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Abstract— Independent learners naively employ single-agent
learning algorithms in multi-agent systems, oblivious to the
effect of other strategic agents present in their environment.
This paper studies partially observed N -player mean-field
games from a decentralized learning perspective with two
primary objectives: (i) to study the convergence properties of
independent learners, and (ii) to identify structural properties
that can guide algorithm design. Toward the first objective, we
study the learning iterates obtained by independent learners,
and find that these iterates converge under mild conditions.
We then present a notion of subjective equilibrium suitable
for analyzing independent learners. Toward the second ob-
jective, we study policy updating processes subject to a so-
called ε-satisficing condition: agents who are subjectively ε-best-
responding at a given joint policy do not change their policy.
After establishing structural results for such processes, we
develop an independent learning algorithm for N -player mean-
field games. Exploiting the aforementioned structural results,
we give guarantees of convergence to subjective ε-equilibrium
under self-play.

I. INTRODUCTION

Mean-field games (MFGs) are a recent theoretical frame-
work for studying decentralized systems with a large number
of weakly coupled agents [1], [2]. In a MFG, the cost and
state dynamics of an agent are influenced by the collective
behaviour of others only through a distributional mean-field
term. Mean-field games can be viewed as limit models of
N -player symmetric stochastic games. A number of papers
have formally examined the connection between games with
finitely many players and the corresponding limit model,
including the works of [3], [4], and [5].

Multi-agent reinforcement learning (MARL) is the study
of the emergent behaviour in systems of interacting learning
agents, with stochastic games serving as the most popular
framework for modelling such systems [6]. In recent years,
there has been a considerable amount of research in MARL
that has aimed to produce algorithms with desirable system-
wide performance and convergence properties. These efforts
have lead to a number of empirically successful algorithms
in settings with a small number of agents, but there are
comparatively fewer works that are well-suited to large-scale
systems and/or offer formal convergence analyses.

Most theoretical contributions in MARL focus on highly
structured classes of stochastic games, such as two-player
zero-sum games [7], [8] and N -player stochastic teams
and their generalizations [9], [10]. In much of the existing
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literature on MARL, a great deal of information is assumed
to be available to the agents while they learn. Assumptions
such as full state observability ([7]–[10]) or action-sharing
among all agents (e.g. [11]) are appropriate in some settings
but are unrealistic in models of large-scale, decentralized
systems.

Independent learners [12] are learning agents that inten-
tionally ignore other strategic agents in their environment
and naively employ techniques from single-agent learning
to evaluate their performance and select their actions. This
approach has two advantages: first, the computational bur-
den at any given agent is small; second, the algorithms
are truly decentralized and scalable. As such, independent
learners may be well-suited for use in the large-scale systems
modelled by MFGs. (Ignoring pertinent information about
the system may lead to deficiencies in some independent
learners. See [13] and the references therein for examples of
the mixed success of independent learners.)

This paper studies independent learners in partially ob-
served N -player mean-field games. Under mild conditions
on the game, we find that learning iterates obtained by inde-
pendent learners converge when all agents use soft, stationary
policies. Building on this, we define a notion of subjective
equilibrium that is appropriate for analyzing independent
learners. We then prove that under two different information
structures for the game, subjective ε-equilibrium exists for
any ε > 0. In the context of policy dynamics, we establish
a useful structural property, to be called the subjective ε-
satisficing paths property. Building on this structure, we
develop a decentralized independent learning algorithm for
N -player mean-field games, and we argue that it drives
play to subjective ε-equilibrium under self-play. Unlike other
learning algorithms for mean-field games, which typically
constrain all agents to follow the same policy by considering
a representative agent, our algorithm allows for agents to use
different policies during learning and to use different policy
updating rules when exploring their policy space, and in this
sense is truly decentralized.

Due to space constraints, some material is omitted and can
be found in the longer version of this paper, [14]. Notably,
this includes results for a third information structure, all
proofs, and additional exposition.

Notation: For standard Borel spaces A,B we let P(A)
denote the set of probability measures on A and we let
P(A|B) denote the set of transition kernels on A given B.

A. Related Work and Discussion

Learning in MFGs is a nascent but active research area. We
now briefly review on some common themes in this young
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research area; a longer literature review is available in [14].
By and large, existing literature on learning in MFGs

focuses on the standard model of MFGs, where the player
set is a continuum. We selectively cite [15], [16], [17], [18],
[19], [20], [21], [22] and [23] as work in this vein. Taking the
set of agents to be infinite effectively removes any strategic
interaction between agents; as a result, learning theory in this
tradition is single-agent in spirit rather than multi-agent.

For the most part, existing work on learning in MFGs
attempts to produce algorithms that compute mean-field
equilibrium, a symmetric notion of equilibrium different than
the equilibrium concepts used here. (For a definition of the
symmetric notion of equilibrium considered elsewhere, see
[19, Definition 2.1]; our notion of equilibrium resembles that
of [19, Definition 5.1].) This is done by studying a generic,
representative, agent. While this approach can be justified
for the existence analysis, imposing such a generic agent
perspective (in particular, requiring all agents to use the same
policy) implies coordination, which may not be natural in a
learning context.

In contrast, the aim of this paper is to study the conver-
gence behaviour of truly decentralized learning algorithms
that may reasonably be used in large-scale systems. Unlike
the existing work on learning in MFGs, we study a finite
player setting with non-trivial strategic interaction, and we
place greater emphasis on the use of heterogenous policies
during the learning process. In so doing, our results do not
guarantee convergence to the symmetric notion of equilib-
rium used elsewhere in the theory, but rather to policies that
form a kind of subjective equilibrium that is better suited for
analyzing independent learners.

II. MODEL

A. N -Player Mean Field Games

For N ∈ N, a partially observed N -player mean-field
game (MFG) is described by the following list:

G = (N , Xloc,X,Y,U, {ϕi}i∈N , c, β, Ploc, ν0). (1)

The components of G are such:
• N is a set of N players/agents;
• Xloc is a finite set and X = ×i∈NXloc. Elements of
Xloc (resp. X) are called local states (global states);

• For each s ∈ X, we define µ(·|s) ∈ P(Xloc) as:

µ(B|s) =
1

N

∑
i∈N

δsi(B), ∀B ⊆ Xloc,

and we let EmpN := {µ(·|s) : s ∈ X}. An element
µ ∈ EmpN is called a mean-field state;

• For each i ∈ N , ϕi : X→ Y is an observation function,
where Y is a finite set. We refer to the pair (Y, {ϕi}i∈N )
as the observation channel;

• U is a finite set of actions, and we let U := ×i∈NU. An
element of U (resp. U) is called an action (joint action);

• c : Xloc × P(Xloc)× U→ R is a stage cost function;
• β ∈ (0, 1) is a discount factor;
• Ploc ∈ P(Xloc|Xloc×P(Xloc)×U) is a transition kernel

governing local state transitions for each player;

• ν0 ∈ P(X) is a probability distribution for the initial
global state variable, x0.

At time t ∈ Z≥0, player i’s local state is denoted xit, while
the global state variable is denoted by xt and the mean-
field state is denoted by µt := µ(·|xt). Player i observes its
local observation variable yit := ϕi(xt) and uses its locally
observable history variable, defined below, to select an action
uit ∈ U. The joint action at time t is denoted ut. Player i
then incurs a cost cit := c(xit, µt, u

i
t), and player i’s local

state variable evolves according to xit+1 ∼ Ploc(·|xit, µt, uit).
This process is then repeated at time t+ 1, and so on.

For any t ∈ Z≥0, we let Ht := (X× U)
t × X and Ht :=

P(X)× (Y× U× R)
t ×Y. The set Ht is the set of overall

system histories of length t, while the set Ht is the set of
histories of length t that an individual player may observe.
Elements of Ht are called system histories of length t, and
we use ht = (x0,u0, · · · ,ut−1, xt) ∈ Ht, to denote the tth

system history variable. Similarly, elements of Ht are called
observable histories of length t, and for i ∈ N , we use
hit = (ν0, y

i
0, u

i
0, c

i
0, · · · , cit−1, y

i
t) ∈ Ht to denote player i’s

tth locally observable history variable.
Definition 1 (Policies): A policy for player i ∈ N is a

sequence πi = (πit)t≥0 such that πit ∈ P(U|Ht) for every
t ≥ 0. We let Γi denote the set of all policies for player i.

Definition 2 (Soft Policies): For i ∈ N , ξ > 0, πi ∈ Γi is
called ξ-soft if πi(a|h̃t) ≥ ξ for all t ≥ 0 and h̃t ∈ Ht. A
policy πi ∈ Γi is called soft if it is ξ-soft for some ξ > 0.

Notation: We let Γ := ×i∈NΓi denote the set of joint
policies. To isolate player i’s component in a particular joint
policy π ∈ Γ, we write π = (πi,π−i), where −i is used in
the agent index to represent all agents other than i. Similarly,
we write the joint policy set as Γ = Γi × Γ−i, and so on.

Definition 3 (Stationary Policies): Let i ∈ N . A policy
πi ∈ Γi is called stationary if there exists f i ∈ P(U|Y)
such that for any t ≥ 0 and any h̃t = (ν, ỹ0, . . . , ỹt) ∈ Ht,
we have πit(·|h̃t) = f i(·|ỹt). We let ΓiS denote the set of
stationary policies for player i.

For i ∈ N , we identify ΓiS with the set P(U|Y) and treat
stationary policies as elements of P(U|Y), omitting reference
to the (complete) locally observable history.

For each i ∈ N , we introduce a metric di on ΓiS , defined
for all πi, π̃i ∈ ΓiS as

di(πi, π̃i) := max{|πi(ai|y)− π̃i(ai|y)| : y ∈ Y, ai ∈ U}.

For any joint policy π ∈ Γ and ν ∈ P(X), there exists a
unique probability measure on the set (X×U)∞. We denote
this measure by Prπν , and let Eπ

ν denote its expectation. We
use this to define player i’s (state) value function:

J iπ(ν) := Eπ
ν

[ ∞∑
t=0

βtcit

]
= Eπ

ν

[ ∞∑
t=0

βtc(xit, µt, u
i
t)

]
.

Definition 4: Let ε ≥ 0, i ∈ N . π∗i ∈ Γi is called a
(uniform) ε-best-response to π−i ∈ Γ−i if, ∀ν ∈ P(X),

J i(π∗i,π−i)(ν) ≤ inf
π̃i∈Γi

J i(π̃i,π−i)(ν) + ε.

The set of ε-best-responses to π−i is denoted BRi
ε(π
−i).
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Definition 5: Let ε ≥ 0. A joint policy π∗ ∈ Γ is called
a (perfect) ε-equilibrium if π∗i ∈ BRi

ε(π
∗−i) for all i ∈ N .

For ε ≥ 0, we let Γε-eq ⊆ Γ denote the set of ε-equilibrium
policies, and let Γε-eq

S := Γε-eq ∩ΓS . In the next section, we
describe conditions under which Γε-eq

S 6= ∅.
Definition 6: Let G be the game in (1). Let

V =
{
V iπ : Y→ R

∣∣i ∈ N ,π ∈ ΓS
}
, and

W =
{
W i

π : Y× U→ R
∣∣i ∈ N ,π ∈ ΓS

}
be two families of functions. Then, the pair (V,W) is called
a subjective function family for G.

Definition 7: Let ε ≥ 0 and let (V,W) be a subjective
function family for G. A policy π∗i ∈ ΓiS is called a (V,W)-
subjective ε-best-response to π−i ∈ Γ−iS if we have
V i(π∗i,π−i)(y) ≤ min

ai∈U
W i

(π∗i,π−i)(y, a
i) + ε, ∀y ∈ Y.

This definition of (V,W)-subjective ε-best-responding is
given in analogy to an ε-optimality criterion for an MDP.
Here, the functions V ∗iπ (resp. W ∗iπ ) are analogs to the state
value function (Q-function) for the MDP.

For a fixed player i ∈ N , π−i ∈ Γ−iS , and subjective
function family (V,W), we let Subj-BRi

ε(π
−i,V,W) ⊆ ΓiS

denote i’s set of (V,W)-subjective ε-best-responses to π−i.
Definition 8: Let ε ≥ 0 and let (V,W) be a subjective

function family for G. A joint policy π∗ ∈ ΓS is called a
(V,W)-subjective ε-equilibrium for G if, for every i ∈ N ,
π∗i ∈ Subj-BRi

ε(π
∗−i,V,W).

For any subjective function family (V,W), we denote the
set of (V,W)-subjective ε-equilibria by Subjε(V,W) ⊆ ΓS .

B. On the Observation Channel and Information Structure

So far, we have left the particular observation channel
(Y, {ϕi}i∈N ) unspecified. We now offer two alternatives
for the observation channel. The particular choice used
in practice will depend on the application area: in some
instances, there is a natural restriction of information leading
to a particular observation channel; in others, agents may
voluntarily compress their observations for function approx-
imation. For an expanded discussion, see [14].1

Assumption 1 (Global State Observability): Y = X and
ϕi(s) = s for each global state s ∈ X and player i ∈ N .

Assumption 2 (Mean-Field State Observability):
Y = Xloc × EmpN and ϕi(s) = (si, µ(·|s)) for each
global state s ∈ X and player i ∈ N .

Assumption 2 is the standard observation channel con-
sidered in works on mean-field games, see e.g. [4] and the
references therein.

C. Relationship with Mean-Field Games

The model above differs from the classical model of mean-
field games, which assumes a continuum of agents (as in [1]
or [2]). Here, we consider models with a large, finite number
of symmetric, weakly coupled agents. Our model resembles
the one used in [4], which studies existence of equilibrium
in a model with general state and actions spaces.

1In [14], we also study a third observation channel, wherein agents
observe only their local state and a compressed version of the mean-field
state.

III. STATIONARY EQUILIBRIUM POLICIES: EXISTENCE
UNDER TWO OBSERVATION CHANNELS

Lemma 1: Let G be a partially observed N -player MFG.
Fix player i ∈ N and let π−i ∈ Γ−iS . Then, player i faces a
POMDP Mπ−i with partially observed state process {xt}t≥0.

Under certain additional conditions, described below, one
can show that player i ∈ N faces a fully observed MDP. In
such cases, the classical theory of MDPs and reinforcement
learning can be brought to bear on i’s optimization problem,
leading to results on the existence of certain equilibrium
policies and characterization of one’s best-response set.

A. Equilibrium under Global State Observability

Corollary 1: Let G be a partially observed N -player MFG
in which Assumption 1 holds. Fix player i ∈ N and let
π−i ∈ Γ−iS . Then, player i faces a (fully observed) MDP
Mπ−i with controlled state process {yit}t≥0.

Under the conditions of Corollary 1, we can consider
player i’s Q-function for this environment, which we denote
by Q∗iπ−i : X× U→ R.

Q∗iπ−i

(
s, ai

)
:= Eπ∗

ν0

[ ∞∑
t=0

βtcit

∣∣∣∣∣x0 = s, ui0 = ai

]
,

for each (s, ai) ∈ X×U, where π∗ = (π∗i,π−i) and π∗i ∈
ΓiS ∩ BRi

0(π−i).
The value Q∗iπ−i(s, ai) represents the optimal cost-to-go

to player i when play begins at global state s ∈ X, player
i takes action ai ∈ U at time 0 and follows the policy π∗i

thereafter, and the remaining players play according to the
stationary policy π−i.

Lemma 2: Let G be a partially observed N -player mean-
field game satisfying Assumption 1. Then, Γ0-eq

S 6= ∅.
A partially observed N -player mean-field game with

global state observability (Assumption 1) is a special case
of the finite N -player stochastic games studied in [24], and
so Lemma 2 follows from [24, Theorem 2].

B. Equilibrium Under Mean-Field State Observability

Definition 9: Suppose Assumption 2 holds. Let i, j ∈ N
and let πi ∈ ΓiS , πj ∈ ΓjS . We say that the policies πi and πj

are mean-field symmetric if both are identified with the same
transition kernel in P(U|Y). For any I ⊂ N , a collection of
policies {πi}i∈I is called mean-field symmetric if, for every
i, j ∈ I , we have that πi and πj are mean-field symmetric.

Definition 10: A set of policies Π ⊆ ΓS is called sym-
metric if Πi = Πj for all i, j ∈ N .

Lemma 3: Let G be an N -player MFG, let i ∈ N , and let
Assumption 2 hold. If π−i ∈ Γ−iS is mean-field symmetric,
then i faces a fully observed MDP Mπ−i with controlled
state process {yit}t≥0.

We define the Q-function for player i when playing G
against a mean-field symmetric policy π−i ∈ Γ−iS as

Q∗iπ−i(y, ai) := E(π∗i,π−i)
ν

[ ∞∑
t=0

βtcit

∣∣∣∣∣yi0 = y, ui0 = ai

]
,

for every y ∈ ϕi(X) = {ϕi(s) : s ∈ X} and ai ∈ U, where
π∗i ∈ BRi

0(π−i) ∩ ΓiS is a best-response to π−i and ν ∈
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P(X) is arbitrary (see [14] for justification). For elements
y ∈ Y \ ϕi(X), we may define Q∗iπ−i(y, ai) arbitrarily, say
Q∗iπ−i(y, ·) ≡ 0.

To our knowledge, the following result appears to be new.
Theorem 1: Let G be a partially observed N -player MFG

satisfying Assumption 2. For any ε ≥ 0, Γε-eq
S 6= ∅.

IV. CONVERGENCE OF NAIVE SINGLE-AGENT
LEARNING UNDER STATIONARY POLICIES

In this section, we study the convergence of learning
iterates obtained when player i ∈ N naively runs single-
agent reinforcement learning algorithms that treat {yit}t≥0 as
if it were the state variable of a MDP. This learning process
is formalized in Algorithm 1, below, where we have fixed the
policies of all players to be stationary. By fixing policies to be
stationary, this section focuses on the effect that decentralized
information has on independent learners, leaving aside the
well-known challenge of non-stationary [25].

Assumption 3: Under any soft stationary policy π ∈ ΓS ,
the global state process {xt}t≥0 is an irreducible, aperiodic
Markov chain on X.

Theorem 2: Let G be a partially observed N -player MFG
satisfying Assumption 3, let π ∈ ΓS be soft and ν ∈ P(X).
Suppose i ∈ N uses Algorithm 1 to obtain {J̄ it , Q̄it}t≥0.
Then, there exist deterministic functions Ṽ ∗iπ : Y → R and
W̃ ∗iπ : Y × U → R such that, Prπν -almost surely, we have
limt→∞ J̄ it = Ṽ ∗iπ and limt→∞ Q̄it = W̃ ∗iπ . If Assumption 1
holds, then Ṽ ∗iπ (s) = J iπ(s) for all s ∈ X and W̃ ∗iπ = Q∗iπ−i .
If Assumption 2 holds and π−i is mean-field symmetric,
then Ṽ ∗iπ (ϕi(s)) = J iπ(s) for all s ∈ X and W̃ ∗iπ = Q∗iπ−i .

The proof of Theorem 2 builds on [26, Theorem 4.1] and
can be found in [14].

Algorithm 1: Naive Learning in an N -player MFG
1 Initialize Soft π ∈ ΓS , Q̄i

0 = 0 ∈ RY×U and J̄i
0 = 0 ∈ RY

2 for t ≥ 0 (tth stage game)

3 Player i observes yit , selects ui
t ∼ π

i(·|yit)
4 Players −i select u−i

t according to π−i

5 Player i observes yit+1 and cost cit := ci(xt, ui
t, u−i

t )

6 ni
t :=

∑t
k=0 1{(yik, u

i
k) = (yit, u

i
t)}

7 mi
t :=

∑t
k=0 1{yik = yit}

8 Q-factor update:

Q̄
i
t+1(y

i
t, u

i
t) =

(
1−

1

ni
t

)
Q̄

i
t(y

i
t, u

i
t)

+
1

ni
t

(
c
i
t + β min

ai∈U
Q̄

i
t(y

i
t+1, a

i
)

)
,

9 and Q̄i
t+1(y, a) = Q̄i

t(y, a) for all (y, a) 6= (yit, u
i
t).

10 Value function update:

J̄
i
t+1(y

i
t) =

(
1−

1

mi
t

)
J̄

i
t (y

i
t)

+
1

mi
t

(
c
i
t + βJ̄

i
t (y

i
t+1)

)
,

and J̄i
t+1(y) = J̄i

t (y) for all y 6= yit .

Remark: The limiting quantities Ṽ ∗iπ and W̃ ∗iπ do not,
in general, have inherent relevance to player i’s objective
function in G. These quantities should instead be interpreted

as subjective beliefs of player i, obtained through a naive
learning process.

We conclude this section by introducing notation for the
subjective function family corresponding to each agent’s
subjective beliefs obtained through Algorithm 1.

Definition 11: Let V∗ =
{
V ∗iπ : Y→ R

∣∣i ∈ N ,π ∈ ΓS
}

be the collection of functions defined as follows: for each
i ∈ N and π ∈ ΓS , V ∗iπ := Ṽ ∗iπ if π is soft and V ∗iπ ≡
‖c‖∞
1−β + 1 otherwise.

Let W∗ =
{
W ∗iπ : Y× U→ R

∣∣i ∈ N ,π ∈ ΓS
}

be col-
lection of functions defined as follows: for each i ∈ N and
π ∈ ΓS , W ∗iπ := W̃ ∗iπ if π is soft and W ∗iπ ≡ 0 otherwise.

The pair (V∗,W∗) is called the naively learned subjective
function family for G.

For non-soft π ∈ ΓS , we define V ∗iπ and W ∗iπ as done
above in order to avoid introducing (V∗,W∗)-subjective ε-
equilibrium that may not be the outcome of the naive learning
process.

A. Existence of Subjective Equilibrium

Lemma 4: Let G be a partially observed N -player mean-
field game satisfying either Assumptions 1 and 3 or Assump-
tions 2 and 3. Let ε > 0. Then, Subjε(V∗,W∗) 6= ∅.

V. SUBJECTIVE SATISFICING PATHS

In this section, we ask whether a discrete-time dynamical
system on the set of joint policies ΓS can drive the joint
policy to subjective ε-equilibrium by changing only the
policies of those agents who are not subjectively ε-best-
responding. For the following definitions, let G be a partially
observed N -player MFG, let i ∈ N , let ε ≥ 0, and let (V,W)
be a subjective function family for G.

Definition 12: A sequence (πk)k≥0 in ΓS is called a
(V,W)-subjective ε-satisficing path if, ∀i ∈ N , k ≥ 0,

πik ∈ Subj-BRi
ε(π
−i
k ,V,W)⇒ πik+1 = πik.

Definition 13: Let Π ⊆ ΓS . The game G is said to have
the (V,W)-subjective ε-satisficing paths property within Π
if, for every π ∈ Π, there exists a (V,W)-subjective ε-
satisficing path (πk)k≥0 satisfying (i) π0 = π; (ii) πk ∈ Π
∀k ≥ 0; (iii) ∃K <∞ such that πK ∈ Subjε(V,W).

A. Naively Learned Subjective Functions and ε-Satisficing

We now shift our attention to (V∗,W∗), the naively
learned subjective function family for G.

1) Paths Under Global State Observability:
Definition 14: Let G be a partially observed N -player

mean-field game for which Assumption 1 is satisfied, and
let i ∈ N . A stationary policy πi ∈ ΓiS is said to be of the
mean-field type if there exists f i ∈ P(U|Xloc×EmpN ) such
that πi(·|s) = f i

(
·
∣∣si, µ(·|s)

)
for every global state s ∈ X.

We identify each stationary policy of the mean-field type
with its associated transition kernel in P(U|Xloc ×EmpN ).
We extend the definitions of mean-field symmetry and sym-
metric sets of joint policies to this context.

Theorem 3: Let ε > 0 and let G be a partially observed
N -player mean-field game for which Assumptions 1 and 3
hold. Suppose Π ⊂ ΓS is a soft, symmetric subset of policies
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satisfying (i) every π ∈ Π is of the mean-field type, and
(ii) Π ∩ Subjε(V∗,W∗) 6= ∅. Then, G has the (V∗,W∗)-
subjective ε-satisficing paths property within Π.

2) Paths under Mean-Field State Observability:
Theorem 4: Let ε > 0 and let G be a partially observed N -

player mean-field game for which Assumptions 2 and 3 hold.
Suppose Π ⊂ ΓS is a soft, symmetric subset satisfying Π∩
Subjε(V∗,W∗) 6= ∅. Then, G has the (V∗,W∗)-subjective
ε-satisficing paths property within Π.

The proofs of Theorem 3 and 4 can be found in [14].

B. Quantization of the Policy Space

For algorithm design purposes, it is advantageous to re-
strict policy selection to a finite subset of ΓS . If the restricted
set of policies is obtained via a sufficiently fine, symmetric
quantization of the original set, then the performance loss
for a given agent is negligible and the structural properties
of the previous section hold. For the following definitions,
let G be a partially observed N -player mean-field game, and
let i ∈ N . Recall that di is a metric on the set ΓiS .

Definition 15: Let ξ > 0 and Π̃i ⊆ ΓiS . A mapping qi :
Π̃i → Π̃i is called a ξ-quantizer (on Π̃i) if (i) qi(Π̃i) :=
{qi(πi) : πi ∈ Π̃i} is a finite set and (ii) di(πi, qi(πi)) < ξ
for all πi ∈ Π̃i.

Definition 16: Let ξ > 0 and let Π̃i ⊆ ΓiS . A set of
policies Πi ⊆ Π̃i is called a ξ-quantization of Π̃i if Πi =
qi(Π̃i), where qi is some ξ-quantizer on Π̃i.

A set Πi ⊆ ΓiS is called a quantization of ΓiS if it is a
ξ-quantization of ΓiS for some ξ > 0. A quantization Πi is
called soft if each policy πi ∈ Πi is soft. The expression
“fine quantization” will be used to reflect that a policy
subset is a ξ-quantization for suitably small ξ. We extend
the definitions and terminological conventions above to also
refer to quantizers and quantizations of sets of joint policies.
For instance, Π ⊂ ΓS is a ξ-quantization of ΓS if each Πi

is a ξ-quantization of ΓiS , and so on.
Lemma 5: Let G be a partially observed N -player mean-

field game satisfying Assumptions 1 and 3. Let ε > 0. There
exists ξ = ξ(ε) > 0 such that if Π ⊂ ΓS is any soft ξ-
quantization of ΓS , then we have Subjε(V∗,W∗)∩Π 6= ∅.
Moreover, if ΠMF ⊂ ΓS is the set of joint stationary policies
of the mean-field type, there exists ξ = ξ(ε) > 0 such that
if Π is a soft, symmetric ξ-quantization of ΠMF, then we
have (1) Subjε(V∗,W∗)∩Π 6= ∅; (2) G has the (V∗,W∗)-
subjective ε-satisficing paths property within Π.

Lemma 6: Let G be a partially observed N -player mean-
field game satisfying Assumptions 2 and 3. Let ε > 0. There
exists ξ = ξ(ε) > 0 such that if Π ⊂ ΓS is any soft,
symmetric ξ-quantization of ΓS , then (1) Γε-eq∩Π 6= ∅ and
Subjε(V∗,W∗)∩Π 6= ∅; (2) G has the (V∗,W∗)-subjective
ε-satisficing paths property within Π.

Lemmas 5 and 6 guarantee that the game G has the
subjective satisficing paths property within finely quantized
subsets of policies. This has two desirable consequences for
algorithm design. First, players can restrict their search from
an uncountable set to a finite subset of policies with only a
small loss in performance. Second, since the game G has the

(V∗,W∗)-subjective ε-satisficing paths property within Π,
play can be driven to subjective ε-equilibrium by changing
only the policies of those players that are “ε-unsatisfied.” We
thus obtain a stopping condition, whereby player i can settle
on a policy whenever it is subjectively ε-best-responding.

Taken together, these points remove the need for coordi-
nated search of Π: play can be driven to ε-equilibrium even
by random policy updating by those players that are not
subjectively ε-best-responding. This structure also removes
the need for specialized policy updating rules that taken into
account special structure in the game.

VI. LEARNING ALGORITHM AND CONVERGENCE
RESULTS

Algorithm 2: Independent Learning
1 Set Parameters
2 Πi ⊂ ΓiS : a fine quantization of ΓiS
3 {Tk}k≥0: a sequence in N of learning phase lengths
4 set t0 = 0 and tk+1 = tk + Tk for all k ≥ 0.

5 ei ∈ (0, 1): random policy updating probability
6 di ∈ (0,∞): tolerance level for sub-optimality

7 Initialize πi0 ∈ Πi, Q̂i0 = 0 ∈ RY×U, Ĵ i0 = 0 ∈ RY

8 for k ≥ 0 (kth exploration phase)
9 for t = tk, tk + 1, . . . , tk+1 − 1

10 Observe yit = ϕi(xt)
11 Select uit ∼ πik(·|yit)
12 Observe cit := c(xit, µ(·|xt), uit) and yit+1

13 Set nit =
∑t
τ=tk

1{(yiτ , uiτ ) = (yit, u
i
t)}

14 Set mi
t =

∑t
τ=tk

1{yiτ = yit}

15 Q̂it+1(yit, u
i
t) =

(
1− 1

ni
t

)
Q̂it(y

i
t, u

i
t) + 1

ni
t

[
cit +

βminai Q̂
i
t(y

i
t+1, a

i)
]

16 Ĵ it+1(yit) =
(

1− 1
mi

t

)
Ĵ it (y

i
t)+ 1

mi
t

[
cit + βĴ it (y

i
t+1)

]
17 if Ĵ itk+1

(y) ≤ minai Q̂
i
tk+1

(y, ai) + ε+ di ∀y ∈ Y, then
18 πik+1 = πik
19 else
20 πik+1 ∼ (1− ei)δπi

k
+ eiUnif(Πi) )

21 Reset Ĵ itk+1
= 0 ∈ RY and Q̂itk+1

= 0 ∈ RY×U

A. Learning with Global State

We begin by presenting convergence results for Algo-
rithm 2 under global state observability, the richest of the
information structures that we consider. In order to state
our first result, we now fix ε > 0 and make the following
assumptions on the various parameters of Algorithm 2.

Assumption 4: Fix ε > 0 and for each i ∈ N let Πi
MF :=

{πi ∈ ΓiS : πi is of the mean-field type.}. Assume that Π ⊂
ΠMF is a soft, symmetric quantization of ΠMF satisfying
Π ∩ Γε-eq 6= ∅.

For each player i ∈ N , the tolerance parameter di is taken
to be positive to account for noise in the learned estimates,
but cannot be too large, otherwise poorly performing policies
may be mistaken for ε-best-responses. The bound d̄G below
is analogous to δ̄ in [27] and depends on both ε and Π.
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Assumption 5: For each player i ∈ N , di ∈ (0, d̄G),
where d̄G = d̄G(ε,Π) is specified [14].

Theorem 5: Let G be a partially observed N -player mean-
field game satisfying Assumptions 1 and 3, and let ε >
0. Suppose Assumptions 4 and 5 hold and all players
follow Algorithm 2. For any ξ > 0, there exists T̃ =
T̃ (ξ, ε,Π, {di}i∈N ) such that if Tk ≥ T̃ for all k, then

Pr (πk ∈ Π ∩ Γε-eq) ≥ 1− ξ,

for all sufficiently large k.

B. Learning with Mean-Field State Information

Assumption 6: Fix ε > 0. Assume Π is a soft, symmetric
quantization of ΓS such that Π ∩ Subjε(V∗,W∗) 6= ∅.

Assumption 7: For all i ∈ N , di ∈ (0, d̄MF), where
d̄MF = d̄MF(ε,Π) is specified in [14].

Theorem 6: Let G be a partially observed N -player mean-
field game satisfying Assumptions 2 and 3, and let ε >
0. Suppose Assumptions 6 and 7 hold and all players
follow Algorithm 2. For any ξ > 0, there exists T̃ =
T̃ (ξ, ε,Π, {di}i∈N ) such that if Tk ≥ T̃ for all k, then

Pr (πk ∈ Π ∩ Subjε(V∗,W∗)) ≥ 1− ξ,

for all sufficiently large k.
The proofs of Theorems 5 and 6 are given in [14]. In

essence, one shows that if the exploration phases are long
enough, the learning iterates approximate the subjective func-
tions. Then, the process {πk}k≥0 obtained from Algorithm 2
can be shown to approximate the policy process of a Markov
chain on Π whose absorbing states are (V∗,W∗)-subjective
ε-equilibria. Convergence to Subjε(V∗,W∗) is then shown
using the theory of satisficing paths.

VII. CONCLUSIONS

In this paper, we have studied independent learning in
partially observed N -player mean-field games under two
observation channels. We have studied the convergence of
stochastic learning iterates used by independent learners
and we have presented a notion of subjective equilibrium
suitable for analyzing independent learners. Using this no-
tion of subjective equilibrium, we presented results on the
existence of subjective ε-equilibrium, and we have observed
useful structure pertaining to dynamical systems on the set
of policies. Exploiting this structure, we have presented a
decentralized, independent learning algorithm for playing
partially observed N -player mean-field games. Under self-
play, this algorithm drives policies to subjective equilibrium.
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