \le \gamma$$

$$t_c - t_s \le \gamma$$

Information rate

- $b_s(t)$ number of bits in data payload transmitted up to time t
 - Information transmission rate

$$R_s = \limsup_{t \to \infty} \frac{b_s(t)}{t}$$

- The rate at which the sensor transmits data payload

- $b_c(t)$ be the amount of information measured in bits included in data payload and timing information received at the controller until time t
 - Information access rate

$$R_c = \limsup_{t \to \infty} \frac{b_c(t)}{t}$$

1 (.)

- The rate at which controller receives information

Controller

0011

Data-rate theorem

• We can stabilize the system if and only if the information access rate

Data-rate theorem

• Balance between production and consumption of information

• This information can be supplied to the controller by data payload as well as timing

$$R_c > \frac{a}{\ln 2}$$

$$R_s?$$

EVENT-TRIGGERED STABILIZATION OVER DIGITAL CHANNELS

Event-triggering review

• Periodic control is the most common and perhaps simplest solution for digital systems.

- Step 1: Good Dog
- Step 2: Good Dog
- Step 3: Bad Dog
- Step 4: Good Dog

Genibo SD Robot Dog

Event-triggering review

- In CPS we need to use the shared resources efficiently
 - Periodic control can be inefficient
 - Event-triggered control transmit sensory data in an opportunistic manner

Event-triggering review

- The main concept of event-triggered control is to transmit sensory data only when needed
 - Step 1: --
 - Step 2: --
 - Step 3: Bad Dog

.

- Step 4: --

• "Wise men speak because they have something to say" — Plato

State dependent timing information encoding

 Our goal is to propose an event-triggering strategy that utilizes timing information by transmitting in a state-dependent fashion.

– Intuitive example:

stabilization of an inverted pendulum over

a digital communication channel

Input-to-state practical stability (ISPS)

• Encoding-decoding scheme, which encodes information in timing via event-triggering, to achieve ISpS

- For a fixed γ_3 this definition reduces to the standard notion of ISpS (Z-P Jiang, A. R. Teel, L. Praly- 94 and Sharon, Liberzon- 12).
- Given that the initial condition, delay, and system disturbances are bounded, ISpS implies that the state must be bounded at all times.

State estimation error

• Plant
$$\dot{X} = aX(t) + bU(t) + W(t)$$

• $\hat{X}(t)$ the state estimation constructed at the controller

$$\dot{\hat{X}}(t) = A\hat{X}(t) + BU(t), \quad t \in (t_c^k, t_c^{k+1})$$

- We assume the sensor can also compute the same estimate $\hat{X}(t)$ via a feedback acknowledgment
 - Communication via control input

Inter-triggering times

- Control input is known at the sensor and it jumps only at each reception times
- State estimation error

$$Z(t) = X(t) - \hat{X}(t)$$

Triggering strategy

- Triggering criterion $|Z(t_s)| = J$
 - Triggering threshold $\,J\,$
 - $\begin{array}{l} & |Z(t_c^+)| \mbox{ is always below the} \\ & \mbox{triggering threshold} \end{array}$
 - |Z(t)| is bounded

Information transmission rate

 R_s

a

ln 2

- Required information transmission rate vs delay upper bound
 - Small values of delay
 - Timing information is substantial
 - + R_s is arbitrarily close to zero
 - As delay increases
 - Timing information becomes out of date
 - R_s begin to increase
 - Large value of the delay
 - Uncertainty at the controller increases
 - State estimation error should be below the threshold at the reception time
 - $R_s\,$ exceeds the rate imposed by the data-rate theorem

Kh, Hedayatpour, Cortés, Franceschetti-21

Challenges

- Packet size
 - Necessary Condition

 $\# \text{bits} \ge \log \frac{m(\text{uncertainty set})}{m(\text{covering ball})}$

- Sufficient condition
 - We designed an encoding-decoding scheme

- Encode a quantized version of the triggering time in the data payload and timing

• Triggering rate

Frequency =
$$\limsup_{N \to \infty} \frac{N}{\sum_{k=1}^{N} k^{th} \text{inter-event time}}$$

- Necessary Condition: lower bound
- Sufficient condition: upper bound

Experimental Validation

- Laboratory-scale inverted pendulum
 - Using linearized model
 - Stabilization around unstable equilibrium point

Experimental Validation

- Off-the-shelf components
 - Raspberry Pi Model 3
 - Two small DC motors
 - Two identical propellers
 - MEMS sensor
 - 3-axis accelerometer
 - 3-axis gyroscope
 - Complimentary filter

- Details of these experiments and validation
 - Kh, Hedayatpour, Franceschetti- 19

- Delay upper bound
 - 2 Sampling Times
- Packet Size
 - -1 bit
- Number of Samples
 - 6541
- Number of Triggering - 170

• Information Transmission Rate

8.6633 bit/sec

Entropy Rate of the System

10.5461 bit/sec

<

- Delay upper bound
 - 3 Sampling Times
- Packet Size
 - 3 bit
- Number of Samples
 6333
- Number of Triggering - 146

• Information Transmission Rate

23.0526 bit/sec

Entropy Rate of the System

10.5461 bit/sec

• Delay upper bound

- 7 Sampling Times
- Packet Size
 - Sufficient Packet Size:
 - 5 bit
 - Necessary Packet Size:
 - 1 bit
- In this experiment we start with a packet size sufficient for stabilization and decrease it in subsequent experiments

- Periodic control
 - Equal-distance sampling

- Event-triggered control
 - Sporadic sampling
 - Hybrid phenomenon
 - Zeno behavior

- A paradox by ancient Greek philosopher Zeno of Elea
 - "That which is in locomotion must arrive at the half-way stage before it arrives at the goal."
 - We should never be able to reach any destination!

• Normal realization

- Zeno realization
 - Degenerate behavior of some event-triggering strategies
 - Infinite number of triggering events occurring in a finite amount of time

- Event-triggering strategies
 - Guarantee stability
 - Rule out the Zeno behavior
- Design Packet size
 - For $0 < \rho_0 < 1$
 - $|z(t_c^+)| \le \rho_0 J$
 - Uniform lower bound on the inter-triggering times

Time-triggering vs event-triggering

 $R_c > \frac{u}{\ln 2}$

- We compared our results against information access rate
- In a time-triggered strategy R_s ?
 - Time-triggered strategy

$$t_s^0 = 0, \quad t_s^{k+1} = t_s^k + (\lfloor \Delta_k / T \rfloor + 1)T$$

 Similar to our event-triggering setup a packet is transmitted only after the previous packet is received.

Time-triggering vs event-triggering

- Time-triggering strategies
 - Delay dependent
 - Does not exploit timing information

Kh, Tallapragada, Cortés, Franceschetti- 17

- Event-triggering strategies
 - State and delay dependent
 - Transmit sensory data only when needed
 - Exploit timing information

Vector systems

 $R_c > \frac{Tr(A)}{\ln 2}$

 $R_s \ge \frac{Tr(A)(\lfloor \frac{\gamma}{T} \rfloor + 1)}{\ln 2}$

• Data-rate theorem

• Time-Triggering

• Event-Triggering

Vector systems

• Triggering criterion

– Various ways
$$||z(t_s)||_2 = v(t_s)$$

• Coordinate by coordinate analysis $|z_i(t)| = J_i$

- This corresponds to treating the n-dimensional system as n scalar coupled systems.

Vector Systems: Communication Channel

• We assume that there are *n* parallel finite-rate digital communication channels between each coordinate of the system and the controller, each subject to unknown, bounded delay

 In the case of a single communication channel, we can consider the same triggering strategy, but an additional [log n] bits should be appended at the beginning of each packet to identify the coordinate it belongs to

Vector systems: Jordan block

- Off-diagonal ones make coupling between states

• Kh, Tallapragada, Cortés, Franceschetti- 20

Extension to complex linear systems

Plant
$$\dot{X} = aX(t) + bU(t) + W(t)$$

- Bounded disturbances

 $\|W(t)\| \le m$

 $R_c > \frac{2Re(a)}{\ln 2}$ Data-rate theorem extension

• This information can be supplied to the controller by data payload as well as timing

 $R_s?$

Triggering strategy

- Triggering criterion $||Z(t_s)|| = J$
 - Triggering radius J
 - $\|Z(t_c^+)\| \text{ is always inside the} \\ \text{triggering circle}$
 - $\ \|Z(t)\|$ is bounded

The encoding

A uniform quantization of the phase at which the state estimation error hits the triggering circle A quantized version of triggering time which is constructed like our encoding process for linear scalar systems.

Information transmission rate

• Required information transmission rate for stabilization

- Similar to scalar real plant
 - For small values of the delay, R_s is smaller than the rate required by the data-rate theorem

Kh, Hedayatpour, Cortés, Franceschetti-21

Exponential convergence

• Exponential convergence of the estimation error or the plant state

$$-\forall t > 0$$
 $|z(t)| \le |z(0)| e^{-\sigma t}$ or $\forall t > 0$ $|x(t)| \le |x(0)| e^{-\sigma t}$

 $R_c \ge \frac{A + \sigma}{\ln 2}$

- The access rate should be larger than entropy rate of the plant + convergence rate
 - Kh, Tallapragada, Cortés, Franceschetti- 17
 - Estimation entropy (Liberzon, Mitra -17)

• Kh, Tallapragada, Cortés, Franceschetti- 20

DISCUSSION AND FUTURE WORK

Security and privacy issues

- Adversaries might take advantage of the inherent timing information in even triggering
- In context of
 - Differential privacy
 - Cortes et al, CDC 2016
 - Learning-based attacks
 - Khojasteh et al, TCNS 2021.

Rate-cost tradeoffs in periodic control

• Appropriate communication rate to achieve a control objective

Nonlinear Systems

• There exists a control policy which renders the dynamic ISS with respect to estimation error and system disturbances.

- Similar to linear plant
 - For small delay, we are below data-rate theorem
 - Kh, Hedayatpour, Franceschetti- 19
- Extension to vector system
- Relaxing the above assumption
 - Similar to Hespanha, Liberzon, Teel 08 for periodic control

Uplink and Downlink channels

- Data-rate theorems focused on Uplink
 - Main bottleneck in mobile robots
 - Week on-board transmitter
 - Controller is co-located with the actuators
 - Serve as causal feedback
 - Acknowledge the received symbol to the sensor
 - Plant is the communication medium
 - Communication via control input

Uplink and Downlink channels

- A digital channel in the downlink, between the controller and the plant
 - Extension of theses data-rate results

References

- Franceschetti M, Khojasteh M J, Win M Z
 - Information Flow in Event-Based Control of Cyber-Physical Systems
 - Book chapter (Computation-aware Algorithmic Design for Cyber-Physical Systems), In progress
- Khojasteh M J, Hedayatpour M, Cortes J, Franceschetti M
 - Exploiting timing information in event-triggered stabilization of linear systems with disturbances
 - IEEE Transactions on Control of Network Systems, 2021
- Khojasteh M J, Tallapragada P, Cortes J, Franceschetti M
 - The value of timing information in event-triggered control
 - IEEE Transactions on Automatic Control, 2020
- Khojasteh M J, Hedayatpour M, Franceschetti M
 - Theory and implementation of event-triggered stabilization over digital channels
 - IEEE 58th Annual Conference on Decision and Control, 2019
- Khojasteh M J, Tallapragada P, Cortes J, Franceschetti M
 - Time-triggering versus event-triggering control over communication channels
 - IEEE 56th Annual Conference on Decision and Control, 2017