
Chapter 1

Stabilization and Control over Gaussian

Networks

Ali A. Zaidi, Tobias J. Oechtering, Serdar Yüksel and Mikael Skoglund

Abstract We provide an overview and some recent results on real-time commu-

nication and control over Gaussian channels. In particular, the problem of remote

stabilization of linear systems driven by Gaussian noise over Gaussian relay chan-

nels is considered. Necessary and sufficient conditions for mean-square stabiliza-

tion are presented, which reveal signal-to-noise ratio requirements for stabilization

which are tight in certain class of settings. Optimal linear policies are constructed,

global optimality and sub-optimality of such policies are investigated in a variety of

settings. We also consider the design of low-delay sensing and transmit schemes for

real-time communication.

1.1 Introduction

In this chapter we consider a setup where a linear time invariant system (plant) with

a random initial state and driven by Gaussian noise has to be remotely stabilized. A

group of sensor nodes monitor the plant and communicate their observations (mea-

surements) to a remotely situated control unit over wireless links, that are modeled

as additive white Gaussian channels. The common goal of the sensors and the con-

troller is to stabilize the plant in closed-loop. Usually in remote control applica-

tions, sensing and transmission under strict delay and power constraints is required.
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Therefore we focus on delay-free and power efficient sensing and transmit schemes

throughout the chapter. Our objective is to provide an overview and some recent

results on real-time communication and stabilization over Gaussian channels. In or-

der to grasp the fundamental principles, we consider setups with one or two sensor

nodes under some basic topologies, however, useful references to more general se-

tups are provided throughout the chapter.

The main focus of this chapter is on mean-square stabilization of a linear dy-

namical system over some basic Gaussian network settings. Some real-time sensing

and transmission schemes are proposed and stabilizability of the plant under those

schemes is studied. The chapter is organized as follows. In Section 1.2 the problem

of remote stabilization of a discrete-time LTI plant over Gaussian sensor network is

formulated. In Section 1.3 a single sensor setup is considered, i.e., stabilization over

a point-to-point Gaussian channel. Section 1.4 and Section 1.6 consider two sensor

setups, where one sensor node merely acts as a relay for communicating state infor-

mation to the remote controller. Section 1.4 focuses on mean-square stabilization of

an LTI plant in various relaying topologies. Section 1.5 and 1.4 addresses the prob-

lem of real-time transmission of a Gaussian source over a Gaussian relay channel

for delay-sensitive and energy limited applications such as closed-control over wire-

less sensor networks. Finally, in Section 1.7 we discuss distributed sensing schemes

for control over Gaussian channels. The chapter ends with an overview of the ex-

isting literature on the problem of control over Gaussian channels, highlighting the

important relevant contributions.

1.2 Remote Stabilization of a Linear System

Consider the following linear time invariant system:

Xt+1 = AXt +Ut +Wt , t ∈ N, (1.1)

where Xt := [x1,t ,x2,t , · · · ,xn,t ]
T is an Rn-valued state process with an initial Gaus-

sian distribution, Ut := [u1,t ,u2,t , · · · ,un,t ]
T is an Rn-valued control process, Wt :=

[w1,t ,w2,t , · · · ,wn,t ]
T is an Rn-valued independent and identically distributed se-

quence of Gaussian random variables with zero mean and covariance KW , and A is

the system matrix of appropriate dimensions. Let {λ1,λ2, · · · ,λn} denote the eigen-

values of the system matrix A. Without loss of generality we assume that all the

eigenvalues of the system matrix are outside the unit disc (|λi| ≥ 1 for all i), i.e.,

all modes are unstable. Otherwise unstable modes can be decoupled from the stable

modes by a similarity transformation. If the system in (1.1) is one dimensional then

A is scalar and we use the notation A = λ , where |λ | > 1. The initial state of the

system X0 is assumed to be a random variable with zero mean and covariance Λ0.

We consider a remote control setup as shown in Fig. 1.1, where a sensor or a

group of sensor nodes observe the state process and communicate their observa-

tions directly to a remotely situated controller over a wireless channel. In a sensor
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Fig. 1.1 Feedback control over sensor network

network, some nodes can act as relays to support the communication with the re-

mote controller. Upon receiving the signals from the sensors, the remotely located

controller aims at stabilizing the system in mean square sense, which is defined as

follows.

Definition 1. A system is said to be mean square stable if there exists a constant

M < ∞ such that E[‖Xt‖2]< M for all t.

In practice, sensor nodes have limited power to spend. Therefore we assume an

average transmit power constraint at each sensor node. The communication links

between all agents (sensors and controller) are modeled as independent Gaussian

channels. Since control applications are usually quite sensitive to delays, the sensing

and transmission schemes are restricted to be delay-free. In order to make the im-

plementation simple we assume that the controller has a separation structure based

on the minimum mean-square estimator state estimator. This separation structure is

not optimal in general but it makes the design and implementation much simpler, by

employing Kalman filter as state estimator.

1.3 Stabilization Over a Point-Point Channel

Consider the scenario shown in Fig. 1.2, where a sensor node E observes an n-

dimensional state process and transmits it to a remote controller C over an m-

dimensional parallel Gaussian channel. We assume that the initial state is zero

mean Gaussian distributed. At any time instant t, St := [s1,t ,s2,t , . . . ,sm,t ] and Rt :=
[r1,t ,r2,t , . . . ,rm,t ] are the input and output of the channel, where ri,t = si,t + zi,t

and zi,t ∼ N (0,Ni) are zero mean white Gaussian noise components. Let ft :

Rn(t+1) → Rm denote the sensing policy such that St = ft(X[0,t]), where X[0,t] :=
{X0,X1, . . . ,Xt}. The sensor is assumed to have an average transmit power constraint

E[‖St‖2] = ∑m
i=1 Pi ≤ PS, where Pi := E[(si,t )

2]. Further, let πt : Rm(t+1) →Rn be the
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Fig. 1.2 Control over a point-point channel

controller policy, then we have Ut = πt

(

R[0,t]

)

. The common goal of the sensor and

the controller is to stabilize the LTI system (1.1) in the mean square sense.

We first present a necessary condition for mean-square stabilization over the

point-point Gaussian channel depicted in Fig. 1.2.

Theorem 1. The linear system in (1.1) can be mean square stabilized over the given

parallel Gaussian channel only if

log(|A|)< 1

2

m

∑
i=1

log

(

1+
Pi

Ni

)

, (1.2)

where Pi = max{γ −Ni,0} and γ is chosen such that ∑m
i=1 Pi = PS.

Proof. In order to prove Theorem 1, we make use of the following lemma.

Lemma 1. ( [1, Theorem 2.1]) The linear system in (1.1) can be mean square sta-

bilized over a channel only if

log(|A|)≤ liminf
T→∞

1

T
I
(

X̄[0,T−1] → R[0,T−1]

)

, (1.3)

where {X̄t} is the control free state process given by substituting Ut = 0 in (1.1),

R[0,T−1] is the sequence of variables received by the controller over the given chan-

nel and I
(

X̄[0,T−1] → R[0,T−1]

)

= ∑T−1
t=0 I

(

X̄[0,t];Rt |R[0,t-1]

)

denotes the directed in-

formation.

Proof. The proof can be found in [1]. This proof essentially follows from the same

steps as in Theorem 4.1 of [2], however, with some differences due to the network

structure. Similar considerations have appeared in different contexts in [3, 4].

We can bound the directed information I
(

X̄[0,T−1] → R[0,T−1]

)

as,
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I
(

X̄[0,T−1] → R[0,T−1]

)
(a)

≤ I
(

X̄[0,T−1];R[0,T−1]

)
(b)

≤ I
(

S[0,T−1];R[0,T−1]

)

(c)

≤
T−1

∑
t=0

I (s1,t ,s2,t , · · · ,sm,t ;r1,t ,r2,t , · · · ,rm,t )

=
T−1

∑
t=0

[h(r1,t ,r2,t , · · · ,rm,t )− h(r1,t ,r2,t , · · · ,rm,t |s1,t ,s2,t , · · · ,sm,t )]

=
T−1

∑
t=0

[h(r1,t ,r2,t , · · · ,rm,t )− h(z1,t ,z2,t , · · · ,zm,t |s1,t ,s2,t , · · · ,sm,t )]

=
T−1

∑
t=0

[h(r1,t ,r2,t , · · · ,rm,t )− h(z1,t ,z2,t , · · · ,zm,t )]

(d)

≤
T−1

∑
t=0

[

m

∑
i=1

h(ri,t )−
m

∑
i=1

h(zi,t)

]

(e)

≤
T−1

∑
t=0

[

m

∑
i=1

log

(

1+
Pi

Ni

)

]

=
T

2

m

∑
i=1

log

(

1+
Pi

Ni

)

, (1.4)

where (a) follows from [5, Theorem 1]; (b) following data processing inequal-

ity with Markov chain X̄[0,T−1] − S[0,T−1] − R[0,T−1]; (c) follows from the fact

that the channels are memoryless and conditioning reduces entropy; (d) follows

from conditioning reduces entropy and mutual independence of the noise sequence

{z1,t ,z2,t , · · · ,zm,t}; and (e) follows from the fact that the Gaussian distribution max-

imizes differential entropy for a fixed variance. Now using (1.4) in Lemma 1 we get

the necessary condition given in (1.2). The function ∑L
i=1 log

(

1+ Pi
Ni

)

is jointly con-

cave in {Pi}m
i=1, therefore we can solve this optimization problem by the Lagrangian

method. The optimal power allocation using the Lagrangian method is given by

Pi = max{γ −Ni,0}, where γ is chosen such that ∑m
i=1 Pi = PS, which is the well-

known water-filling solution.

We now discuss some sensing and control schemes for stabilization over the

given point-point Gaussian channel. By employing these schemes, we obtain suffi-

cient conditions for stabilization, which are also presented in the following sections.

The schemes for scalar and vector channels are discussed in Sec. 1.3.1 and Sec. 1.3.2

respectively.

1.3.1 Schemes for Scalar Channels

In this section we consider mean square stability of the system in (1.1) over a scalar

Gaussian channel, i.e., we assume that m = 1 in the system model shown in Fig. 1.2.

The state encoder E observes the n-dimensional state process and transmits it over

a one-dimensional Gaussian channel. We restrict our study to the class of encoders

that are linear in the observed state with an average transmit power constraint PS.
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Therefore at any time t, the signal transmitted by the state encoder is given by St =
EtXt , where Et is an 1× n row vector. The power constraint at the encoder is given

by

E[S2
t ] = EtΛtE

T
t ≤ P, (1.5)

where Λt :=E[XtX
T
t ]. The remotely located controller receives the following signal,

Rt = St +Zt , (1.6)

where Zt is an i.i.d. Gaussian variable with zero mean and variance N. The informa-

tion set available to the controller is IC
t = {R[0,t],U[0,t−1]}. The controller applies an

action which is linear in the information set, that is Ut = mt I
C
t . In the following we

study mean square stability under the above linear sensing and control scheme.

We have restricted ourselves to linear schemes because they are easy to design

and implement. At this point, we highlight some interesting questions that may arise

in the reader’s mind: i) Is there any loss in restricting sensing and control policies

to be linear? ii) Should the policies be time-invariant or time-variant? iii) What is

an optimal linear scheme? We try to address these questions in the Sections 1.3.1.1-

1.3.1.3.

1.3.1.1 Linear Time Invariant Scheme

Consider the linear scheme presented above to be time invariant, i.e., at any time

t, the encoder output is given by, St = EXt . The controller receives Rt = EXt +Zt ,

then it runs a Kalman filter to estimate the state and applies the following action

Ut =−AE[Xt |IC
t ], which is optimal for stabilization under the given sensing scheme.

Thus the closed loop system is given by

Xt+1 = A
(

Xt −E[Xt |IC
t ]
)

+Wt

(a)
= A

(

Xt −ΛtE
T
[

EΛtE
T +σ2

z

]−1
Rt

)

+Wt

(b)
=
(

At −ΛtE
T
[

EΛtE
T +σ2

z

]−1
E
)

Xt + Z̃t , (1.7)

where (a) follows from the fact that the control actions whiten the state pro-

cess and the Gaussian distribution of state process is preserved via linear ac-

tions of the encoder and the controller, which results in E[Xt |IC
t ] = E[Xt |Rt ] =

E[XtR
T
t ]E[RtR

T
t ]

−1Rt ; and (b) follows by substituting Rt = EXt +Zt and summing

up all the white Gaussian noise terms and denoting the sum by Z̃t . The state covari-

ance matrix Λt satisfies the following recursion

Λt+1 = AΛtA
T −AΛtE

T
[

EΛtE
T +σ2

z

]−1
EΛtA

T +KW , (1.8)



1 Stabilization and Control over Gaussian Networks 7

which is the well-known Riccati equation. In [6], the authors studied such a scheme.

According to [6], a noiseless plant can be mean square stabilized by any time-

invariant encoding matrix E over a Gaussian channel capacity C as long as the fol-

lowing two conditions are fulfilled: i) log{|A|}<C, ii) the pair (A,E) is observable.

We now give a simple example where the LTI scheme fails to stabilize the system.

Consider a diagonal system matrix A = diag(λ1,λ2,λ3) with two equal eigenvalues

and let E =
(

e1 e2 e3

)

. The observability matrix O is then given by

O ,





E

EA

EA2



=





e1 e2 e3

e1λ1 e2λ2 e3λ3

e1λ 2
1 e3λ 2

2 e3λ 2
3



 . (1.9)

For the pair (A,E) to observable, the observability matrix O is required to have full

rank. In the above example if any two eigenvalues of A are equal, then there can

be at most two linearly independent columns in O and thus rank of O can never be

made full by any choice of E . (One can also use the Hautus–Rosenbrock test for

observability.) Therefore an LTI scheme can never stabilize if two or more eigenval-

ues of a diagonal system matrix are equal, no matter how large power the encoder is

allowed to spend. In the following section, we present a linear time varying scheme

and show that this scheme can always stabilize the system.

1.3.1.2 Linear Time Variant Scheme

Consider that the linear system (1.1) has to be stabilized over a Gaussian channel

having information capacity C := 1
2

log(1+ P
N
), which means that the sensor trans-

mits with an average power P and the channel is disturbed by a zero mean Gaussian

noise with variance N. In the following we state a sufficient condition for mean-

square stability under a linear time varying scheme.

Theorem 2. The linear system (1.1) can be mean-squared stabilized by a linear

time-variant scheme over a scalar Gaussian channel of capacity C, if log(|A|)<C.

Proof. Without loss of generality we assume that the system matrix is in real Jordan.

Depending on the nature of eigenvalues, a real Jordan matrix J has the following

structure:

J =











J1

J2

. . .

Jp











, where (1.10)
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Ji =













λi 1

λi

. . .

. . . 1

λi













for λi ∈ R, Ji =













Ci I

Ci

. . .

. . . I

CI













for λi = σi ± jωi ∈ C,

(1.11)

with Ci =

(

σi ωi

−ωi σi

)

.

Consider a scheme in which the sensor transmits only one component of the state

vector at each time step. Since the system matrix is in Jordan form, it can transmit

the state components corresponding to more unstable modes more often. In the fol-

lowing we show that with such a time varying mode-by-mode transmission scheme,

the plant can be stabilized if log(|A|)<C. We justify this with the help of two sim-

ple examples. In the first example we consider system matrix with repeated real

and complex eigenvalues having equal magnitude, where as in the second example

we consider eigenvalues with unequal magnitude. These two examples capture the

general principle. In the end we outline a general transmit scheme.

Example 1 (Repeated eigenvalues with equal magnitude): Consider an LTI sys-

tem with the following state equation:

X̄t+1 = AX̄t +Ūt +W̄t , (1.12)

where A is an n×n matrix with eigenvalues λi such that |λi|= |λ j| for all 1≤ i, j ≤ n.

Assume that the control actions Ut are taken periodically after every n time steps,

i.e., at t = l(n− 1) for l = 1,2,3, . . . . Under this control scheme, the state at times

steps t = ln is given by

X̄t+n = AnX̄t +Ūt+n−1 +
n−1

∑
i=0

An−i−1W̄t+i, t = ln, l ∈ N. (1.13)

Let T be a linear transformation such that T−1AnT is in real Jordan form. It is known

that such a transformation always exists [7]. Now apply the linear transformation

Xt = T−1X̄t , which gives

Xt+n = T−1AnT Xt +T−1Ūt+n−1 +T−1
n−1

∑
i=0

An−i−1W̄t+i,

= ÃXt +Ut+n−1 +Vt , for t = ln, l ∈N, (1.14)

where we have defined Ã := T−1AnT , Ut := T−1Ūt , and Vt := T−1 ∑n−1
i=0 An−i−1W̄t+i.

The matrix Ã is in real Jordan form with eigenvalues λ̃i = λ n
i , where λi are the eigen-

values of A for i = 1,2, · · · ,n. Now consider the following sensing scheme for sta-

bilization. The sensor periodically observes the state vector Xt ∈ Rn after every n−
time steps, i.e., at t, t + n, t + 2n, . . . . The sensor linearly amplifies each component

of the state vector under an average transmit power constraint P and sequentially
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transmits n state components over the Gaussian channel. The state vector is thus

transmitted to the controller by using the Gaussian channel n times. The controller

computes the MMSE estimate of the state vector X̂t based on the received signals

and periodically takes actions after every n time steps, i.e., Ut+n−1 = −ÃX̂t . Under

the above scheme, we can write (1.14) as

Xt+n = Ã
(

Xt − X̂t

)

+Vt , t = ln, l ∈ N, (1.15)

In the following we consider an example with n = 6 and show that above scheme is

sufficient for stabilization.

Consider a six-dimensional plant (n = 6) with state vector Xt ∈R6, that is a plant

with six poles (eigenvalues). Assume that the matrix Ã has a real eigenvalue and

a complex conjugate pair, each with algebraic multiplicity two. That is we have

λ̃1 = λ̃3 = σ̃ + jω̃ , λ̃2 = λ̃4 = σ̃ − jω̃ , and λ̃5 = λ̃6 = λ̃ . Since Ã is in real Jordan

form, we have

Ã =

















σ̃ ω̃ 1 0 0 0

−ω̃ σ̃ 0 1 0 0

0 0 σ̃ ω̃ 0 0

0 0 −ω̃ σ̃ 0 0

0 0 0 0 λ̃ 1

0 0 0 0 0 λ̃

















. (1.16)

By substituting Ã from (1.16) in (1.15), each component of the state vector is given

by

x1,t+n = σ̃(x1,t − x̂1,t)+ ω̃(x2,t − x̂2,t)+ (x3,t − x̂3,t)+ v1,t ,

x2,t+n =−ω̃(x1,t − x̂1,t)+ σ̃(x2,t − x̂2,t)+ (x4,t − x̂4,t)+ v2,t ,

x3,t+n = σ̃(x3,t − x̂3,t)+ ω̃(x4,t − x̂4,t)+ v3,t ,

x4,t+n =−ω̃(x3,t − x̂3,t)+ σ̃(x4,t − x̂4,t)+ v4,t ,

x5,t+n = λ̃ (x5,t − x̂5,t)+ (x6,t − x̂6,t)+ v5,t ,

x6,t+n = λ̃ (x6,t − x̂6,t)+ v6,t , (1.17)

We now find conditions for all modes to be stable. We start with the lowest mode.

The second moment of x6,t is given by

E
[

x2
6,t+n

]

= λ̃ 2E [(x6,t − x̂6,t)]+E
[

v2
6,t

]

(a)
= λ̃ 22−2CE

[

x2
6,t

]

+ nv,6, (1.18)

where (a) follows from the linear mean-square estimation of a Gaussian variable

over a scalar Gaussian channel of capacity C and nv,k := E

[

v2
k,t

]

for k = 1,2, · · · ,6.

We observe that E
[

x2
6,t

]

is bounded if λ̃ 22−2C < 1. Since |λ̃6| = λ̃ , the state com-

ponent x6,t is stable if
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|λ̃6|22−2C < 1 ⇒ log
(

|λ̃6|
)

<C. (1.19)

Now consider x5,t , whose second moment can be bounded as

E
[

x2
5,t+n

] (a)
= λ̃ 2E

[

(x5,t − x̂5,t)
2
]

+ 2λ̃E [(x5,t − x̂5,t) (x6,t − x̂6,t)]

+E

[

(x6,t − x̂6,t)
2
]

+ nv,5

(b)
= λ̃ 22−2CE

[

x2
5,t

]

+ 2λ̃E [(x5,t − x̂5,t) (x6,t − x̂6,t)]+ 2−2CE
[

x2
6,t

]

+ nv,5

(c)

≤ λ̃ 22−2CE
[

x2
6,t

]

+ 2λ̃

√

E

[

(x5,t − x̂5,t)
2
]

E

[

(x6,t−x̂6,t)
2
]

+ 2−2CE
[

x2
6,t

]

+ nv,5

=λ̃ 22−2CE
[

x2
5,t

]

+ 2λ̃

√

2−2CE

[

x2
5,t

]

√

2−2CE

[

x2
6,t

]

+ 2−2CE
[

x2
6,t

]

+ nv,5

(d)

≤k1E
[

x2
5,t

]

+ k2

√

E

[

x2
5,t

]

+ k3, (1.20)

where (a) follows from (1.17); (b) follows from the linear mean-square estima-

tion of a Gaussian variable over a scalar Gaussian channel of capacity C; (c) fol-

lows Cauchy-Schwarz inequality; (d) follows from the fact E
[

x2
6,t

]

< M (assum-

ing that (1.19) is satisfied) and by defining k1 := λ̃ 22−2C, k2 := 2λ̃2−2C
√

M, and

k3 := 2−2CM+nv,5. We now want to a find condition which ensures convergence of

the following sequence:

αt+1 = k1αt + k2

√
αt + k3. (1.21)

In order to show convergence, we make use of the following lemma.

Lemma 2. ( [1, Lemma 6.1]) Let T : R 7→ R be a non-decreasing continuous map-

ping with a unique fixed point x⋆ ∈ R. If there exists u ≤ x⋆ ≤ v such that T (u) ≥ u

and T (v)≤ v, then the sequence generated by xt+1 = T (xt), t ∈N converges starting

from any initial value x0 ∈ R.

Proof. The proof is can be found in [1].

We observe that the mapping T (α) = k1α +k2

√
α +k3 with α ≥ 0 is monotonically

increasing since k1,k2 > 0. It will have a unique fixed point α⋆ if and only if k1 < 1,

since k2,k3 > 0. Assuming that k1 < 1, there exists u < α⋆ < v such that T (u) ≥
u and T (v) ≤ v. Therefore by Lemma 2 the sequence {αt} is convergent if k1 =
λ̃ 22−2C < 1 ⇒ log(λ̃ )<C. Since |λ̃5|= λ̃ , the state x5,t is stable if

log
(

|λ̃5|
)

<C. (1.22)
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The second moments of x3,t and x4,t are given by

E
[

x2
3,t+n

]

=σ̃22−2CE
[

x2
3,t

]

+ ω̃22−2CE
[

x2
4,t

]

+ 2σ̃ω̃E [(x3,t − x̂3,t)(x4,t − x̂4,t)]+ nv,3

E
[

x2
4,t+n

]

=ω̃22−2CE
[

x2
3,t

]

+ σ̃22−2CE
[

x2
4,t

]

− 2σ̃ω̃E [(x3,t − x̂3,t)(x4,t − x̂4,t)]+ nv,4. (1.23)

By using the above equations, we can write

E
[

x2
3,t+n

]

+E
[

x2
4,t+n

]

=
(

σ̃2 + ω̃2
)

2−2C
(

E
[

x2
3,t

]

+E
[

x2
4,t

])

+ nv,3 + nv,4. (1.24)

We observe that the sum E

[

x2
3,t+n

]

+E

[

x2
4,t+n

]

is bounded if
(

σ̃2 + ω̃2
)

2−2C < 1.

Since |λ̃3|2 = |λ̃4|2 =
(

σ̃2 + ω̃2
)2

, the state components x3,t and x4,t are stable if

log
(

|λ̃3|
)

<C, log
(

|λ̃4|
)

<C. (1.25)

Finally, the second moments of x1,t and x2,t are given by

E
[

x2
1,t+n

]

=σ̃22−2CE
[

x2
1,t

]

+ ω̃22−2CE
[

x2
2,t

]

+ 2−2CE
[

x2
3,t

]

+ 2σ̃ω̃E [(x1,t − x̂1,t)(x2,t − x̂2,t)]+ 2σ̃E [(x1,t − x̂1,t)(x3,t − x̂3,t)]

+ 2ω̃E [(x2,t − x̂2,t)(x3,t − x̂3,t)]+ nv,1

E
[

x2
1,t+n

]

=ω̃22−2CE
[

x2
1,t

]

+ σ̃22−2CE
[

x2
2,t

]

+ 2−2CE
[

x2
4,t

]

− 2σ̃ω̃E [(x1,t − x̂1,t)(x2,t − x̂2,t)]− 2ω̃E [(x1,t − x̂1,t) (x4,t − x̂4,t)]

+ 2σ̃E [(x2,t − x̂2,t)(x4,t − x̂4,t)]+ nv,2 (1.26)

By using the above equations, we can write

E
[

x2
1,t+n

]

+E
[

x2
2,t+n

]

=
(

σ̃2 + ω̃2
)

2−2C
(

E
[

x2
1,t

]

+E
[

x2
2,t

])

+ 2σ̃ (E [(x1,t − x̂1,t)(x3,t − x̂3,t)]+E [(x2,t − x̂2,t)(x4,t − x̂4,t)])

+ 2ω̃ (E [(x2,t − x̂2,t) (x3,t − x̂3,t)]−E [(x1,t − x̂1,t)(x4,t − x̂4,t)])

+ nv,1 + nv,2

(1.27)

We can now bound E

[

x2
1,t+n

]

+E

[

x2
2,t+n

]

as
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E
[

x2
1,t+n

]

+E
[

x2
2,t+n

]
(a)

≤
(

σ̃2 + ω̃2
)

2−2C
(

E
[

x2
1,t

]

+E
[

x2
2,t

])

+ 4σ̃22−2C

(

√

E

[

x2
1,t

]

E

[

x2
3,t

]

+

√

E

[

x2
2,t

]

E

[

x2
4,t

]

)

+ 4ω̃22−2C

(

√

E

[

x2
2,t

]

E

[

x2
3,t

]

+

√

E

[

x2
1,t

]

E

[

x2
4,t

]

)

+ nv,1 + nv,2

(b)

≤k1

(

E
[

x2
1,t

]

+E
[

x2
2,t

])

+ k2

√

E

[

x2
1,t

]

+E

[

x2
2,t

]

+ k3,

(1.28)

where (a) follows from Cauchy-Schwarz inequality; and (b) follows fromE

[

x2
3,t

]

<

M and E

[

x2
4,t

]

< M (assuming that the condition in (1.25) is satisfied) and by defin-

ing k1 :=
(

σ̃2 + ω̃2
)

2−2C, k2 := 16
(

σ̃2 + ω̃2
)2

2−2CM, and k3 := nv,1 +nv,2. By us-

ing Lemma 2 we can show that x1,t and x2,t are stable if k1 =
(

σ̃2 + ω̃2
)2

2−2C < 1.

Since |λ̃1|2 = |λ̃2|2 =
(

σ̃2 + ω̃2
)2

, we get

log
(

|λ̃1|
)

<C, log
(

|λ̃2|
)

<C, (1.29)

It follows from (1.29), (1.29), and (1.29) that the system is stable if

n

∑
i=1

log(|λ̃i|) = log
(

|Ã|
)

< nC. (1.30)

Since |Ã|= |T 1AnT |= |A|n, we have

log(|A|)<C. (1.31)

Having shown sufficiency of the linear time variant scheme for the system matrix

having equal magnitude eigenvalues with algebraic multiplicity, we next consider an

example of a system matrix having eigenvalues with unequal magnitude.

Example 2 (Eigenvalues with unequal magnitude): Consider a system matrix A

with three eigenvalues, λ1 ∈ R and λ2,λ3 ∈ C with |λ1| = |λ2|2 = |λ3|2. For this

system, consider the following scheme. The transmission from the sensor to the

controller happens periodically, where each transmission period consists for four

time slots. In the first two time slots, the state corresponding to λ1 is transmitted

and in the last two slots the states corresponding to λ2 and λ3 are transmitted. Note

that the sensor is serving more unstable modes more often. In the following we

show again that under this transmit scheme, the system is mean square stable if

log(|A|)<C.
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Let us assume that the transmission period starts at t and ends at t +4. At time t,

the sensor transmits x1,t and the controller takes action Ut = [−λ1x̂1,t ,0,0]. At time

t+1, the sensor transmits x1,t+1 and the controller takes action Ut = [−λ1x̂1,t+1,0,0].
At time t+2, the sensor transmits x2,t and the does not take any action. Like the pre-

vious example, we are using such scheme to make the analysis simpler, although it is

better to transmit the most recent state and apply control action as early as possible.

At time t + 3, the sensor transmits x3,t and the controller takes the following ac-

tion: Ut = [0,−λ1x̂2,t ,−λ1x̂2,t ]. Under this transmit and control scheme, the second

moments of x1,t are given by,

E
[

x2
1,t+1

]

= λ 2
1 2−2CE

[

x2
1,t

]

+ n1, E
[

x2
1,t+2

]

= λ 2
1 2−2CE

[

x2
1,t+1

]

+ n1,

E
[

x2
1,t+3

]

= λ 2
1 E
[

x2
1,t+2

]

+ n1, E
[

x2
1,t+4

]

= λ 2
1E
[

x2
1,t+4

]

+ n1, (1.32)

where n1 is variance of process noise. Using the above equations, the second mo-

ment of the state x1,t at the start of each transmission period is given by,

E
[

x2
1,t+4

]

= λ 8
1 2−4CE

[

x2
1,t

]

+ ñ1, t = 4l, l ∈ N, (1.33)

where ñ1 = n1(1+λ 2
1 2−2C +λ 2

1 2−6C +λ 2
1 2−8C). Similarly using the approach that

was used in the previous example, we can show that

E
[

x2
2,t+4

]

+E
[

x2
2,t+4

]

= |λ2|82−2C
(

E
[

x2
2,t+4

]

+E
[

x2
2,t+4

])

+ ñ2, t = 4l, l ∈ N,

(1.34)

where ñ2 is the term due to the process noise. From (1.33) and (1.34) we observe

that all modes will be stable if

λ 8
1 2−4C < 1, λ 8

2 2−2C < 1, λ 8
3 2−2C < 1

⇒ log(|λ1|)<
1

2
C, log(|λ2|) = log(|λ3|)<

1

4
C

⇒
n

∑
i=1

log(|λi|) = log(|A|)<C. (1.35)

For a general n-dimensional system the transmit scheme can be generalized as

follows: Choose k, km, such that km
k
= log(|λm|)

∑n
i=1 log(|λi|) for m = 1,2, · · · ,n. The sensor

transmits periodically with a period equal to k time slots, in which the state xm

corresponding to λm is transmitted km times. Note that ∑n
m=1 km = k. The system will

be stable if log(|λm|)< log(|λm|)
∑n

i=1 log(|λi|)C for all m ∈ {1,2, · · · ,n}, which is equivalent to

∑n
i=1 log(|λi|) = log(|A|)<C.

Remark 1. Although we have proved Theorem 2 for Gaussian distributed initial

states, it is also valid for other distributions with finite variance. For any non-

Gaussian distributed initial state with finite variance, we can use the approach in [8,

Section IV] to make the state process Gaussian distributed and then the schemes

discussed earlier in this section can be applied.
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According to Theorem 2, there is no loss in mean-square stabilizability by re-

stricting the sensing and control scheme to be linear. This makes linear policies a

good choice for stabilization over scalar Gaussian channels. Notice, while deriv-

ing an achievable stability region, the objective was to keep the second moment of

the state process bounded and we did not aim at minimizing the second moment.

One might be interested in minimizing the second moment of the state process over

a finite or an infinite time horizon. In the following we consider a finite horizon

stabilization problem and present an optimal linear scheme.

1.3.1.3 An Optimal Linear Scheme for Stabilization

Consider a linear system with diagonalizable system matrix A and diagonal KW . For

this linear system, we derive an optimal linear time varying sensing policy E⋆
t which

minimizes the following cost: ∑
t f

i=1E
[

‖Xt‖2
]

. We have restricted the matrices A and

KW to be diagonal for the ease of analysis. The optimal time varying sensing scheme

is presented in the following theorem.

Theorem 3. Let G̃ :=
[√

P,0,0, . . . ,0
]

, Kt =AT (I+Kt+1)A

(

I−G̃T G̃
(

1
N+P

)

)

with

Kt f
= 0, and πt be a unitary matrix such that πT

t

(

Λ
1
2

t AT (I+Kt+1)AΛ
1
2

t

)

πt =

diag(υ1,t , . . . ,υN,t) with υ1,t ≥ υ2,t ≥ ·· ·> 0. The optimal linear time varying sens-

ing is given by: E⋆
t = G̃πtΛ

− 1
2

t .

Proof. We rewrite the Riccati equation (1.8) as

Λt+1 =AΛ
1
2

t



I− Λ
1
2

t ET
t√

N

[

EtΛtE
T
t√

N
+ 1

]−1
EtΛ

1
2

t√
N



Λ
1
2

t AT +KW

(a)
=AΛ

1
2

t

(

I−CT
t

[

CtC
T
t + 1

]−1
Ct

)

Λ
1
2

t AT +KW

(b)
=AΛ

1
2

t

[

I+CT
t Ct

]−1
Λ

1
2

t AT +KW , (1.36)

where (a) follows from Ct :=
EtΛ

1
2

t√
N

; and (b) follows from the matrix inversion

lemma [I+UWV ]−1 = I−U [W−1+VU ]−1V , by choosing U =CT
t ,W = 1,V =Ct .

The finite horizon optimal stabilization problem can be stated as:

{C⋆
i }

t f −1

i=0 = arg min

{Ci}
t f −1

i=0
:CtC

T
t ≤ P

σ2

t f −1

∑
t=0

Tr[Λt+1], (1.37)

subject to,
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Λt+1 = AΛ
1
2

t

[

I +CT
t Ct

]−1
Λ

1
2

t AT +KW . (1.38)

This is a non-linear dynamic optimization problem. In order to solve this problem

we follow a dynamic programming approach. Such an approach has also been con-

sidered for continuous time systems in [9]. At any time t let the value function be

Vt (Λt) = Tr[KtΛt +Lt ]. We have to find Ct such that

Tr[KtΛt +Lt ] = min
Ct :CtC

T
t ≤ P

N

{Tr [Λt+1]+Tr [Kt+1Λt+1 +Lt+1]}

= min
Ct :CtC

T
t ≤ P

N

Tr [(I+Kt+1)Λt+1 +Lt+1]

(a)
= min

Ct :CtC
T
t ≤ P

N

Tr

[

(I+Kt+1)×
(

AΛ
1
2

t

[

I+CT
t Ct

]−1
Λ

1
2

t AT+KW

)

+Lt+1

]

(b)
= Tr [(I+Kt+1)KW +Lt+1]+ min

Ct :CtC
T
t ≤ P

N

Tr

[

(I+Kt+1)AΛ
1
2

t

[

I+CT
t Ct

]−1
Λ

1
2

t AT

]

= Tr [(I+Kt+1)KW +Lt+1]+ min
Ct :CtC

T
t ≤ P

N

Tr

[

Λ
1
2

t AT (I+Kt+1)AΛ
1
2

t

[

I+CT
t Ct

]−1
]

(c)
= Tr [(I+Kt+1)KW +Lt+1]+Tr

[

Λ
1
2

t AT (I+Kt+1)AΛ
1
2

t

[

I+πtG
T GπT

t

]−1
]

(d)
= Tr [(I+Kt+1)KW +Lt+1]+

Tr

[

Λ
1
2

t AT (I+Kt+1)AΛ
1
2

t

(

I−πtG
T
(

1+GπT
t πtG

T
)−1

GπT
t

)

]

(e)
= Tr [(I+Kt+1)KW +Lt+1]+

Tr

[

AT (I+Kt+1)A

(

Λt −Λ
1
2

t πtG
T GπT

t Λ
1
2

t

(

1+
P

N

)−1)]

( f )
= Tr [(I+Kt+1)KW +Lt+1]+Tr

[

AT (I+Kt+1)A

(

I−GT G

(

N

N +P

))

Λt

]

,

(1.39)

where (a) follows by substituting Λt+1 using equation (1.38); (b) follows from the

fact that Kt+1 and Lt+1 do not depend on Ct ; (c) follows from the fact that according

to [10] the unique solution to the trace minimization problem unique minimizer is

given by C⋆
t = GπT

t , where G :=
[
√

P
N
,0,0, . . . ,0

]

, and πt is a unitary matrix which

diagonalizes

(

Λ
1
2

t AT (I+Kt+1)AΛ
1
2

t

)

such that πT
t

(

Λ
1
2

t AT (I+Kt+1)AΛ
1
2

t

)

πt =

diag(υ1,t , · · · ,υN,t ) with υ1,t ≥ υ2,t ≥ ·· · > 0; (d) follows from the matrix in-

version lemma, [I +UWV ]−1 = I −U [W−1 +VU ]−1V by choosing by choosing

V = GπT
t ,W = 1,U = πtG

T ; (e) follows from πtπ
T
t = I and GGT = P

N
; and ( f )

follows from the assumption that A and Λt are diagonal, which implies that Kt+1

and πt are also diagonal. (Diagonality of Kt+1 will become clear shortly.) Therefore
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Fig. 1.3 Stabilization over noisy forward and reverse Gaussian channels.

we have, Λ
1
2

t πtG
T GπT

t Λ
1
2

t = Λ
1
2

t GT GΛ
1
2

t = GT GΛt , since GT G is diagonal. In or-

der to satisfy the above equality (1.39), we choose Kt f
= Lt f

= 0, and {Kt+1,Lt+1}
according to

Kt = AT (I+Kt+1)A

(

I−GT G

(

N

N +P

))

,

Lt = (I+Kt+1)KW +Lt+1. (1.40)

We can observe that Kt is also diagonal if A and KW are diagonal, since GT G is diag-

onal. We have found the optimal C⋆
t = Gπt and we know that Ct =

EtΛ
1
2

t√
N

, therefore

E⋆
t = G̃πtΛ

− 1
2

t where G̃ :=
√

NG =
[√

P,0,0, · · · ,0
]

.

1.3.1.4 Noisy Feedback Link

So far we have considered the communication link from the controller to the plant to

be noiseless. Noiseless communication link from the controller to the plant can be a

good assumption for certain scenarios in which the controller is either connected to

the plant via a cable or the controller has very large power to spend for transmission

of signals over the air. However in some practical situations, it may not be reason-

able to model the communication link from the controller to the plant as noiseless.

In these situations, the remote controller can be equipped with an encoder to encode

the control actions before transmitting them over a noisy channel and the remotely

located actuator can be equipped with a decoder, to decode the control actions using

the signal received over the noisy channel. In Fig. 1.3 such a setup is shown, where

there are two encoders to encode the plant’s state and the control actions with aver-

age transmit powers E
[

(

S f ,t

)2
]

= Pf and E

[

(Sr,t)
2
]

= Pr respectively. The forward

and the reverse channels are disturbed by white Gaussian noises Z f ,t ∼ N (0,N f )
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Fig. 1.4 Another representation of the system model in Fig. 1.3.

and Zr,t ∼N (0,Nr) respectively. Thus the capacities of the forward channel and the

reverse channel are given by C f := 1
2

log
(

1+ PS

N f

)

and Cr := 1
2

log
(

1+ Pr
Nr

)

. In the

following present necessary and sufficient conditions for mean square stability over

the given channel.

Theorem 4. The linear system (1.1) can be mean square stabilized over a noisy

forward channel with capacity C f and a noisy reverse channel with capacity Cr

only if

log(|A|)≤ min
{

C f ,Cr

}

. (1.41)

Proof. The system in Fig. 1.3 can be viewed as the system depicted in Fig. 1.4,

where the encoders, decoders, and controllers are viewed as decision makers. The

encoder in the forward link (Encoder 1) is the first decision maker DM1. The de-

coder in the forward link (Decoder 1), the controller, and the encoder in the reverse

link (Encoder 2) are altogether can be viewed as second decision maker DM2. Fi-

nally the DM3 represents decoder of the reverse link (Decoder 2). For the system

shown in Fig. 1.4 we know from Lemma 1 that the following condition is necessary

for stabilization:

log(|A|)≤ liminf
T→∞

1

T
I
(

X̄[0,T−1] → R[0,T−1]

)

. (1.42)

According to the proof of Theorem 3.1 in [1], the directed information can be

bounded as

I
(

X̄[0,T−1] → R[0,T−1]

)

≤ min

{

T−1

∑
t=0

I(S f ,t ;Yt),
T−1

∑
t=0

I(Sr,t;Rt)

}

≤ 1

2
min

{

log

(

1+
Pf

N f

)

, log

(

1+
Pr

Nr

)}

= min
{

C f ,Cr

}

, (1.43)

where the last equality follows from the definition of channel capacities. By using

(1.43) in (1.42), we get (1.41).
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Theorem 4 shows that the reliability of the reverse channel is as important as the

forward channel. The necessary condition (1.41) was first obtained for memoryless

sensors and controller in [11, Theorem 8.1]. In [11] the authors have also obtained

a sufficient condition for stabilization by restricting the encoders and the decoders

to be linear and memoryless, which is stated in the following theorem.

Theorem 5. ( [11, Theorem 8.1]) The linear system (1.1) can be mean square sta-

bilized over a Gaussian forward channel with capacity C f and a Gaussian reverse

channel with capacity Cr using a linear memoryless sensing and control scheme if

log(|A|)≤ 1

2
log

(

1

2−2C f + 2−2Cr − 2−2(C f+Cr)

)

. (1.44)

In Fig. 1.5 we have fixed forward channel capacity C f = 5 bits/channel use, and

have plotted stability region achievable with linear memoryless scheme as a func-

tion of reverse channel capacity Cr using (1.44). The figure shows that an LTI plant

with system matrix A is stabilizable with linear scheme if log(|A|) is below the sta-

bility curve drawn in the figure. For the sake of comparison, the outer bound on the

achievable stability region is also plotted according to (1.41). One can observe that

the linear memoryless scheme is quite efficient because its performance gets close to

optimal as one of the two links becomes relatively more reliable. In Sec. 1.5 we dis-

cuss sub-optimality of linear policies for estimation over multi-hop relay networks.

It is shown that a simple three-level quantizer policies can outperform the best linear

policy even over a two-hop network. The setup of noisy forward and noisy reverse

channel can be viewed as a two-hop network, as illustrated in Fig. 1.4. Use of such

non-linear schemes in forward and reverse channels can potentially improve stabil-

ity of the closed-loop system, however this is yet to explored. Control over noisy

forward and reverse channels have been considered also for more general channels

in [11].

In the remainder of the chapter we keep the assumption of noiseless link from

the controller to the plant, in order to simplify the analysis and to avoid tedious

computations. As long as the encoders and decoders are linear and the channels are

modeled as Gaussian, the nature of the problem does not change and one can obtain

stability results for noisy reverse channels with some straightforward analysis.

1.3.2 Schemes for Vector Channel

In the previous section we showed that linear schemes can achieve the minimum

signal-to-noise required for stabilization of multi-dimensional LTI system over a

scalar Gaussian channel. That is there is no rate loss in restricting the scheme to be

linear. In fact, for the stabilization of scalar plant over a scalar Gaussian channel,

linear policies are optimal. However for transmission over vector channels, linear

schemes may not be good enough. It is known from the information theory lit-

erature [12] that a distributed joint source-channel code is optimal in the MMSE



1 Stabilization and Control over Gaussian Networks 19

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Reverese Channel Capacity, Cr

A
ch

ie
va

b
le

S
ta

b
il
it
y

R
eg

io
n

 

 

Outer Bound

Linear Scheme
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sense, if the following conditions hold: i) The information transmitted on all avail-

able channels is independent, ii) Capacity is utilized by all channels (source-channel

needs to be matched). By using any linear scheme, it is not possible to make the

transmitted signals on parallel channels independent. However independent signals

can be transmitted on parallel channels by employing non-linear schemes. Some

non-linear sensing schemes for stabilization and control of a scalar system over par-

allel Gaussian channels are given in [13, 14]. In [13], the authors considered two

parallel channels and proposed to send the magnitude of the observed state pro-

cess on one channel and the phase value (plus or minus) on the second channel.

The phase and magnitude of a signal are shown to be independent, thus satisfying

the first condition of optimality. Although the second condition of optimality is not

met, the proposed non-linear schemes outperforms the best linear scheme. In [14],

the authors proposed to use a hybrid digital-analog scheme, in which the state pro-

cess is quantized and the quantized signal is transmitted on one channel and quan-

tization error is transmitted on the other channel. This scheme can be extended to

arbitrary number of parallel channels and it achieves the minimum signal-to-noise

ratio requirement for mean-square stabilization of a scalar noiseless plant.

In order to demonstrate inefficiency of linear schemes over vector channels, let

us consider the following example.

Example: Consider a scalar LTI system that has to be stabilized over M parallel

white Gaussian channels. Assume that the sensor has an average transmit power

constraint PS and all channels are disturbed by noises of equal power, i.e., zi,t ∼
N (0,N) for all i ∈ {1,2, · · · ,M}. It can be easily shown that the system can be

stabilized over the given channel by a linear sensing and control scheme if log(λ )<
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1
2
(1+ P

N
). However with the non-linear scheme proposed in [14], the achievable

stability region is given by log(λ ) < M
2
(1+ P

MN
). The stability regions achieved

by linear and non-linear schemes have been plotted in Fig.1.6 for P = 1 and M =
2,10, and 100. Note that in the given example, the achievable stability region of

linear scheme is independent of number of available parallel channels M. But with

the non-linear scheme, the stability region significantly enlarges as the number of

parallel channels increases. This example shows that linear schemes can be very

inefficient in some parallel channel settings.
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Fig. 1.6 Example: Comparison of linear and non-linear schemes.

The non-linear scheme proposed in [14] works for scalar plants. For stabiliza-

tion of a multi-dimensional plant, the non-linear scheme of [13, 14] can be used

together with the time varying (mode-by-mode transmission) scheme discussed in

Sec. 1.3.1.2. Such a non-linear time varying scheme can achieve the minimum rate

required for stabilization. An interesting open problem is to determine tight condi-

tions for optimality of linear scheme for stabilization of multi-dimensional systems

over vector Gaussian channel. In the following we state a sufficient condition for

optimality of a linear time varying scheme proposed in [15].

Theorem 6. ( [15, Theorem 3.2]) A linear time varying scheme is optimal for mean-

square stabilizing an n-dimensional plant over m parallel Gaussian channels if there

exist fi j ∈Q such that fi j ≥ 0, ∑m⋆

j=1 fi j ≤ 1, ∑n
i=1 fi j = 1 and

log(|λi|)<
m⋆

∑
j=1

fi j

2
log

(

1+
P⋆

j

N j

)

, (1.45)
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for all i ∈ {1,2, . . . ,n} and j ∈ {1,2, . . . ,m⋆}, where P⋆
j is the optimal power alloca-

tion given by the water-filling solution [16, pp. 204-205] and m⋆ ≤ m is the number

of active channels for which optimal transmit power is non-zero.

Some relevant works on the source-channel matching and optimality of linear esti-

mation can be found in [17–23].

1.4 Stabilization Over Relay Channels

In this section we study stabilization of linear systems over Gaussian relay channels.

The basic relay channel consists of one sender (source), one receiver (destination),

and an intermediate node (relay) whose sole purpose is to help the communication

between the source and the destination [24]. The basic three node relay channel is

a basic block of a large sensor network where a group of sensor nodes cooperate

to communicate information from a source to a destination. In order to understand

the problem of stabilization over a general relay network, we study some basic re-

lay network topologies such as non-orthogonal relay channel and orthogonal relay

channel. By the orthogonality of the relay channel, we mean that the signal spaces

of the encoder and the relay are orthogonal. For example, if the source node and the

relay node transmit in disjoint frequency bands or non-overlapping time slots, then

the relay channel is considered to be orthogonal. These topologies serve as the basic

building blocks of a large network. In practice, the relay node can be either half-

duplex or full-duplex. A node which is capable of transmitting and receiving signals

simultaneously using the same frequency band is known as full-duplex while a half-

duplex node cannot simultaneously receive and transmit signals. It is expensive and

hard to a build a communication device which can transmit and receive signals at

the same time using the same frequency, due to the self-interference created by the

transmitted signal to the received signal. Therefore half-duplex systems are mostly

used in practice.

The problem of control over a basic three node Gaussian relay channel was first

introduced in [25, 26], some sufficient conditions for mean square stability were

derived. Further related work on control over noisy relay channels can be found

in [8, 27].

We know from [28] that the concept of Shannon capacity is not sufficient to

characterize moment stability. Moreover even for the general three node Gaussian

relay channel, a single-letter expression for Shannon capacity is still not known.

In [29] Gastpar and Vetterli determined capacity of a particular large Gaussian relay

network in the limit as the number of relays tends to infinity. The achievable infor-

mation rate over the relay channel depends on the processing strategy of the relay.

The most well known relaying strategies are amplify-and-forward (AF), compress-

and-forward, and decode-and-forward [30]. The AF strategy is well suited for delay

sensitive control applications and is therefore addressed here.

In this section we discuss mean-square stabilization of the system in (1.1) over

some fundamental relay channels such as non-orthogonal half-duplex relay chan-
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nels, non-orthogonal full-duplex relay channel, and orthogonal relay channel in

Sec. 1.4.1, Sec. 1.4.2, and Sec. 1.4.3 respectively. For each relay channel, we present

necessary conditions and sufficient conditions for stabilization. In Sec. 1.4.4 we

briefly compare achievable stability regions using linear schemes over these basic

relay channels.

1.4.1 Non-orthogonal Half-duplex relay

Consider a non-orthogonal half-duplex Gaussian relay channel shown in Fig. 1.7.

A sensor node (state encoder) E senses the state of the plant and transmits it to the

remote controller, while another sensor node R acts as a relay to support communi-

cation from E to the controller. The state encoder and the relay transmit in the same

frequency band and the relay node is assumed to be half-duplex, i.e., it cannot trans-

mit and receive signals simultaneously. In [8] the authors proposed a transmission

protocol having two transmission phases, as shown in Fig. 1.7. The signals trans-

mitted by E and R are denoted as Se,t and Sr,t respectively. The variables Zr,t and Zt

denote two mutually independent white Gaussian noise components with zero mean

and variances Nr and N respectively. In the first transmission phase (odd time steps),

E transmits signal with an average power 2β PS, where 0< β ≤ 1 is a parameter that

distributes power between the two transmission phases. In this transmission phase

the relay R receives a noisy signal Yt from the encoder but it does not transmit any

signal. In the second transmission phase (even time steps) both the encoder E and

the relay R transmit with average powers 2(1− β )PS and Pr respectively. The re-

lay node employs amplify-and-forward (linear) strategy, where amplification at the

relay is done under an average power constraint PR. The multiplicative gain of the

E −D link is assumed to be a constant h ∈ R and the gain of the R −D link is

assumed to be one, without loss of generality. The presence of relay node can be

more useful in scenarios where the direct link is weaker i.e., |h| is small. The con-

troller in the first transmission phase receives Rt = hSe,t +Zt and in the second phase

receives Rt = hSe,t +Sr,t +Zt . At any time, the controller estimates the present state

of the plant using all the signals it has received so far, and then takes an action to

stabilize the plant using its state estimate. In the following we discuss a linear con-

trol and communication scheme based on the above transmission protocol and give

necessary and sufficient conditions for stabilization. The communication and con-

trol scheme is presented in Sec. 1.4.1.1 and the mean-square stability of the system

under the given scheme is analyzed in Sec. 1.4.1.2.

1.4.1.1 Sensing and Control Scheme

The control and communication scheme has an initialization step, which is done

to make the state distribution Gaussian. This initialization step works as follows.

The encoder E observes X0 and transmits Se,0 =
√

PS
α0

X0. The controller D receives
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Fig. 1.7 Half-duplex AWGN relay channel.

R0 = hSe,0 +Z0 and estimates the initial state as

X̂0 =
1

h

√

α0

PS

R0 = X0 +
1

h

√

α0

PS

Z0.

The controller C then takes an action U0 =−λ X̂0 which results in

X1 = λ X0 +U0 +W0 = λ
(

X0 − X̂0

)

+W0 =−λ

h

√

α0

PS

Z0 +W0. (1.46)

The new plant state X1 is Gaussian distributed with zero mean and variance α1 =
λ 2N
h2PS

α0 + nw. This initialization step is not required if the initial state is already

Gaussian distributed. After the initialization, further transmissions are divided into

two separate transmission phases as discussed earlier. In the first transmission phase,

i.e., for t = 1,3,5, . . . , the encoder E transmits Se,t =
√

2β PS

αt
Xt to the controller. The

relay R operates in the receiving mode, i.e., it receives the signal transmitted by

E . The controller C observes Rt = hSe,t + Zt and computes the MMSE estimate

of Xt based on R[0,t]. It can be shown that E[XtRt− j] = 0 for j ≥ 1, therefore the

optimal MMSE estimator uses only the latest received signal Rt to estimate the state.

Further, the optimal estimator is linear in the received signal due to the Gaussian

distribution. The optimal MMSE state estimate is computed as X̂t =

(

h
√

2β PSαt

2h2β PS+N

)

Rt .

Based on the estimate X̂t , the controller C takes an action Ut =−λ X̂t which results

in Xt+1 = λ (Xt − X̂t)+Wt . The new plant state Xt+1 is a linear combination of zero
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mean Gaussian variables {Xt , X̂t ,Wt}, therefore it is also zero mean Gaussian. The

variance of Xt+1 can be computed as,

αt+1 := E[X2
t+1] = λ 2E[(Xt − X̂t)

2]+E[W2
t ] = λ 2

(

N

2h2β PS +N

)

αt + nw. (1.47)

In the second transmission phase, i.e., for t = 2,4,6, . . . , the encoder E trans-

mits Se,t =
√

2(1−β )PS

αt
Xt to the controller. The relay now operates in the trans-

mitting mode. It amplifies the previously received signal under the average trans-

mit power constraint and transmits the following signal to the controller, Sr,t =
√

Pr

(2β PS+Nr)
(Se,t−1 +Zr,t−1). The controller C thus receives a linear combination

of the signal transmitted from the relay and the state encoder. The signal received at

the controller is given by

Rt = hSe,t + Sr,t +Zt = L1Xt +L2Xt−1 + Z̃t , (1.48)

where L1 =
√

2(1−β )h2PS

αt
, L2 =

√

2β PSPr

(2β PS+Nr)αt−1
, and Z̃t = Zt+

√

Pr

2β PS+Nr
Zr,t−1 with

Z̃t ∼N (0, Ñ(β ,Pr)). Next, the controller computes the MMSE estimate of Xt given

all previous channel outputs R[0,t] in the following three steps: i) Compute the

MMSE prediction of Rt from R[0,t] as R̂t = L2X̂t−1, where X̂t−1 is the MMSE es-

timate of Xt−1, ii) Compute the innovation as It = Rt − R̂t , and iii) Estimate the state

using only the innovation It as X̂t = E[Xt |It ] . Note that this is the optimum MMSE

estimate since Xt is independent of {R1,R2, ...,Rt−1} due orthogonality property of

MMSE estimation. The optimal MMSE state estimate is computed as

X̂t = E[Xt |It ] =
λ (λ L1 +L2)αt

(λ L1 +L2)
2 αt +L2

2nw +λ 2Ñ(β ,Pr)
It . (1.49)

Based on the state estimate, the controller C takes an action Ut =−λ X̂t that results

in Xt+1 = λ (Xt − X̂t)+Wt . The new plant state Xt+1 is linear combination of zero

mean Gaussian variables {Xt , X̂t ,Wt}, therefore it is also zero mean Gaussian dis-

tributed. The variance of the new plant state Xt+1 follows from simple computations

as,

αt+1 = λ 2E[(Xt − X̂t)
2]+E[W2

t ] = λ 2αt

(

L2
2nw +λ 2Ñ(β ,Pr)

(λ L1 +L2)
2 αt +L2

2nw +λ 2Ñ(β ,Pr)

)

+ nw

= λ 2
(

λ 2kαt−1 + nw

)







(

nwk1

λ 2

)

1
αt−1

+ Ñ(β ,Pr)
(

k2 +
√

k1k+ nwk1

λ 2
1

αt−1

)2

+
(

nwk1

λ 2

)

1
αt−1

+ Ñ(β ,Pr)






+ nw,

(1.50)
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where the last equality follows by substituting αt from (1.47) and by defining k :=
N

2h2β PS+N
, k1 := 2β PSPr

2β PS+Nr
, k2 := q

√

2h2(1−β )PS). Having presented the sensing and

control scheme, we now discuss stability of the plant under the given scheme.

1.4.1.2 Stability Analysis

We wish to find the values of the system parameter λ for which the second moment

of the state remains bounded, i.e., the sequence {αt} has to be bounded. Rewriting

(1.47) and (1.50), the variance of the state at any time t is given by

αt = λ 2

(

N

2h2β PS +N

)

αt−1 + nw, t = 2,4,6, ... (1.51)

αt = λ 2
(

λ 2kαt−2 + nw

)

f (αt−2)+ nw, t = 3,5,7, ... (1.52)

where α1 =
λ 2N
h2PS

α0+nw and f (αt−2),
( (

nwk1
λ2 ) 1

αt−2
+Ñ(β ,Pr)

(k2+

√

k1k+
nwk1

λ2
1

αt−2
)2+(

nwk1
λ2 ) 1

αt−2
+Ñ(β ,Pr)

)

. If

the odd indexed sub-sequence {α2t+1} in (1.52) is bounded, then the even indexed

sub-sequence {α2t} in (1.51) is also bounded. Therefore it is sufficient to consider

the odd indexed sub-sequence {α2t+1}. A complicated structure of f (αt ) in (1.52)

makes it difficult to find a condition on λ for which this sequence is bounded. There-

fore in [8] we use the following approach. We construct a sequence {α ′
t } which

upper bounds the sub-sequence {α2t+1} and is easier to analyze. Then we derive a

condition on the system parameter λ for which the sequence {α ′
t} converges to a

limit point as t → ∞ and consequently the boundedness of {α2t+1} is guaranteed.

We will show later that there is no loss in considering the majorizing sequence in-

stead of the original sequence. The detailed analysis is given in [8] and here we

merely give the condition under which the system is stable:

λ 4 <

(

(k2 +
√

k1k)2 + Ñ(β ,Pr)

kÑ(β ,Pr)

)

(1.53)

⇒ log(λ )<=
1

4

(

log

(

1+
2h2β PS

N

)

+log

(

1+
M̃(β ,Pr)

Ñ(β ,Pr)

))

, (1.54)

where in the last equality we substituted k = N
2h2β PS+N

and M(β ,Pr) = (k2+
√

k1k)2

in order to show the dependencies on the average relay power Pr and the power

allocation parameter β at the encoder. Since the relay node amplifies the desired

signal as well as the noise which is then superimposed at the decoder to the signal

coming directly from the encoder, an optimal choice of the relay transmit power

0 ≤ Pr ≤ PR depends on the relay channel parameters {PS,Nr,N,h,β}. Moreover an

optimal choice of the power allocation factor β at the encoder also depends on the

relay channel parameters {PS,Pr,Nr,N,h}. Therefore we can rewrite (1.54) as,
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log(λ )<
1

4
max

0<β≤1
0≤Pr≤PR

(

log

(

1+
2h2β PS

N

)

+ log

(

1+
M̃(β ,Pr)

Ñ(β ,Pr)

))

, (1.55)

which is a sufficient condition for mean-square stability of a scalar plant.

It is interesting to see that the sufficient condition for mean square stability does

not depend on the process noise. This provides motivation to study stabilizability of

the system in (1.1) without process noise, i.e., Wt = 0. In the absence of the process

noise in (1.1), the state variance of the noiseless system at any time step t is then

given by substituting nw = 0 in (1.50), that is

αt =

(

λ 2N

2h2β PS +N

)

αt−1, t = 2,4,6, ...

αt =

(

λ 4kÑ(β ,Pr)

(k2 +
√

k1k)2 + Ñ(β ,Pr)

)

αt−2, t = 3,5,7, ...

Since α1 =
λ 2N
h2PS

α0+nw, the state variance αt → 0 as t →∞ if
(

λ 4kÑ(β ,Pr)
(k2+

√
k1k)2+Ñ(β ,Pr)

)

<

1. This is the same condition as in (1.53). Thus by using the proposed linear coding

and control scheme, we obtain identical sufficient conditions for mean square stabil-

ity of noisy and noiseless first LTI system over half-duplex relay channel. Although

the sufficient conditions are identical, the state variance in the noisy plant scenario

cannot converge to zero unlike the noiseless scenario.
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Fig. 1.8 Comparison of second moments of the plant state process at three different levels of

process noise.

A comparison of the second moments of the plant’s state process at three differ-

ent power levels of the process noise is illustrated in Fig. 1.8. In this figure, we have

fixed the relay channel parameters {PS = 2,Pr = 2,h = 1,β = 0.5,N = 0.5,Nr =
0.1}, the plant parameters {α0 = 0.25,λ = 1.5}, and have plotted the second mo-
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ment E[X2
t ] of the state process as a function of time t for three power levels of the

process noise, i.e., nw = 0, 0.2, and 0.4. For the given set of channel parameters,

mean square stability of the system requires λ < 1.975 according to Theorem 7.

In Fig. 1.8 we have fixed λ = 1.5 (i.e., less than 1.975), therefore starting from an

arbitrary initial value the second moment of the state process stays bounded for all

levels of the process noise. For nw = 0 the second moment converges to zero, start-

ing from an initial value equal to 0.25 as shown in Fig. 1.8. For non-zero values of

process, the second moment keeps alternating between two different values. This

happens due to the first and the second transmission phases . As shown in Fig. 1.8,

for nw = 0.2 and nw = 0.4 the second moment converges to a unique non-zero value

for each transmission phase and thus it keeps alternating between these two unique

limit points. In Fig. 1.8 we can also observe that the rate of convergence is similar

in the three examples, and seems to be unaffected by the power level of the process

noise.

The sufficient condition for a multi-dimensional plant can be obtained by using

the time varying (mode-by-mode transmission) scheme proposed in Sec. 1.3.1.2

together with the linear scheme used for the scalar plant above. With the similar

analysis as above, we can prove the following theorem.

Theorem 7. ( [8, Theorem 3.1]) The linear time invariant system in (1.1) can be

mean square stabilized over the half-duplex AWGN relay channel if

log(|A|)< 1

4
max

0<β≤1
0≤Pr≤PR

(

log

(

1+
2h2β PS

N

)

+ log

(

1+
M̃(β ,Pr)

Ñ(β ,Pr)

))

, (1.56)

where Ñ(β ,Pr) = PrNr

2β PS+Nr
+ N, β ∈ [0,1], and M̃(β ,Pr) =

(

√

2h2(1−β )PS+
√

2β PSPrN

(2β PS+Nr)(2h2β PS+N)

)2

.

Remark 2. It has been shown in [8][Appendix I] that the term on the right hand side

of (1.56) is the information rate over the half-duplex AWGN relay channel with

noiseless feedback.

Optimal choices of the power allocation parameter β at the encoder and the relay

transmit power Pr which maximize the term on the right hand side of (1.56) depend

on the quality (i.e., SNR) of E −D , E −R, and R −D links. To illustrate this,

we have plotted optimal relay power P⋆
r as a function of the relay noise power Nr

for fixed values of PR = 2,PS = 10,N = 1 in Fig. 1.9, with the help of numerical

computations. We observe that for low values of Nr, the relay uses all available

power. As the Nr increases, P⋆
r decreases because the relay is using an amplify-

and-forward strategy in which noise also gets amplified along with the signal of

interest (state information). Eventually P⋆
r goes to zero for very high values of Nr,

indicating the fact that the relay is not useful anymore if linear strategy is employed

at the relay. However non-linear strategies might be useful for high values of Nr.

Some non-linear relaying protocols have been proposed in [31] for the given half-

duplex non-orthogonal relay channel, which give significantly higher transmission
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rates than the linear relaying. Such nonlinear schemes [31] can potentially enlarge

the achievable stability region if one uses them for remote stabilization. However a

careful analysis is yet to be carried out to quantify the gains one can obtain in terms

of stability with those non-linear relaying strategies.

The optimal choices of power allocation parameter β has not been plotted, how-

ever, we have observed via numerical experiments that β = 0.5 is usually a good

choice which corresponds to an equal power allocation to the two transmission

phases. For very low values of Nr (i.e., very reliable E −R link), an optimal β
can be slightly greater than 0.5, which is due to the reason that the communication

via the relay can be more helpful.
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Fig. 1.9 Optimal relay power Pr for PR = 2,PS = 10,N = 1.

We now consider a special case, where there is no direct communication link

from the encoder to the decoder and the information can be communicated only via

the relay. We call this setup as a two-hop relay channel, since the communication

from the sensor to the controller takes places in two hops- the first hop is from the E

to R and the second hop is from R to C . The half-duplex relay channel discussed

earlier becomes two-hop if h = 0. Naturally for this case we choose β = 1 and

Pr = PR and obtain the following sufficient condition for stabilization.

Corollary 1. ( [8, Corollary 3.2]) The linear time invariant system in (1.1) can be

mean square stabilized over a two-hop half-duplex AWGN relay channel if

log(|A|)< 1

4
log

(

1+
2PSPR

PRNr +N (2PS +Nr)

)

. (1.57)

For a setup which is equivalent to the two-hop relay channel, we find a necessary

condition in [11, Theorem 4.1] which reads as

log(|A|)< 1

4
min

{

log

(

1+
2PS

Nr

)

, log

(

1+
PR

N

)}

.
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The condition in (1.57) becomes both necessary and sufficient if either the E −R

link is noiseless (Nr = 0) or the R −D link is noiseless (N = 0).

Consider a two-hop relay channel with a causal noiseless feedback link from the

controller to the relay. For this setup, the condition in (1.57) becomes necessary

and sufficient if we restrict the encoder to be linear in the state. This result is an

application of a result in [32, 33]. It follows from the following arguments:

For the two-hop relaying scenario with a noiseless causal feedback link from

the controller to the relay, we have a partially nested type of information pattern. It

is known that the separation of estimation and control holds for such an informa-

tion pattern and there is no dual effect of control [34]. The optimal control strat-

egy using dynamic programming is Ut = −λE[Xt |Rt
0], where Rt

0 = {Ri,0 ≤ i ≤ t}.

By applying the optimal control action, the plant’s state at any time t is given by

Xt+1 = λ (Xt −E[Xt |Rt
0])+Wt . If we restrict the state encoder policy to be linear, then

an innovation (memoryless) encoder is optimal since the control actions whiten the

state process. Given a linear and memoryless policy at the encoder, let us now find an

optimal relaying policy which minimizes E[X2
t+1] = λ 2E[(Xt −E[Xt |Rt

0])
2]+E[W 2

t ].
The cost to be minimized is

E[(Xt −E[Xt |Rt
0])

2]
(a)
= E

[

(Xt −E[Xt |Y t
0 ])

2
]

+E
[

(E[Xt |Y t
0 ]−E[Xt |Rt

0])
2
]

(b)
= E

[

(Xt −E[Xt |Y t
0 ])

2
]

+E
[

(cYt −E[Xt |Rt
0])

2
]

(1.58)

where (a) follows fromE[(Xt −E[Xt |Y t
0 ])(E[Xt |Y t

0 ]−E[Xt |Rt
0])] = 0 (by the orthogo-

nality principle of MMSE estimation); and (b) follows from the fact that the encoder

transmits only innovation at each time step and the MMSE estimation of a Gaus-

sian variable is linear, i.e. E[Xt |Y t
0 ] = cYt , where c is a scalar. An optimal relaying

policy is the one which minimizes E[(cYt −E[Xt |Rt
0])

2], since the remaining term of

the cost function in (1.58) is independent of the relaying policy. A similar problem

was studied in [35], from which it follows that an optimal relaying policy is linear

and memoryless. We have earlier obtained the sufficient condition in (1.57) by us-

ing optimal linear (memoryless) communication and control policies, therefore this

condition is also necessary provided that the encoder is constrained to be linear in

the state. Moreover, if we restrict the relay to be linear, then the two-hop relay chan-

nel becomes equivalent to a scalar Gaussian channel. For this channel, it has been

shown earlier that a linear scheme is optimal. Therefore if the relay is restricted to

be linear in the received signal, then the condition in (1.57) becomes necessary and

sufficient.

1.4.2 Non-orthogonal Full-duplex Relay Channel

Although a half-duplex relay node is easier to build compared to a full-duplex

node, there is some loss in the performance due to its inability to communicate

simultaneously with state encoder and the controller. A full-duplex system can be
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Fig. 1.10 Non-orthogonal full-duplex AWGN relay channel.

realized by placing transmit and receive antennas far enough to ensure sufficient

isolation and/or by incorporating some interference cancelation schemes in ana-

log and/or digital domain. In the following we consider remote stabilization of lin-

ear plant over non-orthogonal full-duplex Gaussian relay channel depicted in Fig.

1.10. The variables {Zr,t ,Zd,t} denote mutually independent white noise components

with Zr,t ∼ N (0,Nr) and Zd,t ∼ N (0,N). The gain of R −C link is denoted by

h. At time step t, the encoder E inputs Se,t to the relay channel with an average

power PS. The relay simultaneously listens to Se,t and transmits Sr,t which is the

amplified version of the noisy signal received in the time step t − 1. The amplifica-

tion at the relay is done under an average power constraint Pr, where 0 ≤ Pr ≤ PR.

That is, the relay transmits, Sr,t =
√

Pr
PS+NR

(Se,t−1 +Zr,t−1). The controller receives

Rt = Se,t +hSr,t +Zt , computes the MMSE estimate of the state as, X̂t = E[Xt |R[0,t]],
and then applies an action to stabilize the system, as done in the half-duplex case.

The stabilization of linear plant over full-duplex Gaussian relay channel under a

linear scheme has been in studied in [25]. In the following we present sufficient

condition for stabilization under the best linear scheme.

Theorem 8. ( [25, Theorem 6]) The linear system in (1.1) can be mean square sta-

bilized over the non-orthogonal full-duplex AWGN relay channel if

log(|A|)< 1

2
max

0≤Pr≤PR

log



1+

(

√

PS(PS+NR)+η⋆h
√

PSPR

)

2

h2PRNR+N(PS+NR)



, (1.59)

where η⋆ is the unique root in the interval [0,1] of the following fourth order poly-

nomial

(

h2PSPR

PS +NR

)

η4 +

(

2hPS

√

PR

PS +NR

)

η3 +

(

PS +N +
h2PRNR

PS +NR

)

η2

=

(

N +
h2PRNR

PS +NR

)

.
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Fig. 1.11 Orthogonal half-duplex AWGN relay channel.

Proof. This theorem can be proved by employing linear sensing and control poli-

cies, and by following the same analysis as in the proof of Theorem 7. The de-

tailed proof for a scalar plant can be found in [25]. The result can be extended to

multi-dimensional systems using a similar time-sharing (mode-by-mode) transmis-

sion scheme as discussed in Sec. 1.3.1.2.

1.4.3 Orthogonal Relay Channel

An orthogonal AWGN relay channel is depicted in Fig. 1.11. The variables

{Zr,t ,Z1,t ,Z2,t} denote mutually independent white noise components with Zr,t ∼
N (0,Nr) and Zi

d,t ∼N (0,Ni) for i ∈ {1,2}. At any discrete time step t the encoder

E inputs Se,t to the relay channel with an average power PS. The relay observes Se,t

in noise, amplifies it under an average power constraint PR and forwards it to the

controller. Accordingly, the relay transmits

Sr,t = α(Se,t +Zr,t) =

√

PR

PS +NR

(Se,t +Zr,t), (1.60)

where the amplification factor α is chosen equal to
√

PR
PS+NR

in order to satisfy the

average power constraint, i.e., E[S2
r,t ] ≤ PR. The output of the relay channel at the

decoder D is {R1
t ,R

2
t }, which is given by

R1
t = Se,t +Z1

d,t ,

R2
t = Sr,t +Z2

d,t = αSe,t + Z̃t , (1.61)

where Z̃t ∼ N (0,α2Nr +N2).
By using a linear sensing and control scheme over the given channel (as done in

the previous sections), we obtain the following sufficient condition for stabilization.

Theorem 9. ( [25, Theorem 2]) The linear time invariant system in (1.1) can be

mean square stabilized over the orthogonal half-duplex AWGN relay channel if
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log(|A|)< 1

2
log

(

1+
PS (PSN2+PRNR+N2NR+PRN1)

N1 (PRNR+PSN2+NRN2)

)

. (1.62)

Proof. This theorem can be proved by employing linear sensing and control poli-

cies, and by following the same analysis as in the proof of Theorem 7. The detailed

proof for a scalar plant can be found in [25].

By using information theoretic arguments, we can obtain the following necessary

condition for stabilization .

Theorem 10. The linear time invariant system in (1.1) can be mean square stabi-

lized over the orthogonal half-duplex AWGN relay channel only if

log(|A|)< 1

2
min

{

log

(

1+
PS

N1

)

+ log

(

1+
PR

N2

)

, log

(

1+
PS

N1
+

PS

Nr

)}

. (1.63)
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Fig. 1.12 Achievable Stability Region for PS = PR = 10,N1 = N2 = 1.

In order to see the performance of the proposed linear scheme over the orthogo-

nal relay channel, we plot two achievable stability region in Fig. 1.12 and Fig. 1.13

as functions of Nr and N2 according to (1.62). For comparison we also show the

outer bound on stability region using (1.63). We can observe that the linear scheme

usually performs good when either Nr is much greater than N2 or when N2 is much

greater than Nr, i.e., when one of the two links (either E −R or R −C ) is much

stronger than the other. However in some regimes, there is a large gap between sta-

bility region achieved by the linear scheme and the outer bound, indicating that the

linear schemes can be highly suboptimal in general for orthogonal Gaussian relay

networks. In Sec. 1.6 we will present some non-linear relaying schemes for real-time

transmission of a Gaussian source over an orthogonal Gaussian relay channel. Those

non-linear schemes significantly outperform linear schemes, which makes them po-

tential candidates to be used in remote control or stabilization over Gaussian relay

networks.
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Fig. 1.13 Achievable Stability Region for PS = PR = 10,N1 = Nr = 1.

1.4.4 Comparison of Relaying Topologies

We have so far studied following three relaying topologies: i) Non-orthogonal half-

duplex relay channel, ii) Non-orthogonal full-duplex relay channel, iii) Orthogonal

relay channel. In Fig.1.14 we make a comparison of achievable stability regions

over these network topologies. We fix PS = 10,PR = 1,N = N1 = N2 = 1 and show

the stability regions that are achieved with linear schemes as functions of increas-

ing relay noise power Nr, according to Theorem 7, Theorem 8, and Theorem 9.

Since in the half-duplex setting the relay transmits in alternate time steps, it can

transmit with double power compared to the full-duplex case. Therefore for the full-

duplex relay and the orthogonal relay channels we have used PR = 1, whereas for

the half-duplex relay channel we have used PR = 2 while plotting achievable stabil-

ity regions in Fig.1.14. The figure shows that the full-duplex relaying is superior to

the half-duplex relaying. The reader should keep in mind that the full-duplex sensor

nodes are usually more expensive due to the implementation issues discussed earlier.

Moreover, we can observe that the orthogonal relaying outperforms non-orthogonal

relaying for higher values of Nr, however this gain is obtained at the cost of using

more channel resources (for example using extra bandwidth).

1.5 Sub-optimality of Linear Policies for Multi-hop Networks

It is known from [36, 37] that linear schemes are not optimal in general for estima-

tion and control over Gaussian multi-hop relay networks. The paper [36] considers

the problem of transmission of an i.i.d. Gaussian source over most basic two-hop

relay channel illustrated in Fig. 1.5. The problem formulation is as follows: Con-

sider a sequence of independent and identically distributed real-valued Gaussian

random variables {Xt}t∈N having zero mean and variance σ2
x , where t denotes a
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10
−1

10
0

10
1

10
2

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

A
ch

ie
va

b
le

S
ta

b
il
it
y

R
eg

io
n
,
lo

g 2
(|
A
|)

Channel Noise Power, Nr

 

 

 Non−orthogonal half−duplex

 Non−orthogonal full−duplex

 Orthogonal

Fig. 1.14 Example: Comparison of linear and non-linear schemes.

R DE
YtXt X̂tSe,t Sr,t Rt

Zd,tZr,t

Fig. 1.15 Real-time transmission of a memoryless Gaussian source over a two-hop relay channel.

discrete time index. According to the figure, at a discrete time t ∈ N the source en-

coder E observes Xt and produces Se,t = f1,t(X[0,t]) suitable for transmission, where

f1,t : Rt 7→ R is a causal measurable mapping. The mapping f1,t has to satisfy the

following average power constraint,

E[S2
e,t ]≤ PS. (1.64)

The signal Se,t is then observed in noise by the relay node R as Yt = Se,t +Zr,t , where

{Zr,t}t∈N is a zero mean white Gaussian noise sequence of variance Nr. Since there

is no direct link from the source encoder to the destination, we neglect transmission

and processing delays at the relay, i.e., the relay node applies a causal mapping

on the received signal f2,t : Rt 7→ R to produce Sr,t = f2,t(Y[0,t]) under the power

constraint,

E[S2
r,t ]≤ Pr. (1.65)

The signal Sr,t is then transmitted over a Gaussian channel. Accordingly the des-

tination node D receives Rt = Sr,t + Zd,t , where {Zd,t}t∈N is a zero mean white

Gaussian noise sequence of variance N. Upon receiving Rt the decoder wishes to re-

construct the transmitted variable Xt by applying a mapping gt : Rt 7→R to produce

X̂t = gt(R[0,t]). Let us define the signal-to-noise ratios of the E –R and R–D links

as γr := PS/Nr and γd := Pr/N respectively. The encoder, the relay, and the decoder

are all causal and delay-free (zero delay). The objective is to choose the encoder,
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relay, and decoder mappings such that following distortion

D = lim sup
T→∞

1

T + 1

T

∑
t=0

E

[

(

Xt − X̂t

)2
]

(1.66)

is minimized subject to the power constraints.

It has been shown in [36] that the following simple time invariant non-linear

source and relay policies can beat the best linear scheme in some cases:

f2,t (yt) =







b, for yt > m2

0, for |yt | ≤ m2

−b, for yt <−m2







,

f1,t (xt) =







a, for xt > m1

0, for |xt | ≤ m1

−a, for xt <−m1







,

The functions f1,t(·) and f2,t(·) functions are illustrated in Figure 1.16.

−a

m1

−m1

a

f1,t(xt )

xt

−b

m2

−m2

b

f2,t(yt )

yt

Fig. 1.16 Source and Relay Policies.

In Figure 1.17 we have plotted distortion achieved with the non-linear and the

optimal linear schemes as functions of signal-to-noise ratios for some fixed param-

eters. These figures demonstrate that the simple three-level quantizer policies can

outperform the best linear policies. The proposed non-linear scheme is not always

better than the optimal linear scheme as demonstrated in Fig. 2, where we have plot-

ted distortion achieved with the non-linear and the optimal linear schemes as func-

tions of signal-to-noise ratios for some fixed parameters. The non-linear scheme

outperforms the linear scheme in low SNR regions, however there might exist bet-

ter non-linear strategies which may outperform the linear strategy also in high SNR

regions. When the channels are very noisy, the proposed non-linear strategy is supe-

rior because it does not amplify the large values of channel noise at its input unlike

the linear (amplify-and-forward) strategy. When linear schemes are employed in

multi-hop relay networks, noise is accumulated in every hop, whereas non-linear

schemes can suppress noise. In Sec. 1.6 we discuss an algorithm to numerically op-
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timize the source and relay mappings for an orthogonal relay channel. One can use

a similar approach to numerically optimize the source and relay mappings for the

given two-hop relay channel as well.
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Fig. 1.17 Comparison of the linear and the non-linear schemes.

The motivation for choosing three-level quantizer policies comes from the the

multi-stage decision problem studied in [37] where a binary quantizer was shown

to beat the best linear policy for five or more stages. The given two-hop relaying

setup corresponds to three stages. It is however not known whether binary quantizers

are always worse than the best linear scheme for the given three-stage problem.

The intuition for choosing symmetric quantizer comes from the fact that symmetry

in distribution is preserved when symmetric functions are applied to sources with

symmetric distributions. Moreover with centering the quantizer at zero, the encoders

can utilize the available transmit power in an efficient way by transmitting signals

with power equal to zero more often.

1.6 Real-time Transmission Over an Orthogonal Relay Channel

In this section we consider real-time transmission of a memoryless source over an

orthogonal half-duplex Gaussian relay channel. The system model is depicted in

Fig. 1.18, where a sensor node E observes a Gaussian variable X ∼ N (0,σ2
x ) and

transmits it to the destination D over a Gaussian channel. An intermediate sensor

node R called relay, overhears the signal transmitted from sensor E and relays its re-

ceived information to the destination D over an orthogonal channel. We assume that

the relay is half-duplex, i.e., it cannot simultaneously receive and transmit signals.

For real-time coding of i.i.d. sources, memoryless coding is optimal [33]. Therefore

we consider memoryless encoders. For each source sample Xi, the source encoder

E uses channel K1 times and the relay encoder R uses channel K2, where K1,K2 are

positive integers. Thus the transmission of source each sample takes K = K1 +K2
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channel uses. For each source sample, E transmits Se = fe(X), where fe : R 7→RK1 ,

subject to an average power constraint E[ f 2
e (X)]≤ PS. The relay and the destination

accordingly receive,

Y = Se +Zr,

R1 = Se +Z1
d , (1.67)

where Zr,Z
1
d ∈ RK1 are mutually independent zero mean white Gaussian noise

vectors with E

[

Z1
d

(

Z1
d

)T
]

= N1
d I and E

[

ZrZ
T
r

]

= NrI. Upon receiving Y, R

transmits Sr = fr(Y), where fr : RK1 7→ RK2 is subject to an average power con-

straint E[ f 2
r (Y)]≤ Pr. Accordingly the destination D receives R2 = Sr +Z2

d , where

Z2
d ∈RK2 is a white Gaussian noise vector with E

[

Z2
d

(

Z2
d

)T
]

=N2
d I. After receiving

signals from both E and R, the decoder D reconstructs X as X̂ = fd(R
1,R2) where

the mapping fd : RK 7→R is chosen such that the mean-squared error E
[

(

X − X̂
)2
]

is minimized.

Zr

Z1
d

Z2
d

Se

Sr

X

X̂

Y

R1

R2

E

D

R

Fig. 1.18 Real-time transmission of a Gaussian source over an orthogonal half-duplex Gaussian

relay channel.

The problem of real-time transmission of a Gaussian source over the given three

node orthogonal Gaussian relay channel has been studied in [38], where the au-

thors propose an algorithm to numerically optimize the source, relay, and destination

mappings. Since there are three mappings to be optimized for a given set of channel

parameters, the design algorithm in [38] uses a common strategy of optimizing one

mapping at a time while keeping the other two fixed. Moreover each dimension of

the channel space is discretized into equally spaced points in the design algorithm.

The optimized mappings obtained in [38] are in general non-linear and are shown

to provide significant gains over linear mappings in terms lower achievable distor-

tion. In the following we use the design algorithm of [38] to optimize mappings for

some fixed channel parameters. We give examples of optimized mappings for only

two cases: i) K1 = K2 = 1, and ii) K1 = 1,K2 = 2. Let us define the SNRs of the

E −D , E −R, and R −D links as γed := PS/N1
d , γer := PS/Nr, and γrd := Pr/N2

d

respectively. For the case K1 = K2 = 1, we provide some examples of optimized

mappings in Fig. 1.19-1.21. In these examples we have fixed the source mapping to

be linear and optimized the other two mappings (relay and decoder mappings) for
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different values of signal-to-noise ratios as given in the captions of the respective fig-

ures. We observe that these optimized relay mappings are non-invertible and have

an almost periodic like behavior. Several input values are mapped to the same output

value; this way of reusing output values can be seen as Wyner-Ziv type compression.

This reuse of output values (an almost periodic behavior) makes the relay mappings

more power efficient. Such non-invertible mappings have become possible due to

the availability of the side information via the E −D link. In Fig. 1.19-1.21 we have

also plotted decoder mappings, which basically estimate the source X using the two

received signals R1 and R2. The decision regions along with the reconstructions X̂

are also shown in the figures. From these examples of optimized mappings, we ob-

serve that the number of periods in the relay mappings increase as the reliability of

side information increases, thus making the relay more power efficient.
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Fig. 1.19 Relay and decoder mappings (K1 = K2 = 1) optimized for σ 2
x = Ps = Pr = 1 and γed = 5

dB, γer = 10 dB, and γrd = 25 dB.
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Fig. 1.20 Relay and decoder mappings (K1 =K2 = 1) optimized for σ 2
x = Ps = Pr = 1 and γed = 10

dB, γer = 10 dB, and γrd = 25 dB.
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Fig. 1.21 Relay and decoder mappings (K1 =K2 = 1) optimized for σ 2
x = Ps = Pr = 1 and γed = 20

dB, γer = 30 dB, and γrd = 25 dB.

In Fig. 1.22 and Fig. 1.23, we give two examples of optimized relay mappings

for K1 = 1,K2 = 2. That is the case where the relay performs an expansion — from

its one-dimensional input to its two-dimensional output. Once again, there is a reuse

of the output symbols which is only possible due to the side information from the

direct link. As reliability of the side information increases, the reuse of the same

output values also increases. The mappings have a spiral like shape. As reliability

of direct link increases, the reuse of same output values also increase. Looking at

the spiral from above, a similarity to the polynomial based source–channel codes

proposed in [39, 40] can be seen.
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Fig. 1.22 Relay mapping (K1 = 1,K2 = 2) optimized for σ 2
x = Ps =Pr = 1 and γed = 5 dB, γer = 15

dB, and γrd = 10 dB.

In order to see the gains of non-linear optimized mappings over linear mappings

in terms of achievable distortion, we refer the reader to [38]. In [38] the authors have

analyzed the performance in detail for various values of channel dimensions (K1 and

K2) and signal-to-noise ratios. It is observed that with these optimized mappings

significantly lower distortion can be achieved, which makes them very useful for
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Fig. 1.23 Relay mapping (K1 = 1,K2 = 2) optimized for σ 2
x = Ps = Pr = 1 and γed = 15 dB,

γer = 15 dB, and γrd = 10 dB.

large sensor networks and remote control scenarios where delay is a critical factor

and transmit powers are limited.

1.7 Distributed Sensing for Control
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Fig. 1.24 A closed-loop control system with state measurements transmitted over wireless chan-

nels.

In this section we consider a multi-sensor setup, where multiple sensors in paral-

lel observe noisy versions of the state process and communicate their observations

to a remotely situated controller over orthogonal (parallel) channels. This scenario

is different from the one studied earlier since each sensor has access to a different

observation due to the addition of the measurement noise. The sensors then transmit

their local observations to the controller. The schemes of [13, 14] can also be used
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for distributed sensing. However it is not known how useful they are in the presence

of measurement noise.

For the sake of simplicity, consider a two sensor setup shown in Fig. 1.24 with

a scalar plant whose state equation is given by (1.1) with A = λ . The state Xt is

observed in noise by the sensors E1 and E2 as

Y i
t = Xt +Zi

e,t , i = 1,2, (1.68)

where Z1
e,t and Z1

e,t are two i.i.d. mutually independent measurement noise compo-

nents, which are Gaussian distributed with zero means and variances N1
e and N2

e

respectively. Based on their noisy observations, the two sensors transmit the follow-

ing signals,

Si
t = fi,t (Y

i
t ), i = 1,2, (1.69)

subject to the following power constraints:

E[(Si
t)

2]≤ Pi, i = 1,2. (1.70)

Accordingly the remote controller receives

Ri
t = Si

t +Zi
d,t , i = 1,2, (1.71)

where Zi
d,t , i = 1,2, are independent and i.i.d. zero-mean Gaussian with power Ni

d .

We have assumed orthogonal channels from the sensors to the controller, therefore

there is no interference between the two received signals (i.e., we have two parallel

Gaussian channels from the sensors to the sink node). Based on the received signals,

the controller takes an action Ut = πt

(

R1
[0,t],R

2
[0,t]

)

. The objective is to minimize the

following finite horizon quadratic cost function:

JT = E

[

T

∑
t=1

X2
t

]

, (1.72)

where the expectation is taken over the initial state X0, the process noise Wt , the

measurement noise Zi
e,t , and the channel noise Zi

d,t .

In the following we present a non-linear distributed sensing scheme which out-

performs the best linear scheme. This scheme was first introduced in [21] for the

transmission of a Gaussian source over orthogonal Gaussian channels and was later

used in control context in [41].
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1.7.1 Sensing Scheme

The non-linear distributed sending and control scheme works as follows. The signals

transmitted by the two sensors are given by,

S1
t = ηtY

1
t , (1.73)

S2
t = ηt

(

Y 2
t −∆t

⌊

Y 2
t

∆t

⌉)

, (1.74)

where ⌊·⌉ denotes rounding to the nearest integer. The parameter ∆t controls the

length of each period in the periodic sawtooth function. The values ∆[0,t] are chosen

such that the cost function JT in (1.72) is minimized. The procedure of choosing

∆[0,t] can be found in [41]. The parameters {ηt ,∆[0,t]} are chosen such that the aver-

age transmit power constraints (1.70) are met.

y1
y2

f2(y
2)f1(y

1)

∆

Fig. 1.25 Non-linear distributed sensing.

1.7.2 Control Scheme

The controller is assumed to have a separation structure where it first computes

an estimation of the state and then take action using the state estimate. Since the

computation of optimal MMSE estimate based on all previously received signals
{

R1
[0,t],R

2
[0,t]

}

is not practical, the following sub-optimal algorithm is proposed in

[41].

1. Compute estimates X̃0|t , · · · , X̃t|t of X0, · · · ,Xt based on the previous estimate X̂t−1

and R1
t using a Kalman filter cf. Kalman Filter 1 in the Fig. 1.26.

2. Assume that |(X̃s|t −Y 2
s −Z2

d,s)/ηs| ≤ ∆s/2 ∀s and compute the Maximum Like-

lihood estimates Ŷ 2
s as (cf. ML decoder in Fig. 1.26):

Ŷ 2
s = argminYs∈Y ((S2(Ys)−R2

s)
2), (1.75)
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where Y = {Ys : |X̃s|t −Ys| ≤ ηs∆s/2}.

3. Finally assume that the estimates Ŷ 2
s had been linearly encoded (multiplied by

ηt
0) and find the estimate X̂t from a Kalman filter using {R1

[0,t],η[0,t],U[0,t−1]} and

U[0,t−1] as input cf. Kalman Filter 2 in Fig. 1.26.

U[0,t ]

X̂t

R1
[0,t ] R2

[0,t ]

X̃0|t , · · · , X̃t |t

Ŷ 2
[0,t ]

η[0,t ]

Kalman Filter 1

Kalman Filter 2

ML decoder

Fig. 1.26 State estimator for the non-linear distributed sensing scheme.

The above non-linear sensing and control scheme is delay-free and can be im-

plemented with reasonable complexity. This non-linear scheme has been shown to

outperform the best linear strategy in [41]. Furthermore it is robust to the knowledge

of noise statistics at the sensors as demonstrated in [41]. Intuitively, this scheme can

be easily extended to an arbitrary number of sensors by employing a linear mapping

at the first sensor node and sawtooth mappings at the remaining sensor nodes with

successively decreasing time periods ∆t . How the number of sensor nodes will affect

the system performance compared to the best linear scheme is yet to be studied.

Another non-linear distributed sensing scheme has been proposed in [13] for the

two-sensor setup, where one sensor transmits magnitude of the received signal and

the other sensor transmits phase value of the received signal. The mappings em-

ployed by the two distributed sensors are shown in Fig. 1.27. It has been shown

in [13] that the output of these two sensor mappings are mutually independent and

thus enable us to send independent information over the two parallel channels. This

non-linear scheme has been shown to outperform linear scheme in absence of mea-

surement noise. A careful comparison of these two non-linear sensing schemes dis-

cussed in this section is yet to be made. There might be certain regimes where one

scheme may perform better than the other.
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Fig. 1.27 Non-linear distributed sensing.

1.8 Bibliographic Notes

There exists a diverse literature on the problem of control and real-time communi-

cation over Gaussian channels, focusing on different models, objectives, and design

constraints. For instance the plant and the channel models can be either discrete-time

or continuous with different network topologies and different assumption on Gaus-

sian noise. There can be different design constraints such as transmission delay-

constraints, sum and individual power constraints, average and peak power con-

straints, bandwidth constraint etc. And the commonly studied objectives are min-

imizing a quadratic cost function of the state and the control variables, achieving

moment stability or invariant state distribution on the state of the plant. In this chap-

ter, the discussion was mostly limited to the problem of mean-square stabilization of

an LTI discrete-time plant and real-time communication over some specific discrete-

time white Gaussian channels with average transmit power constraints. In the fol-

lowing we highlight some of the important and related research contributions on the

problem of control over Gaussian channels.

Some of the earliest papers addressing the control of linear systems over Gaus-

sian channels include [42, 43]. These papers show that for linear systems subject

to Gaussian noise with linear sensing policies having perfect memory (recall), the

optimal control policies are linear and there exists a separation property between es-

timation and control. However in [44], Witsenhausen showed via a simple counter

example that linear policies may not be optimal when there are more two or more

decision makers (sensors/controllers) without perfect memory (recall). At this point

we emphasize the importance of information structures and recommend some fun-

damental papers on stochastic team decision problems [45–48]. The information

structure can be classical, quasiclassical, and non-classical. The problem studied

in [42, 43] falls in the class of classical information structure, for which linear con-

trol policies were shown to be optimal. In the quasiclassical information structure,

decision maker A effects the information of decision maker B, and the decision
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maker B knows what is known by decision maker A. For LQG systems having a

quasiclassical information structure, linear policies have been shown to be optimal,

for example see [45, 47]. The Witsenhausen problem [44] has a non-classical in-

formation structure in which decision maker A effects the information of decision

maker B, but the decision maker B does not have access to what is known by de-

cision maker A. The Witsenhuasen problem is unsolved till today, which indicates

the hardness of such problems. However for some LQG systems with non-classical

information structures, linear policies have been shown to be optimal, for example

see [34, 35, 49, 50]. These papers have used tools from information theory. The pa-

per [35] studies the problem of a causal memoryless transmission of a noisy Gaus-

sian source over a Gaussian channel and shows that linear coding and decoding

policies are optimal. The optimality of linear sensing and control policies for a first

order scalar LTI system with an objective of minimizing a quadratic cost function

of state and control variables was established in [34], where some concepts from

rate distortion theory were used. Another paper [51] used tools from source coding

and channel coding to establish necessary condition for stabilization over a large

class of communication channel including a memoryless Gaussian channel. The

authors of [20] found the conditions under which separation property between es-

timation and control holds for LQG problems where there is a communication link

(for example a memoryless Gaussian channel) between the sensor and the controller.

Moreover they introduced a framework of sequential rate distortion theory for de-

signing the encoders and the decoders. In [6, 52–54] the reader can find relevant

studies on signal-to-noise ratio requirements for stabilization over some Gaussian

channel models. The papers [55, 56] have proposed some techniques for designing

linear controllers for Gaussian channels. Some recent results on control over Gaus-

sian fading channels can be found in [57, 58].

The problem of control over communication channels is closely related to the

problem of communication over channels with feedback. In [59] a general equiv-

alence was shown between feedback stabilization over an analog communication

channel and a communication scheme for channels with noiseless feedback. This

communication scheme is a generalization of Schalkwijk-Kailath coding scheme

[60] for a single user channel. And for multi-user channels such as broadcast,

multiple-access and interference channels, this scheme is a generalization of coding

scheme given in [61–63]. Using the communication schemes proposed in [61–63]

for multi-user Gaussian channels with noiseless feedback, necessary and sufficient

conditions for stabilization of multiple plants over multi-user Gaussian channels are

obtained in [64–66]. A decentralized design of linear sensors and controllers over

white Gaussian channels with the objective mean square stability is studied in [67].

A comprehensive study of stabilization and optimization of networked control, and

information structures is present in [48] and [68].
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Acknowledgements

We would like to thank the editors, B. Bernhardsson, G. Como, and A. Rantzer, for

giving us an opportunity to write this chapter. We are also very grateful to Johan-

ness Kron (formerly Johanness Karlsson) for performing numerical simulations to

generate the figures included in Section 1.6 of this chapter. Some of these results are

part of his PhD thesis.

References
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32. S. Yüksel, “On optimal causal coding of partially observed markov sources under classical

and non-classical information structures,” in IEEE ISIT, 2010, pp. 81–85.

33. ——, “On optimal causal coding of partially observed markov sources in single and multi-

terminal settings,” in IEEE Trans. Inform. Theory, vol. 59, Jan. 2013, pp. 424–437.
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