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Abstract—The problem of remotely stabilizing a noisy linear
time invariant plant over a Gaussian relay network is addressed.
The network is comprised of a sensor node, a group of relay nodes
and a remote controller. The sensor and the relay nodes operate
subject to an average transmit power constraint and they can
cooperate to communicate the observations of the plant’s state
to the remote controller. The communication links between all
nodes are modeled as Gaussian channels. Necessary as well as
sufficient conditions for mean-square stabilization over various
network topologies are derived. The sufficient conditions are in
general obtained using delay-free linear policies and the neces-
sary conditions are arrived at using information theoretic tools.
Different settings where linear policies are optimal, asymptotically
optimal (in certain parameters of the system) and suboptimal
have been identified. For the case with noisy multidimensional
sources controlled over scalar channels, it is shown that linear time
varying policies lead to minimum capacity requirements, meeting
the fundamental lower bound. For the case with noiseless sources
and parallel channels, nonlinear policies which meet the lower
bound have been identified.

Index Terms—Gaussian relay channels, linear systems, moment
stabilization, networked control systems.

I. INTRODUCTION

THE emerging area of networked control systems has
gained significant attention in recent years due to its po-

tential applications in many fields such as machine-to-machine
communication for security, surveillance, production, building
management, and traffic control. The idea of controlling dy-
namical systems over communication networks is supported by
the rapid advance of wireless technology and the development
of cost-effective and energy efficient devices (sensors), capable
of sensing, computing, and transmitting. This paper considers
a setup in which a sensor node communicates the observations
of a linear dynamical system (plant) over a network of wireless
nodes to a remote controller in order to stabilize the system
in closed-loop. The wireless nodes have transmit and receive
capability and we call them relays, as they relay the plant’s
state information to the remote controller. We assume a transmit
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Fig. 1. Unstable plant has to be controlled over a Gaussian relay network.

power constraint on the sensor and relays, and the wireless links
between all agents (sensor, relays, and controller) are modeled
as Gaussian channels. The objective is to study stabilizability
of the plant over Gaussian networks.

A. Problem Formulation

Consider a discrete linear time invariant system

Xt+1 = AXt +BUt +Wt (1)

where Xt ∈ R
n, Ut ∈ R

m, and Wt ∈ R
n are state, control, and

plant noise variables. The initial state X0 is a random variable
with bounded differential entropy |h(X0)| < ∞ and a covari-
ance matrix Λ0. The plant noise {Wt} is a zero mean white
Gaussian sequence with variance KW and it is assumed to be
independent of the initial state X0. The matrices A and B are
of appropriate dimensions and the pair (A,B) is controllable.
Let {λ1, λ2, . . . , λn} denote the eigenvalues of A. Without
loss of generality we assume that all the eigenvalues of A are
outside the unit disc, i.e., |λi| ≥ 1. The unstable modes can be
decoupled from the stable modes by a similarity transformation.
If the system in (1) is one-dimensional then A is scalar and we
use the notation A = λ. We consider a remote control setup
where a sensor observes the state process and transmits it to
a remotely situated controller over a network of relay1 nodes
as shown in Fig. 1. The communication links between nodes
are modeled as white Gaussian channels, which is why we
refer to the network as Gaussian. In order to communicate
the observed state value Xt, an encoder E is lumped with the
observer O and a decoder D is lumped with the controller C. In
addition, there are L relay nodes {Ri}Li=1 within the channel
to support communication from E to D. At any time instant t,

1A relay is a communication device whose sole purpose is to support
communication from the information source to the destination. In our setup
the relay nodes cooperate to communicate the state process from sensor to the
remote controller. If the design objective is to replace wired connections, then
relaying is a vital approach to communicate over longer distances.
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Se,t and Rt are the input and the output of the network and
Ut is the control action. Let ft denote the observer/encoder
policy such that Se,t = ft(X[0,t], U[0,t−1]), where X[0,t] :=
{X0, X1, . . . , Xt} and we have the following average power
constraint: limT→∞(1/T )

∑T−1
t=0 E[S2

e,t] ≤ PS . Let πt denote
the decoder/controller policy, then Ut = πt(R[0,t]). The objec-
tive in this paper is to find conditions on A so that the plant
in (1) can be mean square stabilized over a given Gaussian
network.

Definition 1.1: A system is said to be mean square stable if
there exists a constant M<∞ such that E[‖Xt‖2]<M for all t.

B. Literature Review

Important contributions to control over communication chan-
nels include [1]–[20]. The problem of remotely controlling dy-
namical systems over communication channels is studied with
methods from stochastic control theory and information theory.
The seminal paper by Bansal and Başar [1] used fundamental
information theoretic arguments to obtain optimal policies for
LQG control of a first order plant over a point to point Gaussian
channel. Minimum rate requirements for stabilizability of a
noiseless scalar plant were first established in [2], [3] followed
by [4]. Further rate theorems for stabilization of linear plants
over some discrete and continuous alphabet channels can be
found in [10], [14]–[16], [18], [21]–[27]. The papers [1], [9],
[10], [14], [16]–[18], [22]–[24], [26], [27] addressing control
over Gaussian channels are more relevant to our work. In [1]
linear sensing and control policies are shown to be optimal for
the LQG control of a first order linear plant over a point-to-
point Gaussian channel. A necessary condition for stabilization
relating eigenvalues of the plant to the capacity of the Gaussian
channel first appeared in [9], [10]. Some important contri-
butions on stabilization over Gaussian channels with average
transmit power constraints have been made in [14], [16], [22]–
[24], [27], [28]. In [14] sufficient conditions for stabilization
of both continuous time and discrete time multi-dimensional
plants over a scalar white Gaussian channel were obtained using
linear time invariant (LTI) sensing and control schemes. It was
shown in [14], [23] that under some assumptions there is no
loss in using LTI schemes for stabilization, that is the use of
non-linear time varying schemes does not allow stabilization
over channels with lower signal-to-noise ratio. The stability
results were extended to a colored Gaussian channel in [16]. In
[18] the authors considered noisy communication links between
both sensor—controller and controller—actuator and presented
necessary and sufficient conditions for mean square stability.
Stabilization of noiseless LTI plants over parallel white Gaus-
sian channels subject to transmit power constraint has been
studied in [22], [24], [27], [28]. The paper [22] considers
output feedback stabilization and [24] considers state feedback
stabilization, and they both derive necessary and sufficient
conditions for stability under a total transmit power constraint.
The necessary condition derived in [24] for mean-square sta-
bilization of discrete time LTI plants over parallel Gaussian
channels is not tight in general and its achievability is not guar-
anteed by LTI schemes. The paper [27] focuses on mean-square
stabilization of two-input two-output system over two parallel

Gaussian channels. By restricting the study to LTI schemes
and assuming individual power constraint on each channel, the
authors derive tight necessary and sufficient conditions for both
state feedback and output feedback architectures. Realizing that
LTI schemes are not optimal in general for stabilization over
parallel channels [24], the paper [28] proposes a non-linear time
invariant scheme for stabilization of a scalar noiseless plant
over parallel Gaussian channels using the idea that independent
information should be transmitted on different channels [17],
[29]. The problem of finding a tight necessary and sufficient
condition for stabilization of an m-dimensional plant over an
n-dimensional parallel Gaussian channel is still open, which
we investigate in this paper. For a detailed literature review, we
refer the reader to [30]–[32].

As summarized above, the previous works on control over
Gaussian channels have mostly focused on situations where
there is no intermediate node between the sensor and the remote
controller. Problems related to control over Gaussian networks
with relay nodes have so far been open. Such problems are
hard because a relay network can have an arbitrary topology
and every node within the network can have memory and can
employ any transmit strategy. The papers [33] and [34] have
derived conditions for stabilization over networks with digital
noiseless channels and analog erasure channels respectively,
however those results do not apply to noisy networks. In [12],
[25] moment stability conditions in terms of error exponents
have been established. However, even a single letter expression
for channel capacity of the basic three-node Gaussian relay
channel [35] is not known in general. In [36] Gastpar and
Vetterli determined the capacity of a large Gaussian relay
network in the limit as the number of relays tends to infinity.
The problem of control over Gaussian relay channels was
introduced in [37], [38] and further studied in [39], [40]. The
papers [37]–[40] derived sufficient conditions for mean square
stability of a scalar plant by employing linear schemes over
Gaussian channels with single relay nodes. In this paper we
consider more general setups with multiple relays and multi-
dimensional plants. We also derive necessary conditions along
with sufficient conditions and further discuss how good linear
policies are for various network topologies. In particular this
paper makes the following contributions:

C. Main Contributions

• In Section II we obtain a necessary condition for mean
square stabilization of the linear system in (1) over the
general relay network depicted in Fig. 1.

• In Sections III–V we derive necessary as well as suf-
ficient conditions for stabilization over some fundamen-
tal network topologies such as cascade network, parallel
network, and non-orthogonal network, which serve as
building blocks for a large class of Gaussian networks
(see Figs. 2, 3, 4, pp. 3, 5, 6). Necessary conditions
are obtained using information theoretic tools. Sufficient
conditions are obtained using linear schemes. We study
these fundamental topologies individually so that the proof
techniques and the intuitions gained from this paper are
rich enough to address more general networks.
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• Sub-optimality of linear policies is discussed and some
insights on optimal schemes are presented. In some cases
linear schemes can be asymptotically optimal and in some
cases exactly optimal.

• A linear time varying scheme is proposed in Section VI,
which is optimal for stabilization of noisy multidimen-
sional plants over point-to-point scalar Gaussian channels.

• The information capacity2 required for stabilization of
multidimensional plants over parallel Gaussian channels
is established in Section IV, which is achievable by a
nonlinear time varying scheme for noiseless plants.

II. NECESSARY CONDITION FOR STABILIZATION

In the literature [7], [15], [25], [41], there exist a variety of
information rate inequalities characterizing fundamental limits
on the performance of linear systems controlled over communi-
cation channels. In the following we state a relationship which
gives a necessary condition for mean square stabilization over
the general network depicted in Fig. 1.

Theorem 2.1: If the linear system in (1) is mean square stable
over the Gaussian relay network, then

log (|det(A)|) ≤ lim inf
T→∞

1

T
I
(
X̄[0,T−1] → R[0,T−1]

)
(2)

where {X̄t} denotes an uncontrolled state process obtained
by substituting Ut = 0 in (1), i.e., X̄t+1 = AX̄t +Wt, the
notation | det(A)| represents the absolute value of determinant
of matrix A and

I
(
X̄[0,T−1] → R[0,T−1]

)
=

T−1∑
t=0

I
(
X̄[0,t];Rt|R[0,t−1]

)
is the directed information from the uncontrolled state process
X̄[0,T−1] to the sequence of variables R[0,T−1] received by the
controller over the network of relay nodes.

Proof 2.1: The proof is given in Appendix A, which
essentially follows from the same steps as in the proof of
Theorem 4.1 in [25], however, with some differences due to
the network structure. Similar constructions can also be found
in [15], [41]. �

III. CASCADE (SERIAL) NETWORK

In this section we consider a cascade network of half-duplex
relay nodes. A node which is capable of transmitting and receiv-
ing signals simultaneously using the same frequency band is
known as full-duplex while a half-duplex node cannot simulta-
neously receive and transmit signals. In practice it is expensive
and hard to a build a communication device which can transmit
and receive signals at the same time using the same frequency,
due to the self-interference created by the transmitted signal to
the received signal. Therefore half-duplex systems are mostly
used in practice. Consider a cascade network comprised of
L− 1 half-duplex relay nodes depicted in Fig. 2, where the

2The definition of information capacity for Gaussian channels can be found
on page 263 in [35].

Fig. 2. A cascade Gaussian network model.

state encoder E observes the state of the system and transmits
its signal to the relay node R1. The relay node R1 transmits
a signal to the relay node R2 and so on. Finally the state
information is received at the remote decoder/controller D from
RL−1. The communication within the network takes place such
that only one node is allowed to transmit at every time step. That
is, if in a time slot Ri transmits signal to Ri+1, then all the
remaining nodes in the network are considered to be silent in
that time slot. At any time step t, Se,t is the signal transmitted
from E and Si

r,t is the signal transmitted from Ri, which are
given by

Se,t = ft
(
X[0,t], U[0,t−1]

)
∀t : t = 1 + nL, n ∈ N,

Si
r,t = git

(
Y i
[0,t]

)
∀t : t = 1 + i+ nL, n ∈ N,

Se,t =Si
r,t = 0 otherwise (3)

where N = {0, 1, 2, . . .}, ft : R
2t−1 → R, git : R

t → R such
that E[f2

t (X[0,t], U[0,t−1])] = LPS , E[(git(Y[0,t]))
2] = LP i

r ,∑L−1
i=1 P i

r ≤ PR. The signal received by Ri is

Y 1
t =Se,t + Z1

t , Y
i
t = Si−1

r,t + Zi
t ∀t : t = nL+ i, n ∈ N,

Y i
t =0 otherwise. (4)

Here Zi
t ∼ N (0, Ni) denotes mutually independent white

Gaussian noise components. Accordingly D receives Rt =
SL−1
r,t + ZL

t at t = nL and zero otherwise.
We now present a necessary condition for mean square

stability over the given channel.
Theorem 3.1: If the system (1) is mean square stable over

the cascade network, then

log (|det(A)|)< 1

2L
log

(
1+Lmin

{
PS

N1
,

PR∑L
i=2 Ni

})
. (5)

Proof 3.1: We first derive an outer bound on the directed
information I(X̄[1,LT ] → R[1,LT ]) over the given channel and
then use Theorem 2.1 to find the necessary condition (5)

I
(
X̄[1,LT ] → R[1,LT ]

)
(a)
= I

(
X̄[1,LT ];R[1,LT ]

)
(b)

≤ I
(
X̄[1,LT ];Y

i
[1,LT ], R[1,LT ]

)
=

LT∑
t=1

I
(
X̄[1,LT ];Rt, Y

i
t |R[1,t−1], Y

i
[1,t−1]

)
(c)
=

LT∑
t=1

(
h
(
Rt, Y

i
t |R[1,t−1], Y

i
[1,t−1]

)
−h

(
Rt, Y

i
t |R[1,t−1], Y

i
[1,t−1], X̄[1,LT ]

))



2372 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 9, SEPTEMBER 2014

(d)
=

LT∑
t=1

(
h
(
Y i
t |R[1,t−1], Y

i
[1,t−1]

)
+h

(
Rt|R[1,t−1], Y

i
[1,t]

)
− h

(
Y i
t |R[1,t−1], Y

i
[1,t−1], X̄[1,LT ]

)
−h

(
Rt|R[1,t−1], Y

i
[1,t], X̄[1,LT ]

))
(e)
=

LT∑
t=1

⎛
⎜⎝h

(
Y i
t |R[1,t−1], Y

i
[1,t−1]

)

− h
(
Y i
t |R[1,t−1], Y

i
[1,t−1], X̄[1,LT ]

)

+ I(Rt; X̄[1,LT ]|R[1,t−1], Y
i
[1,t])︸ ︷︷ ︸

=0

⎞
⎟⎠

(f)

≤
LT∑
t=1

(
h
(
Y i
t

)
− h

(
Y i
t |R[1,t−1], Y

i
[1,t−1], X̄[1,LT ]

))
(g)

≤
LT∑
t=1

(
h
(
Y i
t

)
−h

(
Y i
t |Si−1

r,t , R[1,t−1], Y
i
[1,t−1], X̄[1,LT ]

))
(h)
=

LT∑
t=1

I
(
Si−1
r,t ;Y i

t

) (i)
=

T−1∑
t=0

I
(
Si−1
r,tL+i;Y

i
tL+i

)
(j)

≤ 1

2

T−1∑
t=0

log

(
1 +

LP i−1
r

Ni

)
=

T

2
log

(
1 +

LP i−1
r

Ni

)
(6)

where (a) follows from [42, Theorem 1]; (b) follows from the
fact that adding side information cannot decrease mutual infor-
mation; (c), (d) and (e) follow from properties of mutual infor-
mation and differential entropy; (f) follows from conditioning
reduces entropy and the following Markov chain X̄[1,LT ] −
(Y i

[1,t], R[1,t−1])−Rt; (g) follow from conditioning reduces

entropy; (h) follows from the Markov chain Y i
t − Si−1

r,t −
(R[1,t−1], Y

i
[1,t−1], X̄[1,LT ]) due to memoryless channel from

Si−1
r,t to Y i

t ; (i) follows from (3) and (4); and (j) follows from
the fact that mutual information of a Gaussian channel is max-
imized by the Gaussian input distribution [35, Theorem 8.6.5].
If we replace Y i

[1,LT ] with Y 1
[1,LT ] in step (b) of (6) and Si−1

r,t

with Se,t in step (g) of (6), then we get:

I
(
X̄[1,LT ] → R[1,LT ]

)
≤ T

2
log

(
1 +

LPS

N1

)
. (7)

The term I(X̄[1,LT ] → R[1,LT ]) can also be bounded as

I
(
X̄[1,LT ] → R[1,LT ]

)
=

LT∑
t=1

I
(
X̄[1,t];Rt|R[1,t−1]

)
(a)

≤
LT∑
t=1

I
(
SL−1
r,[1,t];Rt|R[1,t−1]

)
= I

(
SL−1
r,[1,LT ] → R[1,LT ]

)
(b)

≤
LT∑
t=1

I
(
SL−1
r,t ;Rt

) (c)
=

T−1∑
t=0

I
(
SL−1
r,tL+L;RtL+L

)
(d)

≤ T

2
log

(
1 +

LPL−1
r

NL

)
(8)

where (a) follows from the Markov chain X̄[1,LT ] −
(SL−1

r,[1,t], R[1,t−1])−R[1,t], (b) follows from [42, Theorem 1];
(c) follows from (3) and (4); and (d) follows from the fact that
mutual information of a Gaussian channel is maximized by the
Gaussian input distribution [35, Theorem 8.6.5]. Finally using
(6), (7), and (8), we have the following bound:

I
(
X̄[1,LT ] → R[1,LT ]

)
≤ T

2
min

{
log

(
1 +

LPS

N1

)
,

log

(
1 +

LP 1
r

N2

)
, . . . , log

(
1 +

LPL−1
r

NL

)}
(a)
=

T

2
log

(
1 + Lmin

{
PS

N1
,
P 1
r

N2
, . . . ,

PL−1
r

NL

})

≤ T

2
log

(
1+Lmin

{
PS

N1
,max

P i
r

min

{
P 1
r

N2
, . . . ,

PL−1
r

NL

}})
(b)
=

T

2
log

(
1 + Lmin

{
PS

N1
,

PR∑L
i=2 Ni

})
(9)

(a) follows from the fact that log(1 + x) is a monotonically
increasing function of x; and (b) follows from the optimal
power allocation choice P i

r = Ni+1PR/
∑L

i=2 Ni. Finally di-
viding (9) by LT and let T → ∞ according to Theorem 2.1,
we get the necessary condition (5). �

We now present a sufficient condition for mean-square sta-
bility over the given network.

Theorem 3.2: The scalar linear time invariant system in (1)
with A = λ can be mean square stabilized using a linear scheme
over a cascade network of L relay nodes if

log(|λ|)<max
P i

r

1

2L
log

(
1+

LPS

LPS+N1

L−1∏
i=1

(
LP i

r

LP i
r+Ni+1

))
(10)

where the optimal power allocation is given by P i
r =

(−Ni+1 +
√

N2
i+1 − (4Ni+1/γ))/2 and γ < 0 is chosen such

that
∑L−1

i=1 P i
r ≤ PR. When all Ni are equal, the optimal choice

is P i
r = PR/(L− 1).
Outline of Proof: The result can be derived by using a

memoryless linear sensing and control scheme. Under linear
policies, the overall mapping from the encoder to the controller
becomes a scalar Gaussian channel, which has been well stud-
ied in the literature (see for example [1]). Due to space con-
straints, we refer the reader to the proof of Theorem 5.2, which
contains a detailed derivation for the non-orthogonal network
and the proof for this setting is similar. The optimal power
allocation follows from the concavity of

∏L−1
i=1 (LP

i
r/(LP

i
r +

Ni+1)) in {P i
r}

L−1
i=1 and by using the Lagrange multiplier

method.
Remark 3.1: For fixed power allocations, as the number of

relays L approaches infinity in (5), the RHS converges to zero
and stabilization becomes impossible. We also note that the
ratio between the sufficiency and necessity bounds converges
to zero as the number of relays goes to infinity.
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Fig. 3. Parallel relay network.

If the goal is not stabilization, but optimization with a
minimum mean-square estimation error or minimum second
moment, it is shown in [43], [44] (see also [30] and [32]) that
linear sensing policies may or may not be optimal depending
on the topology of the system and in particular such schemes
are suboptimal for the general relay channels.

IV. PARALLEL NETWORK

Consider the network in Fig. 3, where the signal transmitted
by a node does not interfere with the signals transmitted by
other nodes, i.e., there are L parallel channels from {Ri}Li=1

to D. We call this setup a parallel network, modeling a scenario
where the signal spaces of the relay nodes are mutually or-
thogonal. For example the signals may be transmitted in either
disjoint frequency bands or in disjoint time slots. In the first
transmission phase, the sensor transmits Se,t with an average
power E[S2

e,t] = 2PS to the relays and in the second phase all
relays simultaneously transmit to the remote controller with
average powers 2P i

r such that
∑L

i=1 P
i
r ≤ PR. Accordingly, the

received signals are given by

Y i
t =Se,t + Zi

r,t, Ri
t = Si

r,t = 0, t = 1, 3, 5, . . .

Ri
t =Si

r,t + Zi
d,t, Y i

t = Se,t = 0, t = 2, 4, 6, . . . (11)

where Zi
r,t ∼ N (0, N i

r), Z
i
d,t ∼ N (0, N i

d) denote mutually in-
dependent white Gaussian noise variables. In the following we
present conditions for mean square stability of the system in (1)
over the given parallel network.

Theorem 4.1: If the system (1) is mean square stable over
the parallel network, then

log (|det(A)|)

≤ 1

4
min

{
log

(
1+2

L∑
i=1

PS

N i
r

)
,

L∑
i=1

log

(
1+

2P i
r

N i
d

)}
(12)

where P i
r = max{γ −N i

d, 0} and γ is chosen such that∑L
i=1 P

i
r = PR.

Proof 4.1: Following the same steps as in proof of
Theorem 3.1, we can bound I(X̄[1,2T ] → R[1,2T ]) as,

I(X̄[1,2T ] →
{
Ri

[1,2T ]

}L

i=1
)

(a)

≤ min

{
2T∑
t=1

I
(
Se,t;

{
Y i
t

}L

i=1

)
,

2T∑
t=1

I
({

Si
r,t

}L
i=1

;
{
Ri

t

}L

i=1

)}

(b)
= min

{
T∑

t=1

I
(
Se,2t−1;

{
Y i
2t−1

}L

i=1

)
,

T∑
t=1

I
({

Si
r,2t

}L
i=1

;
{
Ri

2t

}L

i=1

)}

(c)

≤ T

2
min

{
log

(
1 + 2

L∑
i=1

PS

N i
r

)
,

max
P i

r

L∑
i=1

log

(
1 +

2P i
r

N i
d

)}
(13)

where (a) follows from the same steps as in (6) and (8);
(b) follows from (11); and (c) follows from the fact that
Gaussian input distribution maximizes mutual information for
a Gaussian channel. The function

∑L
i=1 log(1 + ((2P i

r)/N
i
d))

is jointly concave in {P i
r}

L
i=1. The optimal power allocation

is given by P i
r = max{γ −N i

d/2, 0}, where γ is chosen such
that

∑L
i=1 P

i
r = PR, which is the well-known water-filling

solution [42, pp. 204–205]. We obtain (12) by using (13) in
Theorem 2.1. �

We now state a sufficient condition for mean square stability
under linear policies.

Theorem 4.2: The scalar linear time invariant system in (1)
with A = λ can be mean square stabilized using a linear scheme
over the Gaussian parallel network if

log (|λ|)< 1

4
log

(
1+

L∑
i=1

4PSP
i
r

2PSNd+2P i
rN

i
r+NdN i

r

)
. (14)

Proof 4.2: The above result can be obtained by using a
memoryless linear sensing and control scheme and as discussed
in the proof of Theorem 3.2. �

Proposition 4.1: The gap between the necessary and suffi-
cient conditions for a symmetric parallel network with P i

r =
Pr, N i

r = Nr is a non-decreasing function of L and approaches
(1/4) log(1 + (Nd(2PS +Nr)/2PrNr)) as L → ∞.

Proof 4.3: For P i
r = Pr, N i

r = Nr, the RHS of (14)
is evaluated as Γsuf :=(1/4) log(1 + (4LPSPr/(2PSNd +
2PrNr +NdNr))) and the RHS of (12) can be bounded as
Γnec := (1/4) log(1 + (2LPS/Nr)). The gap is given by

Γnec − Γsuf

=
1

4
log

(
1+

2PSNd (2PS +Nr)

4PSPrNr +
Nr(2PSNd+2PrNr+NdNr)

L

)
(15)

which is an increasing function ofL, approaching (1/4) log(1 +
(Nd(2PS +Nr)/2PrNr)) as L → ∞. �

Remark 4.1: If N i
d = 0, then Γnec − Γsuf = 0 and the linear

scheme is exactly optimal. For N i
r = 0, Γsuf := (1/4) log(1 +

(2LPr/Nd)) and Γnec := (L/4) log(1 + (2Pr/Nd)) according
to (12). Clearly limL→∞(Γnec − Γsuf) = ∞, showing the inef-
ficiency of the LTI scheme for parallel channels.

It is known that linear schemes can be sub-optimal for trans-
mission over parallel channels [29], [46]. A distributed joint
source—channel code is optimal in the sense of minimizing
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mean-square distortion if the following two conditions hold
[47]: i) All channels from the source to the destination send
independent information; ii) All channels utilize the capacity,
i.e., the source and channel need to be matched. If we use
linear policies at the relay nodes, then the first condition is
not fulfilled because all nodes would be transmitting correlated
information. In [17] the authors proposed a non-linear scheme
for a parallel network of two sensors without relays, in which
one sensor transmits the magnitude of the observed state and
the other sensor transmits the phase of the observed state. The
magnitude and phase of the state are shown to be independent
and thus the scheme fulfills the first condition of optimality.
This nonlinear sensing scheme is shown to outperform the best
linear scheme for the LQG control problem in the absence of
measurement noise, although the second condition of source-
channel matching is not fulfilled. We can use this non-linear
scheme together with the initialization step of the Schalk-
wijk Kailath (SK) type scheme described in Appendix Bfor
the non-orthogonal network, which will ensure source-channel
matching by making the outputs of the two sensors Gaussian
distributed after the initial transmissions. In [48] it is shown
that linear sensing policies may not be even person-by-person
optimal for LQG control over parallel network without relays.

For a special case with noiseless E −Ri links, we have the
following necessary and sufficient condition.

Theorem 4.3: The system (1) in absence of process noise
(Wt = 0) can be mean square stabilized over the Gaussian
parallel network with Zi

r,t = 0 for all i, only if

log (|det(A)|) ≤ 1

4
max

P i
r :
∑

i
P i

r≤PR

L∑
i=1

log

(
1 +

2P i
r

N i
d

)
. (16)

If the inequality is strict, then there exists a non-linear policy
leading to mean-square stability.

Proof 4.4: The necessity follows from Theorem 4.1.
The sufficiency part for scalar systems follows from [28, The-
orem 6], which is derived using a non-linear scheme. This
scheme can be extended to vector systems using a time sharing
scheme presented in Section VI. �

Remark 4.2: The term on RHS of (16) is equal to informa-
tion capacity of the parallel Gaussian channel. It was shown by
Shu and Middleton in [24] that for some first order noiseless
plants, linear time invariant encoders/decoders cannot achieve
the information capacity of parallel Gaussian channels. How-
ever information capacity required for stabilization can always
be achieved by a non-linear time varying scheme as discussed
in the proof of Theorem 4.3.

V. NON-ORTHOGONAL NETWORK

A communication network is said to be non-orthogonal if
all nodes transmit signals in overlapping time slots using the
same frequency bands. In this section, we study non-orthogonal
networks with half-duplex and full-duplex configurations.

A. Non-Orthogonal Half-Duplex Network

A non-orthogonal half-duplex Gaussian network with L re-
lay nodes {Ri}Li=1 is illustrated in Fig. 4. The variables Se,t

Fig. 4. A non-orthogonal half-duplex Gaussian network model. (a) First
transmission phase. (b) Second transmission phase.

and Si
r,t denote the transmitted signals from the state encoder

E and relay Ri at any discrete time step t. The variables Zi
r,t

and Zd,t denote the mutually independent white Gaussian noise
components at the relay node i and D of the remote control
unit, with Zi

r,t ∼ N (0, N i
r) and Zd,t ∼ N (0, Nd). The noise

components {Zi
r,t}

L

i=1
are independent across the relays, i.e.,

E[Zk
r,tZ

i
r,t] = 0 for all i 
= k. The information transmission

from the state encoder consists of two phases as shown in
Fig. 4. In the first phase the encoder E transmits a signal with
an average power 2βPS , where 0 < β ≤ 1 is a parameter that
adjusts power between the two transmission phases. In this
transmission phase all the relay nodes listen but remain silent.
In the second transmission phase, the encoder E and relay nodes
{Ri}Li=1 transmit simultaneously. In this second transmission
phase, the encoder transmits with an average power 2(1−
β)PS and the i-th relay node transmits with an average power
2P i

r such that
∑L

i=1 P
i
r ≤ PR. The input and output of the i-th

relay are given by,

Y i
t =Se,t + Zi

r,t, Si
r,t = 0, t = 1, 3, 5, . . .

Y i
t =0, Si

r,t = git

(
Y i
[0,t−1]

)
, t = 2, 4, 6 (17)

where git : R
t+1 → R is the i-th relay encoding policy such

that E[(git(Y
i
[0,t−1]))

2] = 2P i
r and

∑L
i=1 P

i
r ≤ PR. The signal

received at the decoder/controller is given by

Rt = hSe,t +

L∑
i=1

hiS
i
r,t + Zd,t

where h, hi ∈ R denote the channel gains of E − D and Ri −
D links respectively.
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Theorem 5.1: If the linear system in (1) is mean-square
stable over the non-orthogonal half-duplex relay network, then

log (|det(A)|)≤ 1

4
min

{
max
0<β≤1

(
log

(
1 +

2h2(1− β)PS

Nd

)

+ log

(
1 + 2βPS

(
L∑

i=1

1

N i
r

+
h2

Nd

)))

max
0<β≤1

Pi
r :

∑
i
Pi
r≤PR

(
log

(
1 +

2h2βPS

Nd

)

+ log

(
1+

1

Nd

(
L+1∑
i=1

δ2i Pi+2
L+1∑
i=1

L+1∑
k=i+1

ρ�i,kδiδk
√

PiPk

)))}
(18)

where ρ�i,k :=2(1−β)PS/
√
(2(1−β)PS+Ni)(2(1−β)PS+Nk),

PL+1 := 2(1− β)PS , NL+1 := 0, δL+1 := h, Pi := 2P i
r ,

δi := hi, Ni := N i
r for all i = {1, 2, . . . , L}.

Proof 5.1: We first derive an outer bound on the directed
information I(X̄[1,LT ] → R[1,LT ]) over the given channel and
then use Theorem 2.1 to find the necessary condition (18)

I
(
X̄[1,2T ] → R[1,2T ]

)
(a)
= I

(
X̄[1,2T ];R[1,2T ]

)
(b)

≤ I

(
X̄[1,2T ];

{
Y i
[1,2T ]

}L

i=1
, R[1,2T ]

)
(c)
= I

(
X̄[1,2T ]; R̃[1,2T ],

{
Y i
[1,2T ]

}L

i=1

)

=
2T∑
t=1

I

(
X̄[1,2T ]; R̃t,

{
Y i
t

}L

i=1
|R̃[1,t−1],

{
Y i
[1,t−1]

}L

i=1

)
(d)

≤
2T∑
t=1

I

(
Se,t; R̃t,

{
Y i
t

}L

i=1
|R̃[1,t−1],

{
Y i
[1,t−1]

}L

i=1

)
(e)

≤
2T∑
t=1

I
(
Se,t; R̃t,

{
Y i
t

}L

i=1

)
(f)
=

T∑
t=1

I
(
Se,2t; R̃2t

)

+

T∑
t=1

I
(
Se,2t−1; R̃2t−1,

{
Y i
2t−1

}L

i=1

)
(g)

≤ T

2
log

(
1 +

2h2(1− β)PS

Nd

)

+
T

2
log

(
1 + 2βPS

(
L∑

i=1

1

N i
r

+
h2

Nd

))

≤ T

2
max
0<β≤1

{
log

(
1 +

2h2(1− β)PS

Nd

)

+ log

(
1+2βPS

(
L∑

i=1

1

N i
r

+
h2

Nd

))}
(19)

where (a) follows from [42, Theorem 1]; (b) follows from
the fact that adding side information cannot decrease mutual
information; (c) follows by defining R̃t := Rt −

∑L
i=1 hiS

i
r,t

and from the fact that Si
r,t is a function of Y i

[1,t−1]; (d) fol-
lows from the Markov chain X̄[1,2T ] − Se,t − (R̃t, {Y i

t }
L
i=1),

since X̄[0,T ] is the uncontrolled state process and the fact

that the channel between Se,[1,2T ] and (R̃[1,2T ], {Y i
[1,2T ]}

L

i=1
)

is memoryless due to R̃t = Rt −
∑L

i=1 hiS
i
r,t; (e) fol-

lows from the Markov chain (R̃[1,t−1], {Y i
[1,t−1]}

L

i=1
)− Se,t −

(R̃t, {Y i
t }

L
i=1) and conditioning reduces entropy; (f) follows

by separating odd and even indexed terms and Y i
2t = 0 ac-

cording to (17); (g) follows from Y i
2t−1 = Se,2t−1 + Zi

r,2t−1,

R̃t = Se,t + Zt, E[S2
e,2t] = 2(1− β)PS , E[S2

e,2t−1] = 2βPS ,
and the fact that mutual information of a Gaussian channel is
maximized by centered Gaussian input distribution [45]. The
term I(X̄[1,2T ] → R[1,2T ]) can also be bounded as

I
(
X̄[1,2T ] → R[1,2T ]

)
=

2T∑
t=1

I
(
X̄[1,t];Rt|R[1,t−1]

)
(a)

≤
2T∑
t=1

I

(
Se,t,

{
Si
r,t

}L

i=1
;Rt|R[1,t−1]

)
(b)

≤
2T∑
t=1

I

(
Se,t,

{
Si
r,t

}L

i=1
;Rt

)
(c)
=

T∑
t=1

(
I (Se,2t−1;R2t−1) + I

(
Se,2t,

{
Si
r,2t

}L

i=1
;R2t

))
(d)

≤ T

2
log

(
1 +

2h2βPS

Nd

)

+
T

2
log

(
1+

1

Nd

(
L+1∑
i=1

δ2i Pi+2

L+1∑
i=1

L+1∑
k=i+1

ρ�i,kδiδk
√

PiPk

))

≤ T

2
max

0<β≤1

Pi
r :

∑
i
Pi
r≤PR

{
log

(
1 +

2h2βPS

Nd

)

+ log

(
1+

1

Nd

(
L+1∑
i=1

δ2i Pi+2

L+1∑
i=1

L+1∑
k=i+1

ρ�i,kδiδk
√

PiPk

))}
(20)

where ρ�i,k=2(1−β)PS/
√

(2(1−β)PS+Ni)(2(1−β)PS+Nk),
PL+1=2(1−β)PS , NL+1=0, δL+1=h, Pi=2P i

r , δi=hi,
Ni=N i

r for all i = {1, 2, . . . , L}. The inequality (a) follows
from the Markov chain X̄[0,t] − (Se,t, {Si

r,t}Li=1)−Rt due

to the memoryless channel between Se,[1,2T ], {Si
r,[1,2T ]}

L

i=1
and R[1,2T ]; (b) follows from the Markov chain R[1,t−1] −
(Se,t, {Si

r,t}
L

i=1
)−Rt and conditioning reduces entropy; (c)

follows by separating the odd and even indexed terms and
Si
r,2t−1 = 0 according to (17); (d) follows from the fact that

the first addend on the RHS of (c) is maximized by a centered
Gaussian distributed Se,t and the second addend is bounded
using a bound presented in [49], where the author studied the
problem of transmitting a Gaussian source over a simple sensor
network. In order to apply the upper bound given in (48) of
[49] to our setup, we consider encoder E to be a sensor node
with zero observation noise and make the following change
of variables so that our system model becomes equivalent to
the one discussed in [49]: σ2

S := αt, δi := hi, M := L+ 1,
Pi := 2P i

r , σ2
Z := Nd, σ2

W,i := N i
r, αi =

√
2(1− β)PS/αt.

We finally obtain (18) by dividing (19) and (20) by 2T and let
T → ∞ according to Theorem 2.1. �
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We now present a sufficient condition for stability.
Theorem 5.2: The scalar linear time invariant system in (1)

with A = λ can be mean square stabilized using a linear scheme
over the non-orthogonal half-duplex network if

log (|λ|) < 1

4
max
0<β≤1

Pi
r :

∑
i
Pi
r≤PR

{
log

(
1 +

2h2βPS

Nd

)

+ log

⎛
⎝1 +

M̃
(
β,
{
P i
r

}L
i=1

)
Ñ
(
β, {P i

r}
L
i=1

)
⎞
⎠
⎫⎬
⎭ , (21)

where M̃(β, {P i
r}

L
i=1) = (

√
2h2(1− β)PS +√

2βPSNd/(2h2βPS +Nd)(
∑L

i=1

√
2h2

iP
i
r/2βPS +N i

r))
2

and Ñ(β, {P i
r}

L
i=1) =

∑L
i=1(2h

2
iP

i
rN

i
r/2βPS +N i

r) +Nd.
Proof 5.2: The proof is given in Appendix B. �

Remark 5.1: An optimal choice of the power allocation pa-
rameter β at the state encoder and an optimal power allocation
at the relay nodes {P i

r}
L
i=1 which maximizess the term on the

right hand side of (21) depend on the quality of the E − D,
E −Ri, and Ri −D links. This is a non-convex optimization
problem, however it can be transformed into an equivalent
convex problem by using the approach in [50, Appendix A].
This equivalent convex problem can be efficiently solved for
optimal {P i

r}
L
i=1 using the interior point method. For β = 1, we

can analytically obtain the following optimal power allocation
using the Lagrangian method:

P i
r = PR

(
h2
i

(
2PS +N i

r

)
(2PSNd +N i

rNd + PRh2
iN

i
r)

2

)

×
[

L∑
l=1

h2
l

(
2PS +N l

r

)
(2PSNd +N l

rNd + PRh2
lN

l
r)

2

]−1

. (22)

Remark 5.2: For channels with feedback, directed informa-
tion is a useful quantity [42], [51]. It is shown in Appendix C
that the term on the right hand side of (21) is the information
rate over the half-duplex network with noiseless feedback,
obtained when running the described closed-loop protocol.
Further we show that the directed information rate is also equal
to the term on the right hand side of (21). By following the
same steps as in Appendix C, one can also obtain relationships
between sufficient conditions and information rates under
linear policies for the cascade and the parallel relay networks
considered in Section III and Section IV respectively. It can be
shown that the directed information rate between the sequence
of channel inputs and the sequence of channel outputs also
gives an outer bound for the term on the right hand side of (2).

B. Two-Hop Network

Consider the half-duplex network illustrated in Fig. 4 with
h = 0. The state information is communicated to the remote
controller only via the relays. We call this setup a two-hop relay
network, where the communication from the state encoder to
the controller takes place in two hops. In the first hop, the
relay nodes receive the state information from the state encoder,

Fig. 5. Comparison of necessary and sufficient conditions for a symmetric
two-hop relay network. (a) PS = 2P i

r = 10, N i
r = Nd = 1, hi = 1; (b) L =

10, PS = 10, N i
r = Nd = 1, hi = 1.

which then communicate the state information to the controller
in the second hop. The controller takes action in alternate time
steps upon receiving the state information. We can obtain a suf-
ficient condition for stability over this network by substituting
h = 0, β = 1 in Theorem 5.2. Similarly, a necessary condition
can be obtained from (18), where β = 1 is the maximizer of
the first term and β = 0 is the maximizer of the second term.
In the following we evaluate the gap between the sufficient and
necessary conditions for a symmetric two hop network.

Proposition 5.1: For a symmetric two-hop network with
P i
r = Pr, N i

r = Nr, hi = c, h = 0, β = 1, the gap between
necessary and sufficient conditions approaches zero as the
number of relays L goes to infinity. The gap also monotonically
approaches zero as Pr goes to infinity.

Proof 5.3: For P i
r = Pr, N i

r = Nr, hi = c, h = 0, β = 1
for all i, the RHS of (21) is evaluated as Γsuf := (1/4) log(1 +
(4L2c2PSPr/(2Lc

2PrNr +Nd(2PS +Nr))) and the RHS of
(18) can be bounded as Γnec := (1/4) log(1 + (2LPS/Nr)).
The gap between Γsuf and Γnec is given by

Γnec − Γsuf

=
1

4
log

(
1+

4P 2
SNd+2PSNrNd

L

4c2PSPrNr+
2c2PrN2

r

L +NdNr(2PS+Nr)
L2

)
(23)

which approaches zero as L → ∞. The gap also monotonically
approaches zero as Pr → ∞. �

In Fig. 5(b) we have plotted Γnec and Γsuf as functions of
L and Pr. These figures show that linear schemes are quite
efficient in some regimes.

Remark 5.3: Linear policies can even be exactly optimal in
the following special cases: i) If we fix all relaying policies to
be linear, then the channel becomes equivalent to a point-point
scalar Gaussian channel, for which linear sensing is known to
be optimal for LQG control [1]. ii) If we fix the state encoder to
be linear and assume noiseless causal feedback links from the
controller to the relay nodes, then linear policies are optimal for
mean-square stabilization over a symmetric two-hop relay net-
work, by the following arguments. Since the control actions are
available at the relay nodes via noiseless feedback links, there
is no dual effect of control, i.e., the separation of estimation
and control holds, see e.g., [30]. Further by restricting the state
encoder to be linear, the relay network becomes equivalent to
the Gaussian network studied in [49], [52], where it is shown
that linear policies are optimal if the network is symmetric.
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C. Non-Orthogonal Full-Duplex Network

We now consider a non-orthogonal network of L full-duplex
relay nodes, where all the nodes receive and transmit their
signals in every time step, i.e., at any time instant t ∈ N

Se,t = ft
(
X[0,t], U[0,t−1]

)
, Si

r,t = git

(
Y i
[0,t−1]

)
,

Y i
t =Se,t + Zi

r,t, Rt = hSe,t +

L∑
i=1

Si
r,t + Zd,t, (24)

where E[(Se,t)
2] = PS , E[(Si

r,t)
2
] = P i

r ,
∑L

i=1 P
i
r ≤ PR.

Theorem 5.3: If the linear system in (1) is mean-square
stable over the non-orthogonal full-duplex relay network, then

log (|det(A)|) ≤ 1

2
min

{
log

(
1 + PS

(
L∑

i=1

1

N i
r

+
h2

Nd

))
,

max
P i

r

(
log

(
1 +

1

Nd

(
L+1∑
i=1

δ2i Pi

+2

L+1∑
i=1

L+1∑
k=i+1

ρ�i,kδiδk
√

PiPk

)))}
, (25)

where ρ�i,k = PS/
√
(PS +Ni)(PS +Nk), PL+1 := PS ,

NL+1 := 0, δL+1 := h, Pi := P i
r , δi := hi, Ni := N i

r for all
i = {1, 2, . . . , L}.

Proof 5.4: The proof follows exactly in the steps of the
proof of Theorem 5.1, with an exception that odd and even
indexed terms are not treated separately because E[S2

e,t] = PS

and E[(Si
r,t)

2
] = P i

r for all t. �
Theorem 5.4: The scalar linear time invariant system in (1)

with A = λ and Wt = 0 can be mean square stabilized using
a linear scheme over the non-orthogonal full-duplex Gaussian
network if

log (|λ|) < 1

2
max

P i
r :
∑L

i=1
P i

r≤PR

{
log

(
1+

(√
h2PS+η�

L∑
i=1

√
h2
iPSP i

r

PS+N i
r

)2(
Nd+

L∑
i=1

h2
iP

i
rN

i
r

PS+N i
r

)−1
⎞
⎠
⎫⎬
⎭,

(26)

where η� is the unique solution in the interval [0,1] of(
L∑

i=1

√
h2
iPSP i

r

(PS +N i
r)

)
η4 +

(
2hPS

L∑
i=1

√
h2
iP

i
r

(PS +N i
r)

)
η3

+

(
h2PS+Nd+

L∑
i=1

h2
iP

i
rN

i
r

PS+N i
r

)
η2=

(
Nd+

L∑
i=1

h2
iP

i
rN

i
r

PS+N i
r

)
.

Proof 5.5: The proof can be found in [37] for a single
relay setup, which can be easily extended for multiple relays.�

Although we expect that Theorem 5.4 holds in the presence
of process noise like in other setups, we have not shown the
convergence of second moment of the state process. Numerical
experiments suggest that the result should hold.

Remark 5.4: The term on the right hand side of the in-
equality in (26) is an achievable information rate3 with which
information can be transmitted reliably over the non-orthogonal
full-duplex relay network in an information theoretic sense, that
is using codes of unbounded block lengths (see [35] for the
typical constructions and Chapter V in [30] for the connection
with real-time systems of such an operational use of informa-
tion rate). This result is derived for a network with single relay
node in [53, Theorem 5], however it can be easily extended to
problems with multiple relays.

VI. NOISY MULTI-DIMENSIONAL SYSTEMS

In this section we investigate stabilization of multi-
dimensional systems over multi-dimensional channels. First we
state a result for a scalar Gaussian channel.

Theorem 6.1: The n-dimensional noisy linear system (1)
can be mean square stabilized over a scalar Gaussian channel
having information capacity C, if log(|A|) < C. Furthermore, a
linear time varying policy is sufficient through sequential linear
encoding of scalar components.

Proof Outline: We outline a proof of Theorem 6.1 with the
help of a simple example, due to space limitation in the paper.
Consider that a two-dimensional plant with system matrix A =[
λ1 1
0 λ2

]
and an invertible input matrix B has to be stabilized

over a Gaussian channel disturbed by a zero mean Gaussian
noise with variance N . We assume that the sensor transmits
with an average P . For this channel, the information capacity is
obtained as C := (1/2) log(1 + (P/N)) [35, Theorem 9.1.1].
We denote the state and the control variables as Xt :=
[x1,t, x2,t]

T and Ut := [u1,t, u2,t]
T respectively. Consider the

following scheme for stabilization. The sensor observes state
vector Xt in alternate time steps (that is, at t, t+ 2, t+ 4, . . .),
whose elements are sequentially transmitted. The sensor lin-
early transmits x2,t at time t and x1,t at time t+ 1 with
an average transmit power constraint. The control actions for
the two modes are also taken in alternate time steps, that is,
u1,t = 0 and u2,t+1 = 0. Accordingly the state equations for
the two modes at time t+ 1 are given by

x2,t+1 =λ2x2,t + u2,t + w2,t

(a)
= λ2(x2,t − x̂2,t) + w2,t (27)

x1,t+1
(b)
= λ1x1,t + x2,t + w1,t (28)

where (a) and (b) follow from u2,t = −λ2x̂2,t and u1,t = 0.
The state equations at time t+ 2 are

x2,t+2 =λ2x2,t+1 + w2,t+1

=λ2
2(x2,t − x̂2,t) + λ2w2,t + w2,t+1 (29)

x1,t+2 =λ1x1,t+1 + x2,t+1 + u1,t+1 + w1,t+1

(a)
= λ2

1x1,t + (λ1 + λ2)x2,t + u1,t+1

+ λ1w1,t + w2,t + w1,t+1

(b)
= λ2

1 (x1,t − x̂1,t) + (λ1 + λ2)(x2,t − x̂2,t) + λ1w1,t

+ w2,t + w1,t+1 (30)

3The definition of achievable rate for Gaussian channels is given on page 264
in [35].
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where (a) follows (28); and (b) follows from u1,t+1 =
−λ2

1x̂1,t − (λ1 + λ2)x̂2,t. We first study the stabilization of the
lower mode. According to (29) the second moment of x2,t is

E
[
x2
2,t+2

]
=λ4

2E

[
(x2,t − x̂2,t)

2
]
+ ñ2

=λ4
22

−2C
E
[
x2
2,t

]
+ ñ2. (31)

where the last equality follows from the linear mean-square
estimation of a Gaussian variable over a scalar Gaussian chan-
nel of capacity C and ñ2 := (λ2

2 + 1)nw,2. We observe that the
lower mode is stable if and only if λ4

22
−2C < 1 ⇒ log(|λ2|) <

(C/2). Assuming that x2,t is stable, the second moment of x1,t

is given by

E
[
x2
1,t+2

] (a)
= λ4

1E

[
(x1,t − x̂1,t)

2
]

+ 2λ2
1(λ1 + λ2)E [(x1,t − x̂1,t) (x2,t − x̂2,t)]

+ (λ1 + λ2)
2
E
[
(x2,t − x̂2,t)

2
]
+ ñ1

(b)
= λ4

12
−2C

E
[
x2
1,t

]
+ 2λ2

1(λ1 + λ2)E [(x1,t − x̂1,t) (x2,t − x̂2,t)]

+ (λ1 + λ2)
22−2C

E
[
x2
2,t

]
+ ñ1

(c)

≤ λ4
12

−2C
E
[
x2
1,t

]
+ 2λ2

1(λ1 + λ2)

√
E

[
(x1,t − x̂1,t)

2
]
E [(x2,t − x̂2,t)2]

+ (λ1 + λ2)
22−2C

E
[
x2
2,t

]
+ ñ1

= λ4
12

−2C
E
[
x2
1,t

]
+ 2λ2

1(λ1 + λ2)
√
2−2CE

[
x2
1,t

]
×
√
2−2CE

[
x2
2,t

]
+ (λ1 + λ2)

22−2C
E
[
x2
2,t

]
+ ñ1

(d)

≤ k1E
[
x2
1,t

]
+ k2

√
E
[
x2
1,t

]
+ k3 (32)

where (a) follows from (30) and ñ1 := (λ2
1 + 1)nw,1 + nw,2;

(b) follows from the linear mean-square estimation of a Gaus-
sian variable over a scalar Gaussian channel of capacity C;
(c) follows from the Cauchy–Schwarz inequality; (d) follows
from the fact E[x2

1,t] < M (assuming that λ4
22

−2C < 1) and

by defining k1 := λ4
12

−2C , k2 := 2λ2
1(λ1 + λ2)2

−2C√M , and
k3 := (λ1 + λ2)

22−2CM + ñ1. We now want to a find condi-
tion which ensures convergence of the following sequence:

αt+1 = k1αt + k2
√
αt + k3. (33)

To show convergence, we make use of the following lemma.
Lemma 6.1: Let T : R → R be a non-decreasing continuous

mapping with a unique fixed point x� ∈ R. If there exists u ≤
x� ≤ v such that T (u) ≥ u and T (v) ≤ v, then the sequence
generated by xt+1 = T (xt), t ∈ N converges starting from any
initial value x0 ∈ R.

Proof 6.1: The proof is given in Appendix D. �
We observe that the mapping T (α) = k1α+ k2

√
α+ k3

with α ≥ 0 is monotonically increasing since k1, k2 > 0. It
will have a unique fixed point α� if and only if k1 < 1, since
k2, k3 > 0. Assuming k1 < 1, there exists u < α� < v such
that T (u) ≥ u and T (v) ≤ v. Therefore, by Lemma 6.1, {αt}
is convergent if k1 = λ4

12
−2C < 1 ⇒ log(|λ1|) < (C/2).

The time sharing scheme illustrated above can be generalized
to any n-dimensional plant and the stability conditions can be
easily obtained using Lemma 6.1. We know that any system
matrix A can be written in the Jordan form by a similarity
matrix transformation. We can then use the following scheme
for stabilization. The encoder chooses to send only one com-
ponent of the observed state vector at each time t over a
Gaussian channel of capacity C. Assume that for a fraction
log(|λm|)/

∑K
i=1 log(|λi|) of the total available time the en-

coder transmits the m-th component of the state vector. Thus
the rate available for the transmission of the m-th state com-
ponent is (log(|λm|)/

∑K
i=1 log(|λi|))C. The system will be

stable if and only if log(|λm|) < (log(|λm|)/
∑K

i=1 log(|λi|))C
for all m ∈ {1, 2, . . . ,K}, which implies

∑K
i=1 log(|λi|) =

log(| det(A)|) < C. For a multi-dimensional system with a con-
trollable (A,B) pair, any input (control action) can be realized
in n time steps. If the encoder has access to the channel output,
then it can refine estimate of the state using noiseless feedback
channel (SK coding scheme) during these n time steps and
observe the new state periodically after every n time steps. �

Remark 6.1: The sufficiency results in Sections III–V for
scalar systems can be extended to multi-dimensional systems
using the proposed time varying scheme. The sufficient con-
ditions for vector systems will be identical to scalar systems
except that log(|λ|) is replaced with log(| det(A)|) everywhere.

Remark 6.2: In [14] the authors studied stabilization of a
noiseless multi-dimensional system over a point-to-point scalar
Gaussian channel using a linear time invariant scheme, that
is the state encoder transmits St = EXt, where E is a row
vector. This LTI scheme cannot stabilize if the pair (A,E) is
not observable. For example consider a diagonal system matrix
A with two equal eigenvalues. This system cannot be stabilized
by any choice of the encoding matrix E, irrespective of how
much power the state encoder is allowed to spend. However
our linear time varying scheme can always stabilize the system,
even in the presence of process noise.

Remark 6.3: As mentioned in Theorem 4.3 and Remark 4.2,
the proposed time varying scheme can be used with the non-
linear scheme of [28] to achieve the minimum power required
for stabilization of noiseless multi-dimensional plants over
vector Gaussian channels.

VII. CONCLUSION

The problem of mean-square stabilization of LTI plants over
Gaussian relay networks is analyzed. Necessary and sufficient
conditions for stabilization are presented which reveal relation-
ships between stabilizability and communication parameters.
These results can serve as a guideline for a system designer.
Necessary conditions have been derived using information the-
oretic cut-set bounds, which are not tight in general due to
the real-time nature of the information transmission. Sufficient
conditions for stabilization of scalar plants are obtained by
employing time invariant communication and control schemes.
We have shown that time invariant schemes are not sufficient in
general for stabilization of multi-dimensional plants. However,
a simple time variant scheme is always shown to stabilize



ZAIDI et al.: STABILIZATION OF LINEAR SYSTEMS OVER GAUSSIAN NETWORKS 2379

multi-dimensional plants. In this time varying scheme, one
component of the state vector is transmitted at a time and
the state component corresponding to a more unstable mode
is transmitted more often. The sufficient conditions for stabi-
lization of multi-dimensional plants are obtained by using this
time varying scheme. We also established minimum signal-to-
noise ratio requirement for stabilization of a noiseless multi-
dimensional plant over a parallel Gaussian channel. It is ob-
served in some network settings that sufficient conditions do
not depend on the plant noise and they can be characterized by
the directed information rate between the sequence of channel
inputs and the sequence of channel outputs.

APPENDIX

A. Necessary Condition

Consider the following series of inequalities:

I
(
X[0,T−1] → R[0,T−1]

)
(a)
=

T−1∑
t=0

I
(
X[0,t];Rt|R[0,t−1]

)
(b)

≥
T−1∑
t=0

I
(
Xt;Rt|R[0,t−1]

)
= I (X0;R0) +

T−1∑
t=1

I
(
Xt;Rt|R[0,t−1]

)
(c)
= I (X0;R0) +

T−1∑
t=1

(
h
(
Xt|R[0,t−1]

)
− h

(
Xt|R[0,t]

))
(d)
= I (X0;R0)

+
T−1∑
t=1

(
h
(
AXt−1+BUt−1+Wt−1|R[0,t−1]

)
−h

(
Xt|R[0,t]

))
(e)
= I (X0;R0)

+

T−1∑
t=1

(
h
(
AXt−1 +Wt−1|R[0,t−1]

)
− h

(
Xt|R[0,t]

))
(f)

≥ I (X0;R0)

+

T−1∑
t=1

(
h
(
AXt−1 +Wt−1|R[0,t−1],Wt−1

)
− h

(
Xt|R[0,t]

))
(g)
= I (X0;R0) +

T−1∑
t=1

(
h
(
AXt−1|R[0,t−1]

)
− h

(
Xt|R[0,t]

))
(h)
= I (X0;R0)

+
T−1∑
t=1

(
log (|det(A)|) + h

(
Xt−1|R[0,t−1]

)
− h

(
Xt|R[0,t]

))
= I (X0;R0)

+ (T − 1) log (|det(A)|) + h (X0|R0)− h
(
XT−1|R[0,T−1]

)
= h (X0) + (T − 1) log (|det(A)|)− h

(
XT−1|R[0,T−1]

)
(i)

≥ h (X0) + (T − 1) log (|det(A)|)− h (XT−1)
(j)

≥ h(X0)+(T−1) log (|det(A)|)−log ((2πe)n |det(K)|) ,
(34)

where (a) follows from the definition of directed information;
(b) follows from the fact that discarding variables cannot
increase mutual information; (c) follows by writing mutual
information in terms of differential entropies and from the fact
that these differential entropies are finite for a mean-square
stable system due to finite second moment of the state process;
(d) follows from (1); (e) follows from Ut−1=πt−1(R[0,t−1]);
(f) follows from the fact that conditioning reduces en-
tropy; (g) follows from h(AXt−1 +Wt−1|R[0,t−1],Wt−1) =
h(AXt−1|R[0,t−1],Wt−1) = h(AXt−1|R[0,t−1]) due to mutual
independence of Xt and Wt; (h) follows from h(AX) =
log(| det(A)|) + h(X) [35, Theorem 8.6.4]; (i) follows from
conditioning reduces entropy; and (j) follows the fact that
for a mean square stable system there exists a matrix K � 0
with det(E[XT

t Xt]) < det(K) for all t and further for a given
covariance matrix the differential entropy is maximized by the
Gaussian distribution. We can also write

I
(
X[0,T−1] → R[0,t−1]

)
=

T−1∑
t=0

I
(
X[0,t];Rt|R[0,t−1]

)
(a)
=

T−1∑
t=0

I
(
X̄[0,t] + f̄

(
U[0,t−1]

)
;Rt|R[0,t−1]

)
(b)
=

T−1∑
t=0

I
(
X̄[0,t];Rt|R[0,t−1]

)
=I

(
X̄[0,T−1] → R[0,T−1]

)
,

(35)

where (a) follows by defining uncontrolled state process
X̄t+1 = AX̄t +Wt and writing X[0,t] as a sum of X̄[0,t] and a
linear function of U[0,t−1], since the system is linear and control
actions are additive; and (b) follows from Ut = πt(R[0,t]).
From (34) and (35) we have lim infT→∞(1/T )I(X̄[0,T−1] ⇒
R[0,T−1]) ≥log(| det(A)|), since h(X0) < ∞.

B. Proof of Theorem 5.2

In order to prove Theorem 5.2, we propose a linear com-
munication and control scheme. This scheme is based on the
coding scheme given in [53] which is an adaptation of the
well-known Schalkwijk—Kailath scheme [54]. By employing
the proposed linear scheme, we find a condition on the system
parameters λ which is sufficient to mean square stabilize the
system (1). The scheme works as follows: If the initial state X0

is not Gaussian distributed, then we first make the state process
Gaussian distributed by performing the following initialization.

Initial Time Step, t = 0: At time step t = 0, the state en-
coder E observes X0 and it transmits Se,0 =

√
PS/α0X0.

The decoder D receives R0 = hSe,0 + Zd,0. It estimates X0

as X̂0 = (1/h)
√

α0/PSR0 = X0 + (1/h)
√

α0/PSZd,0. The
controller C then takes an action U0 = −λX̂0 which results in

X1 =λX0 + U0 +W0 = λ(X0 − X̂0) +W0

= − λ

h

√
α0

PS
Zd,0 +W0. (36)

The new plant state X1 ∼ N (0, α1) where α1 =
(λ2Nd/h

2PS)α0 + nw.
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First Transmission Phase, t = 1, 3, 5, . . .: The state encoder
E observes Xt and transmits Se,t =

√
2βPS/αtXt. The relay

nodes {Ri}Li=1 receive this signal over the Gaussian links and
do not transmit any signal in this transmission phase due to half-
duplex restriction. The decoder D observes Rt = hSe,t + Zd,t

and computes the MMSE estimate of Xt as

X̂t =E
[
Xt|R[1,t]

] (a)
= E[Xt|Rt]

(b)
=

E[XtRt]

E[R2
t ]

Rt

(c)
=

(
h
√
2βPSαt

2h2βPS +Nd

)
Rt,

where (a) follows from the orthogonality principle of MMSE
estimation (that is E[XtRt−j ] = 0 for j ≥ 1) [55]; (b) follows
from the fact that the optimum MMSE estimator for a Gaus-
sian variable is linear [55]; and (c) follows from E[XtRt] =√
2h2βPSαt and E[R2

t ] = 2h2βPS +Nd.
The controller C takes an action Ut = −λX̂t which re-

sults in Xt+1 = λ(Xt − X̂t) +Wt. The new plant state Xt+1

is a linear combination of zero mean Gaussian variables
{Xt, X̂t,Wt}, therefore it is also zero mean Gaussian with
variance

αt+1 := E
[
X2

t+1

]
=λ2

E

[
(Xt − X̂t)

2
]
+ E

[
W 2

t

]
=λ2

(
Nd

2h2βPS +Nd

)
αt + nw, (37)

where the last equality follows from E[XtX̂t] = E[X̂2
t ] =

2h2βPSαt/(2h
2βPS +Nd) (by computation).

Second transmission phase, t = 2, 4, 6, . . .: The encoder E
observes Xt and transmits Se,t =

√
2(1− β)PS/αtXt. In this

phase the relay nodes choose to transmit their own signal to the
decoder D and thus they cannot listen to the signal transmitted
from the state encoder due to the half-duplex assumption. Each
relay node amplifies the signal that it had received in the previ-
ous time step (first transmission phase) and transmits it to the
decoder D. The signal transmitted from the i-th relay node is
thus given by Si

r,t =
√

2P i
r/(2βPS +N i

r)(Se,t−1 + Zi
r,t−1).

The decoder D accordingly receives

Rt =hSe,t +

L∑
i=1

hiS
i
r,t + Zd,t

=L1Xt + L2Xt−1 + Z̃t (38)

where L1 =
√

2(1− β)h2PS/αt, L2 =
∑L

i=1√
4βh2

iPSP i
r/(2βPS +N i

r)αt−1, and Z̃t = Zd,t +∑L
i=1

√
2h2

iP
i
r/2βPS +N i

rZ
i
r,t−1 is a white Gaussian noise

sequence with zero mean and variance Ñ(β, {P i
r}

L
i=1) = Nd +∑L

i=1(2h
2
iP

i
rN

i
r/2βPS +N i

r). The decoder then computes
the MMSE estimate of Xt given all previous channel outputs
{R1, R2, . . . , Rt} in the following three steps:

1) Compute the MMSE prediction of Rt from
{R1, R2, . . . , Rt−1}, which is given by R̂t = L2X̂t−1,
where X̂t−1 is the MMSE estimate of Xt−1.

2) Compute the innovation:

It =Rt − R̂t = L1Xt + L2(Xt−1 − X̂t−1) + Z̃t

(a)
=

(
λL1 + L2

λ

)
Xt −

L2

λ
Wt−1 + Z̃t (39)

where (a) follows from Xt = λ(Xt−1 − X̂t−1) +Wt−1.
3) Compute the MMSE estimate of Xt given

{R1, R2, . . . , Rt−1, It}. The state Xt is independent of
{R1, R2, . . . , Rt−1} given It, therefore, without any loss
of optimality we compute X̂t based only on It as

X̂t =E[Xt|It]
(a)
=

E[XtIt]

E [I2t ]
It

(b)
=

λ (λL1 + L2)αt

(λL1 + L2)
2 αt + L2

2nw + λ2Ñ(β, Pr)
It (40)

where (a) follows from an MMSE estimation of a
Gaussian variable; and (b) follows from E[XtIt] =
((λL1 + L2)/λ)αt and E[I2t ] = ((λL1 + L2)/λ)

2αt +
(L2

2nw/λ
2) + Ñ(β, Pr). The controller C takes action

Ut = −λX̂t which results in Xt+1 = λ(Xt − X̂t) +Wt.
The new plant state Xt+1 is a linear combination of
zero mean Gaussian random variables {Xt, X̂t,Wt},
therefore it is also zero mean Gaussian distributed with
variance given in (41) on the top of the next page. In (41),
(a) follows from E[XtX̂t] = E[X̂2

t ] = (λL1 + L2)
2αt/

(λL1 + L2)
2αt + L2

2nw + λ2Ñ(β, Pr); (b) follows
by substituting the values of L1 and L2; and
(c) by substituting αt/αt−1 using (37) and by
defining k := N/(2h2βPS +N), k1 := (

∑L
i=1√

4h2
iβPSP i

r/(2βPS +N i
r))

2, k2 :=
√
2h2(1− βPS).

We want to find the values of the parameter λ for which the
second moment of the state remains bounded. Rewriting (37)
and (41), the variance of the state is given by

αt = λ2
(
λ2kαt−2 + nw

)
×

(
nwk1

λ2

)
1

αt−2
+Ñ(β, Pr)(

k2+
√

k1k+
nwk1

λ2
1

αt−2

)2

+
(
nwk1

λ2

)
1

αt−2
+Ñ(β, Pr)︸ ︷︷ ︸

Δ
=f(αt−2)

+nw

= λ2(λ2kαt−2 + nw)f(αt−2) + nw, t = 3, 5, 7, . . . (42)

αt = λ2

(
N

2h2βPS +N

)
αt−1 + nw, t = 2, 4, 6, . . . (43)

where α1 = (λ2N/h2PS)α0 + nw. If the odd indexed sub-
sequence {α2t+1} in (42) is bounded, then the even indexed
sub-sequence {α2t} in (43) is also bounded. Thus it is suf-
ficient to consider the odd indexed sub-sequence {α2t+1}.
We will now construct a sequence {α′

t} which upper bounds
the sub-sequence {α2t+1}. Then we will derive conditions on
the system parameter λ for which {α′

t} stays bounded and
consequently the boundedness of {α2t+1} will be guaranteed.
In order to construct the upper sequence {α′

t}, we work on the
term f(αt−2) in (42) and make use of the following lemma.
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αt+1 =λ2
E

[
(Xt − X̂t)

2
]
+ E

[
W 2

t

] (a)
= λ2αt

(
L2
2nw + λ2Ñ(β, Pr)

(λL1 + L2)
2 αt + L2

2nw + λ2Ñ(β, Pr)

)
+ nw

(b)
= λ2αt

⎛
⎜⎜⎜⎝

(∑L
i=1

√
4h2

i
βPSP i

r

2βPS+Ni
r

)2
nw

αt−1
+ λ2Ñ(β, Pr)(

λ
√
2h2(1− βPS) +

∑L
i=1

√
4h2

i
βPSP i

r

2βPS+Ni
r

αt

αt−1

)2

+

(∑L
i=1

√
4h2

i
βPSP i

r

2βPS+Ni
r

)2
nw

αt−1
+ λ2Ñ(β, Pr)

⎞
⎟⎟⎟⎠+ nw

(c)
= λ2

(
λ2kαt−1 + nw

)⎛⎜⎝ (nwk1)
1

αt−1
+ λ2Ñ(β, Pr)(

λk2 +
√

k1

λ2 (λ2k + nw
1

αt−1
)
)2

+ (nwk1)
1

αt−1
+ λ2Ñ(β, Pr)

⎞
⎟⎠+ nw

=λ2
(
λ2kαt−1 + nw

)⎛⎜⎝
(
nwk1

λ2

)
1

αt−1
+ Ñ(β, Pr)(

k2 +
√

k1k + nwk1

λ2
1

αt−1

)2

+
(
nwk1

λ2

)
1

αt−1
+ Ñ(β, Pr)

⎞
⎟⎠+ nw (41)

1) Lemma A. 1 ([39, Lemma 4.1]): Consider a function
f(x) = a+ (b/x)/((c+

√
d+ (b/x))2 + a+ (b/x)) defined

over the interval [0,∞), where 0 ≤ a, b, c, d < ∞. The function
f(x) can be upper bounded as f(x) ≤ f∞ + (m/x) for some
0<m<∞, where f∞ := limx→∞ f(x)=a/((c+

√
d)2+a).

Starting from (42) and by using the above lemma, we write
the following series of inequalities

αt =λ2(λ2kαt−2 + nw)f(αt−2) + nw

(a)

≤ λ2(λ2kαt−2 + nw)

(
f∞ +

m

αt−2

)
+ nw

=λ4kf∞αt−2 +
λ2nwm

αt−2
+ λ2nwf∞ + λ4mk + nw

(b)

≤λ4kf∞αt−2+λ2m+λ2nwf∞+λ4mk+nw=:g(αt−2),

(44)

where (a) follows from Lemma A.1 and f∞ =
limα→∞ f(α) =(Ñ(α, Pr)/((k2 +

√
k1k)

2 + Ñ(β, Pr)));
and (b) follows from the fact that αt ≥ nw for all t according
to (43) and (42). Since g(α) in (44) is a linearly increasing
function, it can be used to construct the sequence {α′

t}, which
upper bounds the odd indexed sub-sequence {α2t+1} given in
(42). We construct the sequence {α′

t} for all t ≥ 1 as

α2t+1 ≤ α′
t+1 := g (α′

t)

(a)
= λ4kf∞α′

t + λ2m+ λ2nwf∞ + λ4mk + nw

(b)
= (λ4kf∞)

t
α′
0

+ (λ2m+ λ2nwf∞ + λ4mk + nw)

t−1∑
i=0

(λ4kf∞)
i
, (45)

where (a) follows from (44) and (b) follows by recursively
applying (a).

We observe from (45) that if (λ4kf∞) =
(λ4kÑ(β, Pr)/((k2 +

√
k1k)

2 + Ñ(β, Pr)))< 1, then the

sequence {α′
t} converges as t → ∞ and consequently the

original sequence {αt} is guaranteed to stay bounded. Thus the
system in (1) can be mean square stabilized if

λ4 <

⎛
⎝ (k2 +

√
k1k)

2 + Ñ
(
β,
{
P i
r

}L

i=1

)
kÑ

(
β, {P i

r}
L
i=1

)
⎞
⎠ (46)

⇒ log(λ) <

1

4

⎛
⎝log

(
1 +

2h2βPS

Nd

)
+ log

⎛
⎝1 +

M̃
(
β,
{
P i
r

}L

i=1

)
Ñ
(
β, {P i

r}
L
i=1

)
⎞
⎠
⎞
⎠,

(47)

where the last equality follows from k = N/(2h2βPS +N)

and M(β, {P i
r}

L
i=1) := (k2 +

√
k1k)

2. Since the relay nodes
amplify the desired signal as well as the noise, which is then
superimposed at the decoder to the signal coming directly
from the state encoder, the optimal choice of the transmit
powers {P i

r}
L
i=1 :

∑L
i=1 P

i
r ≤ PR depends on the parameters

{PS , {N i
r}

L
i=1, Nd, h, hi, β}. Moreover, the optimal choice of

the power allocation factor β at the state encoder also depends
on these parameters. Therefore, we rewrite (47) as (21). �

C. Remark 5.2 on Information Rate

The given scheme can be seen as a point-point communica-
tion channel, where R2t−1 is the channel output corresponding
to the input Se,2t−1 and I2t is the channel output corresponding
to the input Se,2t for t = 1, 2, 3, . . .. The information rate is
given by

lim
T→∞

1

2T
I
(
{Se,2t−1}Tt=1,{Se,2t}Tt=1; {R2t−1}Tt=1, {I2t}

T
t=1

)
= lim

T→∞

1

2T

[
h
(
{R2t−1}Tt=1, {I2t}

T
t=1

)
−h

(
{R2t−1}Tt=1, {I2t}

T
t=1|{Se,2t−1}Tt=1, {Se,2t}Tt=1

)]
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(a)
= lim

T→∞

1

2T

[
T∑

t=1

(h(R2t−1)

+h(I2t)− h(R2t−1|Se,2t−1)− h(I2t|Se,2t))

]

(b)
= lim

T→∞

1

2T
[T (h(R2t−1) + h(I2t)− h(R2t−1|Se,2t−1)

−h(I2t|Se,2t))] =
1

2
(I(Se,2t−1;R2t−1) + I(Se,2t; I2t)) ,

(48)

where (a) follows from the fact that
P (I2t, R2t−1|Se,2t, Se,2t−1) =P (I2t|Se,2t)P (R2t−1|Se,2t−1),
the channel is memoryless, the random variables are
Gaussian and E[R2l−1R2k−1] = E[I2lI2k] = 0 for k 
= l,
and E[R2l−1I2k] = 0 for all l, k = 1, 2, 3, . . .; and (b) follows
from the fact that R2t−1 and I2t are both sequences of i.i.d.
variables. For the first transmission phase, we have

I(Se,2t−1;R2t−1) = h(R2t−1)− h(R2t−1|Se,2t−1)

= h(R2t−1)− h(Z2t−1)
(a)
=

1

2
log

(
1 +

2h2βPS

N

)
, (49)

where (a) follows from R2t−1 ∼ N (0, 2h2βPS +N) and
Z2t−1 ∼ N (0, N). In the second phase, the decoder computes
the innovation It according to (39). The mutual information
between the transmitted and the innovation variables is{\kern0pt}

I(Se,2t; I2t) =h(I2t)− h(I2t|Se,2t) = h(I2t)− h(Z̃2t)

(a)
=

1

2
log

(
1 +

M̃(β, Pr)

Ñ(β, Pr)

)
(50)

where (a) follows from I2t ∼ N (0, M̃(β, Pr) + Ñ(β, Pr))
and Z̃2t ∼ N (0, Ñ(β, Pr)). From (49), (50), and (48) the cor-
responding information rate is equal to

1

4

(
log

(
1 +

2h2βPS

N

)
+ log

(
1 +

M̃(β, Pr)

Ñ(β, Pr)

))
. (51)

For the given channel, the directed information rate is equal
to information rate due to mutual independence of the channel
output sequence [42, Theorem 2].

D. Proof of Lemma 6.1

Assume that T (x) is a non-decreasing mapping with a unique
fixed point x�. Further assume that there exist u ≤ x� ≤ v such
that T (u) ≥ u and T (v) ≤ v. Consider a sequence generated by
the following iterations: xt+1 = T (xt) with t ∈ N, x0 ∈ R. We
want to show that starting from any x0 ∈ R, the sequence {xt}
converges. There are three possibilities: i) x0 = x�, ii) x0 > x�,
and iii) x0 < x�. For x0 ∈ [x�,∞) we have T (x) ≤ x, there-
fore x1 = T (x0) ≤ x0. Since T (x) is non-decreasing, x2 =
T (x1) ≤ T (x0) = x1. Thus for any t ∈ N we have xt+1 =
T (xt) ≤ T (xt−1) = xt. Further this sequence is lower bounded
by x� because for any xt ∈ [x�,∞), x� = T (x�) ≤ T (xt) =
xt+1 due to non-decreasing T (·). Thus the sequence {xt} con-

verges since it is monotonically decreasing and lower bounded
by x� [56, Theorem 3.14]. For x ∈ (−∞, x�] we have T (x) ≥
x, therefore x1 = T (x0) ≤ x0. Since T (x) is non-decreasing,
we have x2 = T (x1) ≥ T (x0) = x1. Thus for any t ∈ N we
have xt+1 = T (xt) ≥ T (xt−1) = xt. Further this sequence is
upper bounded by x� because for any xt ∈ (−∞, x�], we
have xt+1 = T (xt) ≤ T (x�) = x� due to non-decreasing T (·).
Since {xt} is strictly increasing and upper bounded by x� for
x0 ∈ [x�,∞), it converges [56, Theorem 3.14]. �
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