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potential for analysis and design of very complicated fractional-order
control systems with time delay.

The future direction in this research is to make more efforts on
changing of the orders of FOPID controller. Furthermore, the choosing
of the controller providing the optimal control in the global stability
region can be investigated. To achieve this, it is needed to obtain the
curves of the important time domain specifications such as settling
time and maximum overshoot. Because the frequency and time domain
performances will be met on a single plane, the designer can easily
decide about choosing the controller parameters according to the
desired performance.
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Optimal Signaling Policies for Decentralized
Multicontroller Stabilizability Over

Communication Channels

Serdar Yüksel and Tamer Başar

Abstract—In this note, we study the problem of distributed control over
communication channels, where a number of distributed stations collab-
orate to stabilize a linear system. We quantify the rate requirements and
obtain optimal signaling, coding and control schemes for decentralized sta-
bilizability in such multicontroller systems. We show that in the absence
of a centralized decoder at the plant, there is in general a rate loss in de-
centralized systems as compared to a centralized system. This result is in
contrast with the absence of rate loss in the stabilization of multisensor sys-
tems. Furthermore, there is rate loss even if explicit channels are available
between the stations. We obtain the minimum data rates needed in terms
of the open-loop system matrix and the connectivity graph of the decen-
tralized system, and obtain the optimal signaling policies. We also present
constructions leading to stability. In addition, we show that if there are ded-
icated channels connecting the controllers, rate requirements become more
lenient, and as a result strong connectivity is not required for decentralized
stabilizability. We determine the minimum number of such external chan-
nels leading to a stable system, in case strong connectivity is absent.

Index Terms—Cooperative control, decentralized stabilization, dis-
tributed control, information theory.

I. INTRODUCTION AND LITERATURE REVIEW

Decentralization in control systems has become ubiquitous with the
use of digital and wireless channels such as the Internet or dedicated
bus lines [in a controller area network (CAN)] in control systems.
Some typical applications include environmental detection, rescue
operations, traffic management, formation control, and aerospace
applications; see for instance [1]. In such remote control problems,
one major concern is the characterization of the minimum amount
of information transfer needed for a satisfactory performance. This
information transfer could be between various components of a
networked control system, as depicted in Fig. 1. Such networks and
channels bring up many challenges, since they involve two disciplines
which are still in their infancy, namely the decentralized control and
the multiterminal information theories.

Decentralized stabilization has attracted considerable interest in the
literature [2], [3]. One of the accomplishments in this domain is the
introduction of decentralized fixed modes [4] and graph-theoretic char-
acterization of stability [3] (see also [2]).

In distributed control problems, it is possible for the controllers to
communicate through the plant [5]. The process of communicating via
the plant is known as signaling. Most of the control literature on sig-
naling is concerned with indirect aspects of signaling in optimal control
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Fig. 1. Distributed control system. Under information structure A (IS A) con-
trollers use local information. Under IS B, there can be external communication
between controllers: dashed lines depict the possible communication links be-
tween the stations.

Fig. 2. Multicontroller system structure: There does not exist a centralized de-
coder. In a multisensor case, there exists a centralized decoder.

problems: [6] showed that for an LQR problem, when there is no in-
centive for signaling, then certain convexity properties are preserved
leading to optimality of linear policies. [7] provided such a condition
when there is no incentive for signaling. This paper, however, provides
a new framework to the signaling problem, when there is an incentive
to do so.

As regards to communication theoretic issues, most of the efforts in
the literature have been under the assumption that the system exhibits
either the multisensor structure or the multicontroller structure. One
important difference between the multicontroller and the multisensor
setups is the following (see Fig. 2): In a multisensor structure, there
exists a centralized controller which assembles the observations from
multiple sensors, generates an estimate (as in a fusion center) and com-
putes the control. However, in a multicontroller setup, there is no cen-
tralized decoder at the plant. This is due to the fact that in a realistic sce-
nario, the plant should be merely acting on the control signals received,
for otherwise there would not be any need for the transmission of con-
trol over a communication channel. It should be observed, however,
that the plant can still have local feedback control, and the discussion
here is with regard to the control signals sent over to a remote location.
If the plant is able to do filtering with regard to the controller actions,
then the results with regard to the multisensor setup will be applicable.
As an example, consider a robot vehicle which is being remotely con-

trolled. The remote controller can develop an estimate on the vehicle’s
position, using the system dynamics, past received observations and
the previously transmitted control signals. However, the vehicle should
be designed so that it can act on any of the commands generated by
the remote controllers, such as reducing acceleration, changing direc-
tion and so forth, even when the commands are random and hence
unpredictable.

For distributed systems exhibiting the multisensor structure, due to
the assumption of a centralized decoder, one can use Slepian–Wolf
coding theorem to arrive at the rate requirements. [8] shows the ab-
sence of rate loss in noiseless multisensor systems with a centralized
controller. We note that the Slepian–Wolf framework is not required if
one allows the use of time-varying policies, an approach we adopt in
this paper. Also see the references in [9], and [12], [13], [11] and [10].

1) Main Results: This paper deals with distributed systems ex-
hibiting the multicontroller structure. The main contributions can be
summarized as follows.

1) For multicontroller decentralized systems, we obtain the minimal
sum-rate and present control, signaling and sensing schemes
which minimize the sum-rate required for decentralized stabiliz-
ability. We also show that there is in general a strict rate loss in
multicontroller decentralized systems, as compared to a central-
ized system. This is in contrast with multisensor decentralized
systems.

2) Explicit channels between the stations might improve the com-
munication requirements. If explicit channels exist between
controllers, strong connectivity is not required for decentralized
stabilizability. This note obtains the minimum number of such
channels.

A. Problem Formulation

We consider the class of multistation n-dimensional discrete-time
LTI systems

xt+1 =Axt +

L

j=1

B
j
u
j
t

y
i
t =C

i
xt; 1 � i � L (1)

where (A; [B1jB2j . . . jBL]) is controllable and (A; [(C1)T j(C2)T

j . . . j(CL)T ]T ) is observable, but the individual pairs may not enjoy
this, such as (A;Bi) may not be controllable or (A;Ci) may not be
observable, for 1 � i � L. Here, xt 2 Rn, is the state of the system,
uit 2 Rm is the control applied by station i, and yit 2 Rp is the ob-
servation available at station i at time t. Without any loss of generality,
we assume the system matrix A to be in Jordan form. The initial state
x0 is a random vector with a continuous probability density function
over a bounded support set, X0 � Rn. We consider two Information
Structures (ISs), IS A, and IS B. In the first one, there is no external
communication between controllers. In the second structure, stations
can communicate via external channels.

1) IS A: Under this structure, the information available to station i
at time t is

I
i
t = fyi[0;t]; u

i
[0;t�1]g

where, ui[0;t�1] denotes the sequence fui0; u
i
1; . . . ; u

i
t�1g and yi[0;t] =

fyi0; y
i
1; . . . ; y

i
tg.

2) IS B: Under this information structure, the information available
to station i at time t becomes

I
i
t = fyi[0;t]; u

i
[0;t�1]; Z

i
[0;t�1]g
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where Zi[0;t�1] denotes the information provided to station i by other
stations through external channels up to time t � 1:

Zi[0;t�1] = fzm;is ; 0 � s � t� 1; m 6= ig

where zm;is denotes the message transmitted from station m to station
i at time s.

The control signals ui;8i, and the external message signals,
zi;j ; 8i; j; j 6= i, are coded and decoded over discrete noiseless chan-
nels with finite capacity. Hence, the applied control and transmitted
messages follow a coding, binary representation, and a decoding
process. We assume fixed-rate encoding, that is, the rate is defined as
the (base-2) logarithm of the number of symbols to be transmitted:
The coding process of the controller at station i is measurable with
respect to the sigma-algebra generated by Iit to f1; 2; . . . ;W i

t g, which
is the quantizer codebook at station i at time t. Hence, at each time t,
station i sends log2(W

i
t ) bits over the channel to the plant. Under IS

B, the external signaling process of the controller at station i to station
m is a mapping from �(Iit) to f1; 2; . . . ;W i;m

t g. Hence, at each time
stage, t, station i sends log2(W

i;m
t ) bits over an external channel to

station m.
Finally, we describe the information available at the plant. The plant

knows the codebooks used by each controller, to be able to perform de-
coding. The decoder output at the plant with regard to the information
received from station i at time t, which we again denote as uit 2 Rm ,
is generated through a (memoryless) mapping from f1; 2; . . . ;W i

t g to
Rm . In addition to the quantizer policy and codebook, the plant also
knows when the controllers at each station choose to signal information
or to apply control. This is needed to ensure that the plant is capable of
negating the effect of signaling.

3) Problem Statement: Under IS A, letRA denote the set of average
(over time horizon) rates on L channels which lead to (decentralized)
stabilization, i.e.,

RA = Ri; i 2 1; 2; . . . ; L :

9fu1[0;1); u
2
[0;1); . . . ; u

L
[0;1)g; lim

T!1
E[jxT j

2] = 0

where Ri = lim supT!1 (1=T ) T

t=1 log2(W
i
t ). Define RA :=

minR f L

i=1 R
ig, such that decentralized stabilization is possible.

Under IS B, let RB denote the set of average (over time horizon) rates
on L2 channels which lead to (decentralized) stabilization, i.e.

RB = Ri; Ri;j ; i 6= j 2 1; 2; . . . ; L :

9fu1[0;1); u
2
[0;1); . . . ; u

L
[0;1)g; lim

T!1
E[jxT j

2] = 0

where Ri = lim supT!1 (1=T ) T

t=1 log2(W
i
t ), and Ri;j =

lim supT!1 (1=T ) T

t=1 log2(W
i;j
t ).

Define RB := minR f L

i=1 R
i + L

i=1 j 6=i R
i;jg, such that

decentralized stabilization is possible. We are interested in the min-
imum achievable average sum rates, RA and RB , under both informa-
tion structures. �

We refer to [14] for background on the relevant information theo-
retic preliminaries. We next introduce some relevant graph-theoretic
notions: A directed graph G consists of a set of vertices, V , and a set of
directed edges, (a; b) 2 E , such that a; b 2 V . A path in G of length d
consists of a sequence of d directed edges such that each edge is con-
nected. A graph in which there exists a path from any node to any other
is a strongly connected graph. We define the minimum distance be-
tween two sets of nodes S1; S2 � G as d(S1; S2) = minfd(i; j); i!
j; i 2 S1; j 2 S2g, where d(i; j) denotes the number of paths between
node i and j, with the trivial case being d(i; i) = 0 for all nodes.

II. DECENTRALIZED STABILIZABILITY

We denote the controllability matrix for station i by Ci, where

Ci = [BijABij . . . jAn�1Bi ]

and the observability matrix for station j by Oj , which is given by

Oj = [ (Cj)T j(CjA)T j . . . j(CjAn�1)T ]T :

We let N i denote the unobservable subspace of station i, and Ki de-
note its controllable subspace. In other words, N i is the null-space of
Oi, and Ki is the range space of Ci. We define Oi to be the subspace
orthogonal to N i, and call it the observable subspace. Such subspaces
can be computed via the Hautus-Rosenbrock test. We define a mode of a
linear system as an eigenvector corresponding to an (open-loop) eigen-
value. The set of unstable modes is the set of eigenvectors of the system
matrix corresponding to unstable eigenvalues. We let fxig be the sub-
space of the eigenvectors corresponding to �i. These notions naturally
extend to generalized eigenvectors and to complex eigenvalues.

We next review the notion of connectivity. If N j 6� Ki, then station
i can affect the observations of station j, and thus, communicate to sta-
tion j via control [5], which we capture through the notation i! j. In
this case, station i is said to be connected to station j. If every station is
connected to every other station, possibly via other stations, the system
is said to be strongly connected. Through communication via the plant,
the controllable subspace can be expanded and the unobservable sub-
space can be shrunk [5]. The following is from [3]:

Decentralized stabilization in a multicontroller setting is possible,
if the system is jointly controllable, jointly observable, and strongly
connected. Such a stabilization is in general possible through time-
varying controls.

The reader is referred to [2] for conditions of decentralized stabiliza-
tion with a more restrictive set of controllers (such as, time-invariant,
output feedback controllers, for which the absence of decentralized
fixed modes is required in addition to joint controllability, observ-
ability). Hereafter, while performing the rate analysis, we will assume
that the system is decentrally stabilizable in the sense of [3], in the
absence of any structural restriction on the class of controllers.

III. DECENTRALIZED STABILIZATION OF MULTICONTROLLER

SYSTEMS UNDER IS A

One of the main results of this note is the following.
Theorem 3.1: Consider IS A. Assume that unrestricted decentral-

ized stabilization is possible, that is, the system is jointly controllable,
jointly observable, and strongly connected. Suppose the eigenvalues
corresponding to each of the (possibly generalized) eigenvectors are
ordered as fn1; n2; . . . ; nng, and fxn ; xn ; . . . ; xn g denote the or-
dered eigenvectors. Let N be the set of such orderings, and for i � 1,
Mi := span(xn ; xn ; . . . ; xn ). Then, a lower bound on the sum
rate required, RA, between the controllers and the plant for stabiliz-
ability is given by

min
fn ;n ;...;n g2N

j� j>1

(1 + �M ) log2(j�ij) (2)

where

�M := min
K�f1;2;...;Lg;m

j2K

d(j;m) : j ! m; fxig � [j2K

Oj [Om [Mifx
ig � Km [Mi (3)
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is the minimum number of paths connecting the stations which can ob-
serve mode i to the stations which can control it given that (x1;2;...;i�1)
at the controllers is set to zero. �

The following example helps to illustrate the preceding result. Con-
sider the two-controller system

xt+1 =Axt +

2

j=1

Bjujt ; t � 0

yit =Cixt; i = 1; 2 (4)

with A = diag(2;2), B1 = [0 1]T , C1 = [1 1], B2 = [1 0]T ,
C2 = [1 � 1].

Here, neither of the stations can recover the modes of the system
independently; however the system is decentrally stabilizable (even by
linear policies). If the system were centralized the average rate needed
would be 2 bits. In the decentralized case, however, the minimum
achievable average sum rate under the information structure for the
controllers and the plant is 3 bits.

Toward the proof of Theorem 3.1, we present a number of lemmas,
the first one being related to connectivity.

Lemma 3.1: i! j if and only if Cj(A)lBi 6= 0, for at least one l,
1 � l � n.

Proof:
i) Suppose that Cj(A)lBi 6= 0 for at least one l. This implies the

existence of a control u such that OjCiu 6= 0.
ii) The observation at station j, in the presence of controls from

station i, is

yjt = Cj(A)tx0 +

t�1

k=0

Cj(A)t�k�1Biuik:

If all the terms Cj(A)lBi are zero, for 1 � l � n, then via the
Cayley–Hamilton theorem, CjAlBi = 0 for all l 2 Z+. Thus,
we have yjt = Cj(A)tx0. Hence, the control of station i does
not affect the observation of station j.

�
Lemma 3.2: For a sequence of scalar continuous random variables

fvt; t = 1; 2; . . .g converging to zero in the mean-square sense,
limt!1E[v2t ] = 0, the (differential) entropy has the property that
lim supt!1H(vt) = �1.

Proof: Fix an � > 0. Then, there exists a t0, such that for every
t > t0, E[v2t ] � �. For a zero-mean random variable with a fixed
second moment, the entropy is maximized by a Gaussian random vari-
able with the same second moment. Hence, for every t � t0, H(vt) �
(1=2) log(2�E[v2t ]) � (1=2) log(2��), and the result follows, since �
can be taken to be arbitrarily small, and lim�!0 log(2��) = �1. �

Lemma 3.3: Suppose that the initial state has a continuous
probability density function with a bounded support set. To
make a particular mode, xi, corresponding to an unstable eigen-
value �i mean-square stable, the average rate of information that
needs to be transmitted from the initial state to the control sta-
tion is log2(j�ij). The information that needs to be transmitted
from the stations which can observe the mode to the station(s)
equipped with the capability of controlling the mode is lower
bounded by log2(j�ij) � lim supt!1 (1=t)I(xi0; y

S
0

t
jx

[n ;n ]
0 ),

where yS denotes the observations at the set of nodes satisfying
Si = fm : fxig � (Km [Mi)g.

Proof: Let x��� be the eigenspace of �, i.e., the space spanned by
the eigenvectors corresponding to eigenvalue �. Then, the dynamics of
the ith mode can be written as

xit = �tix
i
0 +

k

1x 2x ;k 6=if(x
k
0) +BS (uS0

t
)

where 1(:) denotes the indicator function, f(:) is some function that
depends on the Jordan form of the system matrix, and the superscriptSi
denotes the stations that can control mode i, i.e., xi 2 Km for station
m in Si, u

S
0

t
denotes the control sequence applied by such stations,

and BS (:) denotes the mapping from the set of applied controls to the
state. The evolution equation above follows from the fact that modes
sharing a similar eigenvalue are decoupled from other modes and the
intradependency of these modes does not involve cross terms, given the
initial values. Let Oi = fm : fxig � ( Om) [Mig. We have

H(xit) =H �tix
i
0 +

k

1x 2x ;k 6=if(x
k
0) +BS uSt

�H(�tix
i
0 + f(uS0

t
)juS0

t
; xk 2 x

���; k 6= i)

=H(�tix
i
0ju

S
0

t
)

= t log2(j�ij) +H(xi0ju
S
0

t
): (5)

The first inequality above follows from the fact that conditioning does
not increase the entropy. It now follows from (5), by rearranging terms,
thatH(xi0)�H(xi0ju

S
0

t
) � H(xi0)+t log2(j�ij)�H(xit). Since the

initial state has finite entropy, the sequence fxitg converges to zero in
the mean-square sense, and, by Lemma 3.2, limt!1H(xit) = �1,
it follows that

lim inft!1
1

t
fH(xi0)�H(xi0ju

S
0

t
)g

� lim inf
t!1

1

t
ft log2(j�ij) +H(xi0)�H(xit)g

� log2(j�ij): (6)

We have that uS0
t

is a causal function of the information
available (yS0

t
; yO0

t
) and thus by the data processing in-

equality it follows that I(x0; u
S
0

t
) � I(x0; y

S
0

t
; yO0

t
) and

liminft!1(1=t)I(xi0; y
S
0

t
; yO0

t
) � log2(j�ij). Further, it follows

that limsupt!1(1=t)I(xi0; y
S
0

t
) is finite and

liminft!1
1

t
I(xi0; y

O
0

t
jyS0

t
)

� log2(j�ij)� limsupt!1
1

t
I(xi0; y

S
0

t
)

� log2(j�ij)� limsupt!1
1

t
fI(xi0; y

S
0

t
jx

[n ;n ]
0 )

+ I(xi0; x
[n ;n ]
0 )g:

Due to linearity

I(xi0; y
S
0

t
jx

[n ;n ]
0 ) = I(xi0; y

S
0

t
jx

[n ;n ]
0 = 0):

Result follows, since limt!1 (1=t)I(xi0; x
[n ;n ]
0 ) = 0. �

Lemma 3.4: A total average rate of at least

�M log2(j�ij)� lim
t!1

1

t
I(xi0; y

S
0

t
jx

[n ;n ]
0 )

bits is needed for the stabilizability of the ith mode.
Proof: Let Oi = fm : fxig � ( Om) [Mig. Consider the

paths from Oi to Si. Let zS0
t

denote the signaling outputs received by
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Si up to time t, from Si. Following a conditional version of the data
processing inequality, we have

1

t
I(xi0; z

S
0

t
; yS0

t
jx

[n ;n ]
0 )

=
1

t
H(xi0jx

[n ;n ]
0 )�H(xi0jz

S
0

t
; yS0

t
; x

[n ;n ]
0 )

�
1

t
H(xi0jx

[n ;n ]
0 )�H(xi0jz

S
0

t
; uO0

t
; yS0

t
; x

[n ;n ]
0 )

=
1

t
H(xi0jx

[n ;n ]
0 )�H(xi0ju

O
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The inequality follows from the fact that conditioning does not increase
the entropy. The next equality follows from the fact that zS0

t
is a de-

terministic function of uO0
t
. Other lines follow from basic properties

of mutual information [14]. Hence

lim inf
t!1

1

t
I(xi0;u

O
0

t
jyS0

t
; x

[n ;n ]
0 )

� log2(j�ij)� lim sup
t!1

1

t
I(xi0; y

S
0

t
jx

[n ;n ]
0 ) :

Upon obtaining the minimum number of paths in a connectivity graph,
a repeated application of the above arguments (which follows from a
conditional version of the data processing inequality) to each of �M
paths leads to the desired result. �

We note that the above admits a max-flow min-cut interpretation
(Fig. 3) over a temporal graph. One can approach the problem as in-
formation transfer over a network, where the rate of information flow
across any cut is less than the mutual information between the inputs
on either side of the cut conditioned on the inputs on the other side of
the cut.

Lemma 3.5: lim supt!1 (1=t)I(xi0; y
m
0
tjx

[n ;n ]
0 ) is equal to

either log2(j�ij) or 0. It is 0 if fxig 6� Om [Mi .
Proof: Without any loss of generality, we have ym as a linear

combination of modes with the same eigenvalue. If fxig 6� (Ol[Mi),
then

lim sup
t!1

1

t
I(xi0; y

m
0
tjx

[n ;n ]
0 )

= lim sup
t!1

1

t
ft log2(j�ij)�H(ym0 jx

i
0; x

[n ;n ]
0 )

� t log2(j�ij) +H(ym0 jx
[n ;n ]
0 )g = 0: (7)

The other case can be analyzed in a similar fashion. �
Proof of Theorem 3.1: If there exists a station for a mode i such

that fxig � (Oi \ Ki) Mi, then there is no need to relay any
information through the plant. Otherwise the controllers should signal
information through the plant. Following Lemma 3.3, the information
should be at least log2(j�ij) for each mode. The signaling has to be
through the controllers that are connected, following Lemma 3.1.
Lemmas 3.4 and 3.5 show that the minimum number of information
bits has to be transmitted over the connected paths. Once one mode
is stabilized, one can proceed on to the next mode. As is observed
in Lemma 3.3, one can set the preceding modes to zero, to obtain
a further lower bound. This sequential analysis is applicable to all
the unstable modes. Upon obtaining a minimizing path for the entire
process, the following rate is obtained as a lower bound:

min
fn ;n ;...;n g2N

j� j>1

�M log2(j�ij) (8)

Fig. 3. A max-flow min-cut interpretation. In the figure, station 1 observes a
mode, relays it to station 2, which further relays it to station 3.

where N and �M are defined in the statement of Theorem 3.1. This
completes the proof. �

We now state a result on the tightness of the lower bound provided
in Theorem 3.1.

Theorem 3.2: There exist stabilizing coding and control policies
whose sum rate is arbitrarily close to the lower bound provided in (9).
Hence, this bound is asymptotically achievable. �

Toward the proof, we again first state and prove a lemma.
Lemma 3.6: Station l can compute ClAnxn, at time n.

Proof: At time n, the station will have access to x
O

0 . One can
write

ClAnxn

=Cl

n�1

i=0

�iA
i xn = Cl

n�1

i=0

�iA
i Anx0

=Cl

n�1

i=0

�iA
i+n x0 = Cl

n�1

i=0

�0iA
i x0 =

n�1

i=0

�0iy
l
i

where �i; 1 � i � n, and �0i; 1 � i � n can be obtained via the
Cayley–Hamilton theorem. This completes the proof. �

Proof of Theorem 3.2: Without any loss of generality, suppose
that there exists only one station, station l, that can control a mode i,
and only one station, k 6= l, that can observe a mode xi and k ! l.
Then, the information on mode xi is to be sent to station l through the
plant. Suppose xi0 is to be sent to station l. Sensor k recovers xi0 at
a time no later than n. It then quantizes xi0 uniformly. Station k sets
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ukt = qt(x
i
0), where qt denotes the quantization operation at time t. In

this case

xn+1 =Axn +Bkqn(x
i
0)

yln+1 =Cl(Axn+1 +Bkqn(x
i
0)):

Assembling the observations yln+1; y
l
n+2; . . . ; y

l
2n, and following the

fact that Cl(A)mBk 6= 0 for at least one m; 1 � m � n, and Lemma
3.6 , the quantized output qn(xi0) can be recovered at a time no later
than 2n. Sensor l can recover the quantized information qn(xi0), which
it subsequently sends to station l. Via this information, the estimate at
time 2n, x̂i0(2n), can be computed. Let p > 0 be an integer. If an
average quantization rate of R = n log2 j�ij + �, for some � > 0 is
used, then the estimation error xi0 � x̂i0(pn) approaches zero at a rate
faster than 1=(j�ij)

pn.
The plant undoes the signaling, since it is assumed to know the con-

trol protocol. The controller can drive the estimated value to zero in
at most n time stages. Finally, we need to consider multiple transmis-
sions. The remaining controllers can be designed to be idle, while a
particular mode is being relayed by the plant. Such a sequential scheme
ensures convergence. � can be taken arbitrarily small via adjusting the
time-stages. �

IV. DECENTRALIZED STABILIZATION OF MULTICONTROLLER

SYSTEMS UNDER IS B

We now consider IS B, that is there are external links between the sta-
tions. Under IS B, the communication requirements might be relaxed,
since the incentive for signaling through the plant disappears. This ob-
servation leads to the following theorem, which we state without a
proof.

Theorem 4.1: Consider information structure B. LetN be the set of
orderings of the eigenvectors, and letMi be defined as in Theorem 3.1.
The minimum sum rate, RB , required for decentralized stabilizability
is given by

min
fn ;n ;...;n g2N

j� j>1

log2(j�ij)(1 + 1fx g6�M ) (9)

where, for i � 1

M 0
i =

L

l=1

(Kl \Ol) Mi:

There exist stabilizing policies whose sum rate is arbitrarily close to
this rate. �

We note, however, that in case such dedicated channels were to exist,
then one would not need strong connectivity.

Corollary 4.1: Suppose there are external channels between all of
the stations. In this case, for the existence of a stabilizing decentralized
design, it suffices for the system to be jointly controllable and jointly
observable.

The presence of external channels can reduce the sum rate. If the
system itself is not strongly connected, then one needs to artifically
make the system strongly connected through the communication chan-
nels for stabilizability.

Theorem 4.2: Suppose the connectivity graph of the stations is such
that cardinality of the set of disconnected station clusters A, jAj, is

greater than one, that is, there exist at least two sets S1; S2 � A such
that there does not exist any path connecting any node inS1 to any node
in S2. Then, for stabilizability, there needs to be at most jAj external
channels connecting any node within each cluster, to any other node in
an another cluster.

Proof: The jAj links can be connected between the clusters to
ensure a cyclic connectivity graph, so that there exists a path from any
station to any other one. This ensures strong connectivity. �

Signaling has the effect of having the number of paths �M at least
two, and greater than two if more stations are involved. One could by-
pass the multipath transfers via external channels, and hence, the av-
erage sum rate performance improves if one adds external links be-
tween stations, which lie on the minimum sum-rate connections with
�M > 2. This leads to the following result.

Theorem 4.3: The minimum number of external channels needed
to achieve the optimal sum-rate is given by adding direct links betwen
the stations which lie on the control path for modes with �M > 2.
If �M = 2, the addition of an external channel does not improve the
performance. �
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