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Abstract. In many applications, the common assumption that a driving noise process affecting a
system is independent or Markovian may not be realistic, but the noise process may be assumed to be
stationary. To study such problems, this paper investigates stochastic stability properties of a class of
non-Markovian processes, where the existence of a stationary measure, asymptotic mean stationarity,
and ergodicity conditions are studied. Applications in feedback quantization and stochastic control
are presented.
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1. Introduction. Consider a stationary stochastic process {Xk, k ∈ Z+} where
each element Xk takes values in some source space X (which we take to be Rn for
some n ∈ N or some countable set) with process measure µ, and a time-invariant
update rule described by

Sk+1 = F (Xk, Sk),(1.1)

where Sk is an S-valued state sequence (where we take S also to be Rn for some n ∈ N
or some countable subset of Rn), with S0 = s or S0 ∼ κ for some probability measure
κ, independent of Xk. The question that we are interested in is whether for a given
measurable and bounded f ,

lim
N→∞

1

N
E

[
N−1∑
k=0

f(Xk, Sk)

]
(1.2)

or almost surely

lim
N→∞

1

N

N−1∑
k=0

f(Xk, Sk)(1.3)

exist and whether the limit is indifferent to the initial states/distributions. The func-
tion f can be taken to be more general as follows:

lim
N→∞

1

N
E

[
N−1∑
k=0

f(X[k,∞), S[k,∞))

]
(1.4)
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1242 SERDAR YÜKSEL

or

lim
N→∞

1

N
E

[
N−1∑
k=0

f(X(−∞,k], Sk)

]
.(1.5)

Here, we use the notation that capital letters denote a random variable and small
letters denote the realizations. We also have y[m,n] := {yk,m ≤ k ≤ n}. One may
also add another variable Uk = g(Sk, Xk), where Uk is an output of the system taking
values in some set U and revise the formulation of the problem accordingly. We note
that all of the random variables are defined on a common probability space (Ω,F , P ).

In (1.1) if {Xk} were independently and identically distributed (i.i.d), the process
{Sk} would be Markovian or if {Xk} were Markovian, the joint process {(Xk, Sk)}
would be Markovian. For such Markov sources, there is an almost complete theory of
the verification of stochastic stability through the analysis of finite-mean recurrence
times to suitably defined sets (atoms, or artificial atoms constructed through small or
petite sets and the splitting technique due to [1, 23]) as well as the regularity properties
of the kernel (such as utilizing continuity of the transition kernel and majorization by a
finite measure; see, e.g., [21, 15]). For systems of the form (1.1) with only stationary
{Xk}, however, there does not exist a complete theory even though the notion of
renovating events [3, 4] that is related to the concepts of recurrence and coupling in
Markov chains have been utilized in many applications especially in queuing theory.

Such problems arise in many applications in feedback quantization and source cod-
ing, networks, and stochastic control. As an example, consider the following scheme
which includes the ∆-modulation [7] algorithm commonly used in source coding as a
special case: Let {Xk} be stationary and ergodic, Q : R → M ⊂ R, |M| < ∞ be a
quantizer, and consider the following update:

Sk+1 = Sk +Q(Xk − Sk),(1.6)

where S0 = 0. Here, Sk is the output of an adaptive encoder and Xk is the source to
be encoded.

In addition to further adaptive coding schemes, applications include stabilization
of controlled systems driven by noise processes with memory, design of networked
control systems over channels with memory, as well as network and queuing systems.

Such stability problems have been investigated for a number of setups; for an
incomplete list see [7, 8, 17, 18, 19, 22, 31, 33]. Notably, the contributions in Kieffer
[17, 18] and Kieffer and Dunham [19] are the most relevant ones to the discussion
in this paper. These have studied problems motivated from applications in source
coding and quantization as in (1.6). [19] considered a non-Markovian setup where S is
countable, [17] considered a setup where S is not countable, but f(x, ·) is continuous on
SN for every x. Our approach and the proof technique is different than that considered
in the literature; notably from that of Kieffer [17], and Kieffer and Dunham [19] (as
well as other contributions such as [7, 8, 31] and [22] which can be approached by
finite dimensional Markov chain formulations).

Our approach builds on Markov process theoretic techniques where we model the
stochastic process (X(−∞,k], Sk) or (X[k,∞), S[k,∞)) as an infinite dimensional Markov
chain. The approach of viewing (X(−∞,k], Sk) as a Markov chain, to our knowledge,
has been first studied by Hairer [11], where the focus of the author has been on the
uniqueness of an invariant measure on the state process Sk, under the assumption that
an invariant measure exists and with further regularity assumptions. In this paper,
we provide sufficient conditions for the existence of an invariant probability measure
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for the joint process while deriving our results. We also establish connections with
asymptotic mean stationarity, in addition to the existence of an invariant measure,
and ergodicity.

We will see that conditions of the form

lim
M→∞

(
lim sup
T→∞

1

T

T−1∑
k=0

P (|Sk| ≥M)

)
= 0,(1.7)

play an important role for the stochastic stability results in this paper. Even though
in the applications we consider we will explicitly study sufficient conditions for such
a result, for a class of non-Markovian sources useful sufficient conditions (inspired
from applications in queuing and networks) are given in [13] and [24]. These follow
from Lyapunov-drift-type conditions such as: E[(Sn+1−Sn)1Sn>L|S0, . . . , Sn] < −A1

with Sn ≥ 0 for all n for some A1 > 0, L < ∞, and a uniform bound on jumps from
below L as E[|Sn+1−Sn|p|S0, . . . Sn] < A2 for p > 1, A2 > 0 leading to finite bounds
on supnE[|Sn|p−1−δ] for arbitrarily small δ > 0, which through an application of
Markov’s inequality lead to (1.7). Thus, the findings in [13] and [24] together with
the results in this paper can be used to obtain Foster–Lyapunov-type drift criteria for
various forms of stochastic stability.

A further related view for approaching for such problems is the traditional random
dynamical systems view in which one studies the properties of the shifted sequences
(S[k,∞), X[k,∞)): Such a viewpoint leads to the interpretation that the entire uncer-
tainty is realized in the initial state of the Markov chain, and the process evolves
deterministically through a shift map. This approach has led to important contri-
butions on ergodic theory and the introduction of useful notions such as asymptotic
mean stationarity [9]. Connections between the two approaches and the implications
on the convergences of (1.2)–(1.5) will be made in the paper.

In section 2, we discuss the conditions for the existence of an invariant probability
measure. In section 3, we discuss the conditions for asymptotic mean stationarity and
ergodicity. This is followed by a study of applications in feedback quantization and
networked stochastic control in section 4. Section A in the appendix contains a brief
review of Markov chains and ergodic theorems for Markov chains.

2. Stochastic stability of non-Markovian systems. Towards obtaining a
method to study such systems, we will here view the process (X(−∞,k], Sk) as an

XZ− × S-valued Markov process, similar to [11]. We recall that with X a complete,
separable, metric (that is, a Polish) space, Σ = XZ− is also a Polish space under the
product topology.

By a standard argument (e.g., Chapter 7 in [6]), we can embed the one-sided
stationary process {Xk, k ∈ Z+} into a bilateral (double-sided) stationary process
{Xk, k ∈ Z}. We first state the following.

Lemma 2.1. The sequence (Zk, Sk) with Zk = X(−∞,k] is a Markov process.

Proof. For any Borel A×B ∈ B(XZ− × S) and k ≥ 0, the following holds almost
surely:

P ((Zk+1, Sk+1) ∈ (A×B)|Zm, Sm,m ≤ k)

= P ((Zk+1, F (Xk, Sk)) ∈ (A×B)|Zm, Sm,m ≤ k)

= P ((Zk+1 ∈ A) ∩ (F (Xk, Sk) ∈ B)|Zm, Sm,m ≤ k)

= P
(
X(−∞,k+1] ∈ A|Zm, Sm,m ≤ k

)
1{F (Xk,Sk)∈B}
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1244 SERDAR YÜKSEL

= P
(
X(−∞,k+1] ∈ A|X(−∞,m], Sm,m ≤ k

)
1{F (Xk,Sk)∈B}

= P
(
X(−∞,k+1] ∈ A|X(−∞,k]

)
1{F (Xk,Sk)∈B}

= P
(
(X(−∞,k+1] ∈ A) ∩ (F (Xk, Sk) ∈ B)|X(−∞,k], Sk

)
= P ((Zk+1, F (Xk, Sk)) ∈ (A×B)|Zk, Sk)

= P ((Zk+1, Sk+1) ∈ (A×B)|Zk, Sk) .

We let P denote the transition kernel for this process. Our inspiration for taking
the approach below builds on the fact that, since Xk is known to be stationary, if
there were an invariant measure v for this process, then this would decompose as

v(ds0|x(−∞,0])π(dx(−∞,0])

with π being the stationary measure for Xk. This follows by the invariance condition:∫
XZ−×S

P(X(−∞,k+1], Sk+1 ∈ B × S|x(−∞,k], sk)v(dx(−∞,k], dsk)

=

∫
XZ−×S

P (Sk+1 ∈ S|X(−∞,k+1] ∈ B, x(−∞,k], sk)

×P (X(−∞,k+1] ∈ B|x(−∞,k], sk)v(dx(−∞,k], dsk)

=

∫
XZ−×S

P (X(−∞,k+1] ∈ B|x(−∞,k], sk)v(dx(−∞,k], dsk)

=

∫
XZ−×S

P (X(−∞,k+1] ∈ B|x(−∞,k])v(dx(−∞,k], dsk)(2.1)

=

∫
XZ−

P (X(−∞,k+1] ∈ B|x(−∞,k])v(dx(−∞,k])

= π(B).(2.2)

Here, in (2.1) we use the fact that given x(−∞,k], to predictXk+1, Sk is noninformative.

2.1. Implications of the existence of an invariant probability measure.
If there is an invariant probability measure P̄ for such a process we say that the
process is stochastically stable. By the ergodic theorem (see Theorem A.1), P̄ a.s.

lim
N→∞

1

N
Ex(−∞,0],s

[
N−1∑
k=0

f(X(−∞,k], Sk)

]
= f∗(x(−∞,0], s)(2.3)

exists for all measurable and bounded f and for corresponding functions f∗ (where
the full set of convergence may depend on the function f).

The following assumption will be useful in establishing further stability results in
section 3. Recall that S0 ∼ κ for some probability measure κ.

Assumption 2.2. The invariant measure P̄ is such that π × κ � P̄ . That is,
P̄ (A,B) = 0 implies that π(A)κ(B) = 0 for any Borel A,B.

Under this assumption, we would have that the set of initial conditions which
may not satisfy (2.3) (this set has zero measure under P̄ ) also has zero measure under
the initial product probability measure π × κ. Thus,
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∫
XZ−

π(dx)

∫
S
κ(ds0)Ex(−∞,0],s0

[
1

T

[
T−1∑
k=0

g(x(−∞,k], sk)

]
(2.4)

→
∫
XZ−

∫
S
κ(ds0)π(dx)f∗(x(−∞,0], s0).

Furthermore, by Theorem A.2, sample paths also converge almost surely. Thus,
convergence in the sense of (1.2), (1.3), and (1.5) will hold. We will later see that
(1.4) will also hold.

2.2. Existence of an invariant probability measure with finite S. Our
first result is for the setup with finite S. For some related results and an alternative
approach for the finite case, see [20].

Theorem 2.3. Consider the dynamical system given by (1.1). Suppose that S is
finite. Then, the process is stochastically stable.

Proof. Define for all a ∈ S, the sequence of expected occupational measures

vt(dx(−∞,k] × {a}) = E

[
1

T

t−1∑
k=0

1{X(−∞,k],S∈dx(−∞,k]×{a}}

]
(2.5)

=
1

T

t−1∑
k=0

P (X(−∞,k], S ∈ dx(−∞,k] × {a}),

where for every k, X(−∞,k] ∼ π. Thus, for any t, we can decompose vt(dx(−∞,k] ×
{a}) = π(dx(−∞,k])vt(a|x(−∞,k]) since π is a stationary measure by (2.2). It follows
then that

vt(dx(−∞,k] × {a}) ≤ π(dx(−∞,k])

for every a and |S|π(dx(−∞,k]) is a majorizing finite measure for the sequence vt.
By [15, Proposition 1.4.4], a sequence of probability measures which is uniformly

countable additive is setwise sequentially precompact (see pp. 6–8 in [15]), a sufficient
condition being that the sequence is majorized by a finite measure. Thus, {vt} has
a converging subsequence vtk so that for some probability measure v, vtk(A)→ v(A)
for all Borel A. Let P be the transition kernel for the Markov chain. Then through a
Krylov–Bogoliubov-type argument, for every Borel A,

|vN (A)−vNP(A)|(2.6)

=

∣∣∣∣ 1

N

(
(v0(A) + · · ·+ vP(N−1)(A))− (v0P(A) + · · ·+ vPN (A))

)∣∣∣∣
≤ 1

N
|v0(A)− v0PN (A)| → 0.

Since vtk → v, setwise, it follows that vtkP(B)→ vP(B) also and hence v(B) = vP(B)
and v is stationary.

Hence, there exists an invariant probability measure for the process.

2.3. Existence of an invariant probability measure with countable S.
In this section, we assume that S is a countable set viewed as a subset of R whose
elements are uniformly separated from each other; thus S is a uniformly discrete set
in the sense that there exists r > 0 such that |x− y| > r for all x, y ∈ S .

Theorem 2.4. Consider the dynamical system given by (1.1). If (1.7) holds with
the norm defined on R, the process is stochastically stable.
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Proof.
(i) The sequence vt defined in (2.5) is tight: As an individual probability measure,

π is tight. Since by (1.7), the sequence of marginals of vSt on S is also tight,
it follows that the product measure is also tight: For every ε > 0, there exists
a compact set L ×M in the product space so that

vt
(
(L ×M)C

)
≤ π(LC) + vSt (MC) ≤ ε.

This follows since (L ×M)C = (LC × S) ∪ (XZ− ×MC), where for a set A,
AC denotes its complement.

(ii) We show that the sequence vt is relatively compact under the w-s topology
[2, 27]: Let A,B be complete, separable, metric spaces. The w-s topology
on the set of probability measures P(A × B) is the coarsest topology under
which

∫
f(a, b)ν(da, db) : P(A × B) → R is continuous for every measurable

and bounded f which is continuous in b ∈ B for every a ∈ A (but unlike weak
topology, f does not need to be continuous in a).

Since the marginals on x(−∞,k] are fixed, [27, Theorem 3.10] (see also [2, Theorem
2.5]) establishes that the set of such measures is relatively compact under the w-s
topology when a tightness condition holds. By tightness from (i), let vtk be a w-s
converging subsequence of vt. Then, as in (2.6), for every Borel A,

|vN (A)−vNP(A)|(2.7)

=
1

N
|(v0(A) + · · ·+ vP(N−1)(A))− (v0P(A) + · · ·+ vPN (A))|

≤ 1

N
|v0(A) + v0PN (A)| → 0.

Now, vtk converges w-s to v for some v. In particular, for every measurable
and bounded function f (which is continuous in s since S is countable), it holds
that 〈vtk , f〉 → 〈v, f〉, where 〈vtk , f〉 :=

∫
vtk(dx, s)f(x, s). We wish to show that

〈vtkP, f〉 → 〈vP, f〉, leading to the invariance of v in view of (2.7). Now, let f be
measurable and bounded. We have that∫

vtk(dx, s)f(x, s)→
∫
v(dx, s)f(x, s).

Observe that the transitioned probability measure vtkP satisfies, for every such f ,∫
vtkP(dx, s)f(x, s)(2.8)

=

∫
π(dz)

(∑
s′

vtk(s′|z)
∫
x

P (dx|z)f(x, F (z, s′))

)
,

where P (dx|z) = P (X(−∞,k+1] ∈ dx|X(−∞,k] = z). With z = x(−∞,k], let

Pf(z, s) =

∫
x

P (dx|z)f(x, F (xk, s
′)) =: g(z, s).

We note here that with z specified, xk is determined. The measurable function g is
continuous in s for every x. This ensures that 〈vtk ,Pf〉 = 〈vtkP, f〉 → 〈vP, f〉 and, for
all bounded f continuous in s, 〈v, f〉 = 〈vP, f〉, and hence v is invariant.
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2.4. Existence of an invariant probability measure with S = Rn. We have
the following assumption.

Assumption 2.5. F (x, s) is continuous in s for every x.

Theorem 2.6. Consider the dynamical system given by (1.1). If (1.7) holds,
under Assumption 2.5, the process is stochastically stable.

Proof.
(i) As in the proof of Theorem 2.4(i), the sequence defined in (2.5) with the set
{a} replaced with an arbitrary Borel set B is tight.

(ii) As before in Theorem 2.4(ii), the sequence vt is relatively compact under the
w-s topology. Since the marginals on x(−∞,k] are fixed, [27, Theorem 3.10]
establishes that the set of strategic measures is relatively compact under
the w-s topology under tightness. By tightness, let vtk be a w-s converging
subsequence of vt. Then, as in (2.6), for every Borel A,

|vN (A)−vNP(A)|(2.9)

=

∣∣∣∣ 1

N

∣∣∣∣ (v0(A) + · · ·+ vP(N−1)(A))− (v0P(A) + · · ·+ vPN (A))|

≤ 1

N
(v0(A) + vPN (A))→ 0.

Now, vtk converges w-s to v for some v. In particular, for every measurable and
bounded function f which is furthermore continuous in s for every x, it holds that
〈vtk , f〉 → 〈v, f〉, where 〈vtk , f〉 :=

∫
vtk(dx, ds)f(x, s). We will show that 〈vtkP, f〉 →

〈vP, f〉, leading to the invariance of v in view of (2.9). Now, let f be measurable and
bounded, but continuous in s. We have that∫

vtk(dx, ds)f(x, s)→
∫
v(dx, ds)f(x, s).

Observe that the (transitioned) probability measure vtkP satisfies, for every mea-
surable bounded f continuous in s for every x,∫

vtkP(dx, ds)f(x, s)(2.10)

=

∫
π(dz)

(∫
s′
vtk(ds′|z)

∫
x

P (dx|z)f(x, F (s′, z))

)
,

where P (dx|z) = P (X(−∞,k+1] ∈ dx|X(−∞,k] = z). With z = x(−∞,k], let

Pf(z, s) =

∫
x

P (dx|z)f(x, F (xk, s
′)) =: g(z, s).

We note here that with z specified, xk is determined. Since F is continuous in s′

and f is continuous is s, by the dominated convergence theorem g is continuous in
s for every z. Thus, P preserves w-s continuity and thus 〈vtk ,Pf〉 = 〈vtkP, f〉 →
〈vP, f〉 and for all bounded f continuous in s: 〈v, f〉 = 〈vP, f〉, and hence v is
invariant.
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2.5. Existence of an invariant probability measure under quasi-
continuity conditions. A large class of applications do not have the property that
S is countable or that F is continuous in s. To approach such problems in our frame-
work, we impose the following quasi-Feller-type condition which is natural for the
applications we will consider.

Assumption 2.7. F (x, s) is continuous on X × S \ D, where D is a closed set
with P ((Xt+1, St+1) ∈ D|x(−∞,t] = x, st = s) = 0 for all x, s. Furthermore, with
Dε = {z : d(z,D) < ε} for ε > 0 and d the product metric on X×S, for some K <∞,
we have that for all x, s, and ε > 0

P
(
(Xt+1, St+1) ∈ Dε|x(−∞,t] = x, st = s

)
≤ Kε.

Note that we can write the above as

P
(
((x(−∞,t], Xt+1), St+1) ∈ {x(−∞,t]} ×Dε|x(−∞,t] = x, st = s

)
≤ Kε.

Furthermore, this is equivalent to the condition

P
(
((x(−∞,t], Xt+1), St+1) ∈ XZ− ×Dε|x(−∞,t] = x, st = s

)
≤ Kε.

We define Dε := XZ− ×Dε. This is an open set in XZ− × S and will be useful in the
analysis to follow.

We remark that Assumption 2.7 is related to what is referred to as the quasi-
Feller condition introduced by Lasserre (see [15, section 7.3 ]). Our definition here
and the proof is different in part because we do not assume that the state space is
locally compact. We have the following assumption.

Assumption 2.8.
(i) If X is compact,

∫
X P (Xk+1 ∈ dx|X(−∞,k] = z)f(x) is continuous in z for

every continuous and bounded f on X.
(ii) If X is not compact,

∫
X P (Xk+1 ∈ dx|X(−∞,k] = z)f(x) is continuous in z for

every measurable and bounded f on X.

Theorem 2.9. Suppose that Assumptions 2.7 and 2.8 hold. If (1.7) holds, the
system is stochastically stable.

Proof. Assumption 2.7 implies that every converging subsequence vnk of

vn(A×B) = Ex,s

[
1

N

n−1∑
k=0

1{x(−∞,k],sk∈(A×B)}

]

is such that for all ε > 0

lim sup
nk→∞

vnk(Dε) ≤ Kε.

Note that with v = limnk→∞ vnk , it follows from the Portmanteau theorem (see, e.g.,
[5, Thm.11.1.1]) that

v(Dε) ≤ Kε.
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Now, consider a weakly converging empirical occupation sequence vtk and let this
sequence have an accumulation point v∗. We will show that v∗ is invariant.

Observe that the transitioned probability measure vtkP satisfies, for every contin-
uous and bounded f ,∫

vtkP(dx, ds)f(x, s)(2.11)

=

∫
π(dz)

(∫
s′
vtk(ds′|z)

∫
x

P (dx|z)f(x, F (s′, z))

)
,

where P (dx|z) = P (X(−∞,k+1] ∈ dx|X(−∞,k] = z). With z = x(−∞,k], let

Pf(z, s) =

∫
x

P (dx|z)f(x, F (xk, s)) =: g(z, s).

We note here that with z specified, xk is determined. In the following, we show that
for continuous and bounded f , g is continuous whenever F is (thus outside Dε).

If X is compact, by Tychonoff’s theorem XZ− is locally compact. In this case, we
will invoke [28, Theorem 3.5] for the following argument. If zn → z,

f ((zn, xk+1), F (xnk , s))→ f ((z, xk+1), F (xk, s))

for every xk+1 and thus with Hs,n(xk+1) := f((zn, xk+1), F (znk , s)), Hs(xk+1) :=
f((z, xk+1), F (xk, s)), it follows that Hs,n(xnk+1) → Hs(xk+1) as znk+1 → zk+1; thus,
we have continuous convergence as it is defined in [28]. As a result, continuity of g
(outside Dε) is established by a generalized dominated convergence theorem given in
[28, Theorem 3.5] in view of weak continuity by Assumption 2.8(i).

If X is not compact, we invoke the generalized dominated convergence theorem of
[28, Theorem 2.4]: Since P is strongly continuous under Assumption 2.8(ii), and f is
continuous and bounded, g(z, s) =

∫
x
P (dx|z)f(x, F (xk, s

′)) is continuous outside Dε.
Now, consider 〈vtk ,Pf〉 = 〈vtk , gf 〉 + 〈vtk ,Pf − gf 〉, where gf is a continuous

function which is equal to Pf outside an open neighborhood of D and is continuous
with ‖gf‖∞ = ‖Pf‖∞ ≤ ‖f‖∞. The existence of such a function follows from the
Tietze–Urysohn extension theorem [5], where the closed set is given by XZ− × S \Dε.
It then follows from Assumption 2.7 that, for every ε > 0, a corresponding gf can be
found so that 〈vtk ,Pf − gf 〉 ≤ K‖f‖∞ε, and since 〈vtk , gf 〉 → 〈v∗, gf 〉, it follows that

lim sup
tk→∞

|〈vtk ,Pf〉 − 〈v∗,Pf〉|(2.12)

= lim sup
tk→∞

|〈vtk ,Pf − gf 〉 − 〈v∗,Pf − gf 〉|

≤ lim sup
tk→∞

|〈vtk ,Pf − gf 〉|+ |〈v∗,Pf − gf 〉|

≤ 2K ′ε.

Here, K ′ = 2K‖f‖∞ is fixed and ε may be made arbitrarily small. We conclude that
v∗ is invariant.

Remark 2.10. In his definition for quasi-Feller chains, Lasserre assumes the state
space to be locally compact. A product space is locally compact if the individual
coordinate spaces are compact by Tychonoff’s theorem and the state space in our
formulation is not locally compact, in general. However, we invoke tightness directly
with no use of convergence properties of the set of functions which decay to zero as
is done in [15]. We also note that Gersho [7] had obtained a similar result addressing
points of discontinuity in the context of adaptive quantizer design.
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3. Asymptotic mean stationarity and ergodicity.

3.1. Shifts and random dynamical systems view. As an alternative ap-
proach, we may also view X[k,∞), S[k,∞) as an infinite dimensional Markov chain.
This viewpoint is more commonly adopted in the information theory literature (even
though not explicitly stated as a Markov chain), as we discuss in the following. Such a
view gives rise to important notions such as asymptotic mean stationarity. Note that
such a viewpoint leads to the interpretation that the entire uncertainty is realized in
the initial state of the Markov chain, and the process evolves deterministically.

Let X be a complete, separable, metric space. Let B(X) denote the Borel sigma-
field of subsets of X, let Σ = XZ+ denote the sequence space of all one-sided (unilateral)
infinite sequences drawn from X. Thus, if x ∈ Σ then x = {x0, x1, x2, . . . } with xi ∈ X.
Let Xn : Σ→ X denote the coordinate function such that Xn(x) = xn. Let T denote
the shift operation on Σ, that is, Xn(Tx) = xn+1.

With X a Polish space, Σ = XZ+ is also a Polish space under the product topology.
Let B(Σ) denote the smallest σ-field containing all cylinder sets which are of the form
{x : xi ∈ Bi,m ≤ i ≤ n}, where Bi ∈ B(X), for all integers m,n ≥ 0. Here,
∩n≥0T

−nB(Σ) is the tail σ−field: ∩n≥0σ(Xn, Xn+1, . . .), since T−n(A) = {x : Tn

x ∈ A}.
Let µ be the measure on the process {X0, X1, . . .}. This process is stationary and

µ is said to be a stationary (or invariant) measure on (Σ,B(Σ)) if µ(T−1B) = µ(B) for
all B ∈ B(Σ). This random process is ergodic if A = T−1A implies that µ(A) ∈ {0, 1}.

Definition 3.1 (see [10]). A process on a probability space (Ω,F ,P) with pro-
cess measure µ, is asymptotically mean stationary (AMS) if there exists a probability
measure P̄ such that

lim
N→∞

1

N

N−1∑
k=0

µ(T−kF ) = P̄ (F )(3.1)

for all events F ∈ B(Σ). Here P̄ is called the stationary mean of µ, and is a stationary
measure.

P̄ is stationary since, by definition P̄ (F ) = P̄ (T−1F ).
As elaborated on earlier, we may view {TnX} as a Markov chain (whose only

uncertainty is hidden in the initial distribution) characterized by a transition function
in the following, taking values in the Polish space XZ+ . The kernel is given such that,
for every n ∈ N, ∫

µ(dx)Pn(x,B) = µ(TnX ∈ B) = µ(X ∈ T−nB).

We may define expected empirical occupation measures as follows:

vt(B) =
1

T
Eµ

[
t−1∑
k=0

1{TkX∈B}

]
:=

1

T

t−1∑
k=0

µ(X ∈ T−kB).(3.2)

In this case, the initial measure µ on the sequence space affects how convergence
occurs. If the time averages converge setwise as in (3.1) to some measure P̄ , the
process is AMS.

It follows that if the system is AMS, (1.4) holds since the set of simple functions
is dense in the set of measurable and bounded functions under the supremum norm.
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3.2. Sufficient conditions for asymptotic mean stationarity. It is an im-
portant question to ask when a process is AMS.

Theorem 3.2 (see [26]). A process is AMS if and only if it is asymptotically
dominated by a stationary process, that is there exists a stationary measure π such
that for Borel B if π(B) = 0 then limn→∞ µ(T−nB) = 0.

Due to the Markov formulation, we can obtain the following direct condition to
check whether the AMS property holds for systems of the form (1.1).

Theorem 3.3. Let there exist a stationary measure P̄ for the Markov chain
(X(−∞,k], Sk) for the system (1.1). Assumption 2.2 implies the AMS property for
the process (Xk, Sk).

Proof. We will arrive at the conclusion using an ergodic theoretic result. From
the last item of Theorem A.3, if π×κ� P̄ , the following uniform convergence holds:

lim
T→∞

sup
f∈M(XZ−×S):‖f‖∞≤1

∣∣∣∣∣Eπ×κ 1

T

[
T−1∑
k=0

f(X(−∞,k], Sk)

]
− η∗(f)

∣∣∣∣∣ = 0(3.3)

for some invariant measure η∗ (not necessarily equal to P̄ ), where M(XZ−×S) denotes
the set of measurable and bounded functions on XZ− × S.

We will now see that the above implies the AMS property. We will obtain the
result for a general Markov process taking values in some Polish space V rather than
the XZ−×S-valued process considered, for ease in presentation. Let the initial measure
be v and the resulting measure on the state space VZ+ be Pv. Let ν∗ be an invariant
probability measure for the Markov chain and Pν∗ be the resulting stationary measure
on the product space VZ+ . Consider a set A ∈ B(VZ+) and let A1 be a corresponding
open finite dimensional set so that x ∈ A is equivalent to x[0,m] ∈ A1 for some m.
Then,

EPv
1

T

[
T−1∑
k=0

1{vk,∞)∈A}

]
= EPv

1

T

[
T−1∑
k=0

1{vk,k+m)∈A1}

]

= EPv

[
1

T

T−1∑
k=0

E[1{vk,k+m)∈A1}|v[0,k]]

]

= EPv
1

T

[
T−1∑
k=0

E
[
1{vk,k+m)∈A1}|vk

]]

= EPv
1

T

[
T−1∑
k=0

g(vk)

]
= Ev0=v

1

T

[
T−1∑
k=0

g(vk)

]

→
∫
η∗(dv)g∗(v) =

∫
η∗(dv)g(v)

= EPη∗
1

T

[
T−1∑
k=0

1{vk,∞)∈A}

]
= Pη∗(A)(3.4)

for some invariant measure η∗ and measurable g∗. Here, g(vk) = E[1{vk,k+m)∈A1}|vk].
The first equality above follows from the fact that A is a finite dimensional cylin-
der set and A1 is the corresponding finite dimensional set, the second equality from
the iterated expectations, the third from the fact that vk is Markov. Since, g(v) is
measurable and bounded, (3.3) leads to the desired result.
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Naturally, if P̄ is the unique invariant measure, η∗ = P̄ in (3.3). Next, we study
the uniqueness problem.

3.3. Ergodicity. Ergodicity is a desirable stability property, since it allows for
the sample path averages to converge to the same limit in the ergodic theorem regard-
less of the initial distribution, leading to crucial consequences in information theoretic
and control theoretic applications. For a Markov chain, the uniqueness of an invariant
probability measure implies ergodicity (see, e.g., [15, Chap. 2]). With the random dy-
namical systems view, sufficient conditions such as mixing can be utilized [9], however,
these may be restrictive.

Consider an X-valued Markov chain with transition kernel P , where X is a com-
plete, separable, and metric space.

Definition 3.4. A Markov chain is µ-irreducible, if for any set B ∈ B(X) such
that µ(B) > 0, and ∀x ∈ X, there exists some integer n > 0, possibly depending on
B and x, such that Pn(x,B) > 0, where Pn(x,B) is the transition probability in n
stages from x to B.

A maximal irreducibility measure ψ is an irreducibility measure such that, for all
other irreducibility measures φ, we have ψ(B) = 0 ⇒ φ(B) = 0 for any B ∈ B(X )
(that is, all other irreducibility measures are absolutely continuous with respect to ψ).
Whenever a chain is said to be irreducible, irreducibility with respect to a maximal
irreducibility measure is implied. A maximal irreducibility measure ψ exists for a
µ-irreducible Markov chain; see [21, Propostion 4.2.4]. The following is a well-known
result.

Theorem 3.5. Let {Xt} be a ψ-irreducible Markov chain which admits an in-
variant probability measure. The invariant measure is unique.

A complementary condition for ergodicity is the following.

Definition 3.6. For a Markov chain with transition kernel P , a point x is ac-
cessible if for every y and every open neighborhood O of x, there exists k > 0 such
that P k(y,O) > 0.

One can show that if a point is accessible, it belongs to the (topological) support
of every invariant measure (see, e.g., Lemma 2.2 in [12]). Recall that the support (or
spectrum) of a probability measure is defined to be the set of all points x for which
every open neighborhood of x has positive measure.

We recall that a Markov chain Vt is said to have the strong Feller property if
E[f(Vt+1)|Vt = v] is continuous in v for every measurable and bounded f .

Theorem 3.7 (see [12, 25]). If a Markov chain over a Polish space has the
strong Feller property, and if there exists an accessible point, then the chain can have
at most one invariant probability measure.

However, a Markov chain defined as (X(−∞,k], Sk) cannot be strongly Feller due
to the memory in the source: Take f(x) = 1{x−1∈A} (where x = x(−∞,0]) for some
closed set A, then E[f(X(−∞,k+1])|x(−∞,k]] = 1{xk∈A} is not continuous.

Nonetheless, we can have the following slight generalization.

Theorem 3.8. Suppose that E[f(Xk+1, Sk+1)|X(−∞,k] = x(−∞,k], Sk = sk] for
measurable and bounded f : X × S → R, is continuous in (x(−∞,k], sk). Suppose
further that there exists an accessible point for the Markov chain {(X(−∞,k], Sk)}.
The chain can have at most one invariant probability measure.
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Proof. As in [12], suppose there exist two invariant probability measures π1, π2

both of which must include (x, s) in their topological supports. Then, there exist
disjoint sets U and V and probability measures π̃1 and π̃2 so that π̃1(U) = 1 and
π̃2(V ) = 1 (see, e.g., [15, Lemma 2.2.3]). Now, there cannot exist a Borel A ⊂ X× S
such that under one measure it puts

P ((x(−∞,t], Xt+1, St+1) ∈ ({x(−∞,t]} ×A)|x(−∞,t], s)

= P ((Xt+1, St+1) ∈ A)|x(−∞,t], s) = 1π̃1a.s.

and P ((Xt+1, St+1) ∈ A)|x(−∞,t], s) = 0 π̃2 a.s. since the function E[1{(Xt+1,St+1)∈A}
|x, s] is continuous in x, s and if a continuous function is a constant π̃i almost ev-
erywhere, then it should be a constant in the topological support of the probability
measure. Now, let π̃1 have support U and let π̃2 have support V with U ∩ V = ∅.
Then, there exists a set C ⊂ X × S so that, P ((X1, S1) ∈ C|x(−∞,0], s0) = 1 π̃1 a.s.
and 0 π̃2 a.s., since the sets U, V would be disjoint absorbing sets. But this leads to
a contradiction in view of continuity.

For applications such as ∆-modulation, however, we will see that the continuity
assumption in Theorem 3.8 fails to hold. To be able to apply the result for such
setups, we have the following relaxation.

Theorem 3.9. Suppose that for measurable and bounded f : X × S → R,
E[f(Xk+1, Sk+1)|X(−∞,k] = x(−∞,k], Sk = sk] is continuous in x(∞,k], sk for all

x, s ∈ (XZ− × S) \ D for some closed set D. Suppose further that there exists an
accessible point (x, s) /∈ D for the Markov chain {(X(−∞,k], Sk)}. The chain can have
at most one invariant probability measure.

Proof. The proof follows from that of Theorem 3.8, despite the presence of the
discontinuous set D; since the set of continuity (XZ− × S) \ D is open and contains
the accessible point, the proof follows as before.

4. Applications. In this section, we consider applications in feedback quanti-
zation and networked control.

4.1. Adaptive Quantization. Adaptive quantization for stationary sources has
been studied, in particular in [17, 19, 7]. This paper generalizes the results of [7] which
investigated ∆-modulation only for finite order Markov sources. We believe that the
approach in this paper is more accessible than the arguments in [17] and [19] in part
because it allows for, through a unified approach, a Markov chain theoretic approach
and also leads to an ergodicity analysis in addition to asymptotic mean stationary.

4.1.1. ∆-modulation.

Theorem 4.1. Let Xk be a stationary and ergodic R-valued process stationary
process measure π, Q : R→ {−m,m}, with the following update:

Sk+1 = Sk +Q(Xk − Sk),

where S0 = 0 and Q(Z) = m1{Z≥0}−m1{Z<0}. Suppose further that E[Q(X0−m)] <
0 and E[Q(X0 + m)] > 0 (equivalently, P (X0 ≥ m) < 1/2, P (X0 ≤ −m) < 1/2).
Then, the system is stochastically stable in the sense that there exists an invari-
ant probability measure. Furthermore, if for every m, k, and nonempty open Ak,
π(X[m,k] ∈

∏k
t=mAk) > 0, the system is AMS. If, in addition, E[g(X1)|x(−∞,0]] is

continuous in x(−∞,0] for measurable and bounded g, (Xk, Sk) is ergodic.
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Note that here S = {km, k ∈ Z} is a countable set.
An example where the Lebesgue-irreducibility-type condition given by

(π(X[m,k] ∈
∏k
t=mAk) > 0) holds is

Xt+1 =

∞∑
i=0

αiWt−i

with
∑
t |α2

t | <∞ and Wt is a sequence of i.i.d. Gaussian random variables.
An example where the continuity condition for ergodicity holds is the following

autoregressive representation

Xt+1 =

N−1∑
i=0

αiXt−i +Wt

with the roots of 1 −
∑N
i=1 αi−1z

−i strictly inside the unit circle and Wt a sequence
of i.i.d. Gaussian random variables. This follows since

E[g(X1)|x(−∞,0]] =

∫
g(z)η

(
z −

N−1∑
i=0

αix−i

)
dz,

with η denoting the Gaussian density and by an application of the dominated conver-
gence theorem, this expression is continuous in x(−∞,0].

Proof. Observe first that

lim
M→∞

(
lim sup
T→∞

1

T

T−1∑
k=0

P (|Sk| ≥M)

)

= lim
M→∞

(
lim sup
T→∞

1

T

T−1∑
k=0

(1− P (|Sk| < M))

)

= lim
M→∞

(
1−

(
lim inf
T→∞

1

T

T−1∑
k=0

P (|Sk| < M)

))

= 1− lim
M→∞

(
lim inf
T→∞

1

T

T−1∑
k=0

P (|Sk| < M)

)

and thus (1.7) can be equivalently written as

lim
M→∞

(
lim inf
T→∞

1

T

T−1∑
k=0

P (|Sk| < M)

)
= 1.(4.1)

Using the fact that by the ergodicity of the source the following hold a.s.,

lim
n→∞

(m|{−n ≤ −i : |Xi| ≤ m}| −m|{−n ≤ −i : |Xi| > m}|) =∞,

lim
n→∞

(−m|{−n ≤ −i : |Xi| ≤ m}|+m|{−n ≤ −i : |Xi| > m}|) = −∞,
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Kieffer and Dunham [19, Theorem 2] show that the coding scheme satisfies the con-
dition [19, eq. (2.2)], which in turn implies (4.1). This follows since, with K a finite
set, the condition Si ∈ K for some i ∈ {n, . . . , n + N} [19, eq. (2.2)] implies that
|Si| ≤ K1 +Nm ≤ K2N for constants K1,K2 since |Si−Sj | ≤ |i− j|m. By Theorem
2.6, the system is stochastically stable.

Asymptotic mean stationarity: For the AMS property, we show that Assumption
2.2 holds: Let X[−m,0] ∈ B and S0 = 0 have a zero measure under P̄ . Then, π(B) = 0.
To show this, consider the contrapositive: If π(B) > 0, by the condition that all finite
dimensional cylinder sets consisting of nonempty open sets have positive measure
conditioned on any past event, it follows that for some S0 = s∗ with positive measure
under P̄ , there exists a positive probability event X[0,m] ∈ B so that Sm = 0. With

P̄ (X[−m,0] ∈ B,S0 = 0) = P̄ (X[0,m] ∈ B,Sm = 0)

≥
∫
z

P̄ (dz, s∗)P(x[0,m] ∈ B,Sm = 0|z, s∗) > 0,(4.2)

it follows that the absolute continuity condition holds, and by Theorem 3.3, the AMS
property.

Ergodicity: We can establish the uniqueness of an invariant probability measure
through either irreducibility properties or the following argument. Consider the point
p0 = {m/2}Z− × {0}. We argue that this point is accessible. Recall that an open set
in a product topology is a Borel set in the product space consisting of finitely many
open sets with the rest being X itself or an arbitrary union of such sets. Now, consider
any x(−∞,0], s. From this point, we will show that for every open neighborhood U of
p0, there exists some k > 0 so that P (X(−∞,k] ∈ U |x(−∞,0], s) > 0. For x ∈ U for such

U , x(−∞,0] ∈
∏0
l=−∞Al for finitely many non empty open sets which are not equal

to X and the rest being X (see, e.g., [5, Theorem 2.4.4]). Let −l be the largest index
for which A−l 6= X. Hence, it is evident that x(−∞,l] can take values in this open
set for a given x(−∞,0]. We also need to ensure that Sl hits zero. To allow for this
to happen, we further shift the process to the left: For any sufficiently small ε > 0,
identify a sequence of events from r to r + l so that Sr+l = 0 for some Sr = s when
|Xk−m/2| ≤ ε in this time interval. As a result, at time r+ l the state process hits 0
and the process X(−∞,r+l] hits the open set with positive probability with Sr+l = 0.
Finally, continuity holds due to the continuity of the noise process: The sets of points
where continuity fails, D = {x : x = km, k ∈ Z}, is a closed set and p0 is outside this
set. By Theorem 3.9, the process is ergodic.

4.1.2. Adaptive quantization of Goodman and Gersho. Consider the fol-
lowing update equations [8]:

Vt = ∆tQ1(Xt/∆t),

∆t+1 = ∆tQ2(
|Xt|
∆t

), ∆0 = b.(4.3)

Here, ∆t is the bin size of the uniform quantizer with a finite range and |Q1(R)| <
∞, |Q2(R+)| <∞. Vt is the output which is to track the source process Xt. Suppose
further that Q2 is nondecreasing.

Theorem 4.2. Let Xt be a stationary and ergodic (nondeterministic) Gaussian
sequence, ζ = limx→∞Q2(x) > 1, Q2(0) = limx↓0Q2(x) < 1, and log2(Q2(·)) ∈ Q.
Then, the system is stochastically stable. If, in addition, with {α1, α2, . . . , αL} a set
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of pairwise relatively prime integers and log2(Q2(·)) ∈ {αkm} for some m ∈ Q, the
process is AMS and, furthermore, ergodic.

Proof. Consider

log2(∆t+1) = log2(∆t) + log2

(
Q2

(
|Xt|
∆t

))
,

log2(∆t)− log2(∆0) ∈ Q for all t. Let St = log2(∆t). This sequence takes values in a
countable set and satisfies

St+n − St =

t+n−1∑
k=t

log2

(
Q2

(
|Xk|
∆k

))
,

As in the proof of Theorem 4.1, [19, Theorem 4] shows that the coding scheme
satisfies the condition [19, eq. (2.2)], which implies (4.1). By Theorem 2.6, the system
is stochastically stable.

Asymptotic mean stationarity: Since {αk} is a set of numbers that are relatively
prime, S consists of all integer multiples of m shifted by the initial value log2(b). This
follows from the property of relatively prime numbers due to Bézout’s lemma; see [32,
Lemma 7.6.2]. The argument for the AMS property then follows as before through the
absolute continuity condition: Any invariant measure is such that P̄ (·, s) � P̄ (·, s′)
for all admissible s, s′ and by Theorem 3.3, the result follows.

Ergodicity: In this case, the point ({0}Z− , log2(b)) is accessible by the same argu-
ments adopted in the proof of Theorem 4.1 and the steps leading to the AMS property
above. By Theorem 3.9, the process is ergodic.

4.2. Stochastic networked control. We consider a stabilization problem in
stochastic networked control where a linear system is controlled over a communication
channel. We will study the approach in [31, 33] (see [32] for a detailed discussion).
Consider the following control system, with Ut a control variable,

Xt+1 = aXt + bUt +Wt,(4.4)

where |a| ≥ 1, Wt is i.i.d, admitting a probability measure v which admits a density,
positive everywhere and bounded. Furthermore, E[|Wt|2+ζ ] <∞ for some ζ > 0.

In the application considered, a controller has access to quantized information
from the state process. The quantization is described as follows. An adaptive quan-
tizer has the following form with Q∆

K being a uniform quantizer with K + 1 bins and
bin size ∆; Q∆

K : R→ R satisfies the following for k = 1, 2 . . . ,K:

Q∆
K(x) =


(k − 1

2 (K + 1))∆ if x ∈ [(k − 1− 1
2K)∆, (k − 1

2K)∆),
1
2 (K − 1)∆ if x = 1

2K∆,

0 if x 6∈ [− 1
2K∆, 1

2K∆].

With K = d|a|+εe, R = log2(K+1), let R′ = log2(K). We will consider the following
coding and quantization update policy. For t ≥ 0 and with ∆0 > L for some L ∈ R+,
and x̂0 ∈ R, consider

Ut = −a
b
X̂t, X̂t = Q∆t

K (Xt),

∆t+1 = ∆tQ̄(| Xt

∆t2R
′−1
|,∆t).

Suppose that with δ, ε, α > 0 with α < 1 and L > 0 the following hold:
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Q̄(x,∆) = |a|+ δ if |x| > 1,

Q̄(x,∆) = α if 0 ≤ |x| ≤ 1,∆ ≥ L,
Q̄(x,∆) = 1 if 0 ≤ |x| ≤ 1,∆ < L.

Theorem 4.3 (see [33, 31]). Consider an adaptive quantizer applied to the linear
control system described by (4.4). If the noiseless channel has capacity

R > log2(d|a|e+ 1),

and for the adaptive quantizer in (4.5), if the quantizer bin sizes are such that their
(base 2) logarithms are integer multiples of some scalar s, and log2(Q̄(·, ·)) take values
in integer multiples of s where the integers taken are relatively prime (that is they share
no common divisors except for 1), then the process {(Xt,∆t)} is a positive (Harris)
recurrent Markov chain (and has a unique invariant distribution).

In [33] it was shown that an m-small set (since a petite set in an irreducible and
aperiodic Markov chain is m-small [21]) can be constructed so that return conditions
are satisfied. Hence, the return time properties directly lead to a stability result.
The small set discussion in [33] builds on the Markovian property and irreducibility
and aperiodicity of the Markov chain, together with a uniform countable additivity
condition from [29].

We can obtain the stability result through the analysis in this paper, without
defining a small/petite set: One can view the system as (∆t+1, xt+1) = F (∆t, xt, wt),
where the state is now st := (∆t, xt) and the independence of wt makes the pro-
cess (∆t, xt) Markov. Let the transition kernel be denoted by P . The finiteness of
lim supt→∞E[∆2

t + x2
t ] can be established by a Lyapunov analysis similar to [31, 16].

However, F here is not continuous in st. Nonetheless, the set of discontinuity is
given by

D =

{
x,∆ :

x

∆
∈ {−K

2
, . . . ,

K

2
}, ∆ ∈ N

}
,

where N is the set of admissible bin sizes which is a countable set. As a result, D
is also countable and closed (since the elements are uniformly separated from each
other). Furthermore, any weak limit of a converging sequence of expected occupa-
tional measures has zero measure on D, as can be deduced from the condition that
every open set Dε = {x,∆ : d((x,∆), D) < ε} is such that

vtkP (Dε) =
∑
∆

∫
z

vtk(dz,∆)
∑
∆tk

P (∆tk |xtk−1 = z,∆tk−1 = ∆)

×
K
2∑

m=−K2

P (xtk ∈ [m∆tk − ε,m∆tk + ε]|xtk−1 = z,∆tk−1 = ∆)

≤ L1ε

for some L1 < ∞ since P (xt+1 ∈ dx|x,∆) has a density which is uniformly bounded
for all z,∆ and the conditional probability P (∆tk |xtk−1 = z,∆tk−1 = ∆) has finite
support. By Theorem 2.9, the result follows. Finally, ergodicity follows from the
irreducibility of the Markov process.

5. Conclusion. In this paper, a method to verify stochastic stability, asymptotic
mean stationary, and ergodicity properties of a class of non-Markovian stochastic
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processes has been introduced. Applications to practical important feedback coding
schemes and networked control have been investigated. Further applications in control
of non-Markovian systems and stability of nonlinear filters are interesting research
directions.

Appendix A. Ergodic theorems for Markov chains.
Suppose that {Xt}t≥0 denote a discrete-time Markov chain with state space X,

a Polish space; its Borel σ-field is denoted by B(X), defined on a probability space
(Ω,F ,P). The transition probability is denoted by P , so that for any x, A ∈ B(X),
the probability of moving in one step from the state x to the set A is given by
P(Xt+1 ∈ A | xt = x) = P (x,A). The n-step transitions are obtained via composition
in the usual way, P(Xt+n ∈ A | Xt = x) = Pn(x,A) for any n ≥ 1. The transition
law acts on measurable functions f : X → R and measures µ on B(X) via Pf(x) :=∫
X P (x, dy)f(y), x ∈ X, and µP (A) :=

∫
X µ(dx)P (x,A), A ∈ B(X). A probability

measure π on B(X) is called invariant if πP = π, i.e.,∫
π(dx)P (x,A) = π(A), A ∈ B(X).

For any initial probability measure v, by the Ionescu Tulcea theorem [14], we can
uniquely construct a stochastic process with transition law P , and satisfying X0 ∼ v.
We let Pv denote the resulting probability measure on the sample space (X,B(X))Z+ ,
with the usual convention for v = δx when the initial state is x ∈ X in which case we
write Px for the resulting probability measure. Likewise, Ex denotes the expectation
operator when the initial condition is given by X0 = x. When v = π, the resulting
process is stationary.

When an invariant probability measure is known to exist for a Markov chain, we
state the following ergodicity results.

Theorem A.1 (see [15, Theorems 2.3.4–2.3.5]). Let P̄ be an invariant probability
measure for a Markov process.

(i) (individual ergodic theorem). Let X0 = x. For every f ∈ L1(P̄ )

1

N
Ex

[
N−1∑
n=0

f(Xn)

]
→ f∗(x)

for all x ∈ Bf , where P̄ (Bf ) = 1 (where Bf denotes that the set of conver-
gence may depend on f) for some f∗.

(ii) (mean ergodic theorem). Furthermore, the convergence 1
NEx[

∑N−1
n=0 f(Xn)]→

f∗(x) is in L1(P̄ ).

Theorem A.2 (see [15, Theorem 2.5.1]). Let P̄ be an invariant probability mea-
sure for a Markov process. With X0 = x, for every f ∈ L1(P̄ ),

1

N

N−1∑
n=0

f(Xn)→ f∗(x)

for all x ∈ Bf , where P̄ (Bf ) = 1 for some f∗(x) with∫
P̄ (dx)f∗(x) =

∫
P̄ (dx)f(x).

One may state further refinements; see [15] for the locally compact case and [30]
for the Polish state space case.
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Theorem A.3 (see [15, 30]). Let P̄ be an invariant probability measure for a
Markov process.

(i) (ergodic decomposition and weak convergence). For x, P̄ a.s., 1
NEx[

∑N−1
t=0

1{xn∈·}]→ Px(·) weakly and P̄ is invariant for Px(·) in the sense that

P̄ (B) =

∫
Px(B)P̄ (dx).

(ii) (convergence in total variation). For all µ ∈ P(XN) which satisfies that µ�
P̄ (that is, µ is absolutely continuous with respect to P̄ ), there exists v∗ such
that ∥∥∥∥∥Eµ

[
1

N

N−1∑
t=0

1{TnX∈·}

]
− v∗(·)

∥∥∥∥∥
TV

→ 0.
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