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Preliminary. Adaptive Coding Procedure

At k = 0, 1, . . . coder forms deviation: ∂yk = yk − ck,
discretized with a given M = Mk: ∂̄yk = q(∂yk,Mk),
transmitted over the channel to the decoder, where centroid
ck = ck−1 + ∂̄yk, c0 = 0.
Quantizer range Mk is chanded:

σk = sign(∂̄yk),
λk = (σk + σk−1 + σk−2)/3, λ0 = 0,

Mk+1 = m+

{
ρMk, as |λk| 6 0.5,

M [k]/ρ, otherwise,

(1)

0<ρ61 – decay parameter; M [0] = M0, m – lower bound.
The decoder calculates the variables c̃k, M̃k based on received
codeword flow similarly to ck, Mk.
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Physical examples

Remote state estimation scheme was studied using the
experimental data for:

Multipendulum Mechatronic Set-up (MMS);
Quanser–LAAS Helicopter benchmark;
Adaptive Coding Procedure Examination Based on the
In-flight Data From Quadrotors.
State Estimation of Spatially Distributed Systems with
Quantization of the Transmitted Data
Experiments on controlled synchronization with
three-computer setup [Fradkov et. al., Automatica, 2015].
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State estimation of the Multipendulum Mechatronic Set-up

Photo of the chain of twelve pendulum sections and the motor

Fradkov et. al. Mechatronics, 2012; — Eur. Phys. J., 2014.
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State estimation of the Multipendulum Mechatronic Set-up:
chain of 4 pendulums and the motor, attached via the spring
to pendulum #1.
Modified state estimation scheme: exogenous plant model is
taken instead of autonomous one:

ẋ(t) = Ax(t) +Bψ(y) +Du(t), y(t) = Cx(t), (2)

u(t)∈ Rm – external input, D – (n×m)-matrix.
Embedded observer:

˙̂x(t) = Ax̂(t) +Bψ(ŷ) +Dũ(t) + Lε̄(t), ŷ(t) = Cx̂(t),

ε̄(t) = ε̄[k] as t ∈ [tk, tk+1), tk = kTs, (3)

ũ(t) – measured exogenous input u(t).
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State estimation of the Multipendulum Mechatronic Set-up (cont.)

Chain of 4 pendulums:
ϕ̈1 + ρϕ̇1 + ω2

0 sinϕ1 − k(ϕ2 − 2ϕ1) = ku(t),

ϕ̈2 + ρϕ̇2 + ω2
0 sinϕ2 − k(ϕi+1 − 2ϕ2 + ϕ1) = 0,

ϕ̈3 + ρϕ̇3 + ω2
0 sinϕi − k(ϕ4 − 2ϕ3 + ϕ2) = 0,

ϕ̈4 + ρϕ̇4 + ω2
0 sinϕ4 − k(ϕ4 − ϕ3) = 0,

(4)

ϕi – pendulum angles; u – motor rotation angle.
µ = 0.95 s−1, ω0 = 5.5s−1, k = 5.8 s−2;
Sampling time Ts ∈ [10, 100] ms.

qν(y,M) =

{
δ · 〈δ−1y〉, if |y| 6M,

M sign(y), otherwise,
where δ = 21−νM — from ν = 0 (binary coder) to ν = 8.
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State estimation of the Multipendulum Mechatronic Set-up (cont.)

Two coding schemes have been implemented:
1 the first-order coder – for transferring the motor rotary

angle,
2 the full-order coder with embedded observer – for

transferring pendulum rotary angle.
Measured data have been processed by means of the data
transmission procedures. The estimation errors have been
calculated.

Bit-per-second rate for each channel: R = ν/Ts.
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State estimation of the Multipendulum Mechatronic Set-up (cont.)

Mean-square relative transmission error Q v.s. transmission
bitrate R (bit/s) for different ν.

– the binary coder is
optimal in the sense of
R;
– for full order coder
there exists a threshold
which limits the
admissible bit-rate for
data transmission.
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State Estimation for Quanser–LAAS Helicopter Benchmark

The “Helicopter”: a base with a long arm, carriying the “body”.
The arm can tilt on an elevation axis and swivel on a vertical
(travel) axis. Two motors with propellers are mounted on the
helicopter body.

Andrievsky, Fradkov, Peaucelle, IEEE Trans. CST, 2010.

Fradkov, Andrievsky Synchronization and state estimation 9 / 31



Synchronization and state estimation 10 / 31
Physical Examples
State Estimation for Quanser–LAAS Helicopter Benchmark

State Estimation for Quanser–LAAS Helicopter (cont.)

Adaptive coding procedure is employed.
At tk = kTs (k = 0, 1, . . . ) at the sensor node the state
estimation error ek = θ(tk)− θ̂(tk) is calculated and coded as
σk = sign ek; σk is transmitted over the channel.
Quantizer range Mk:

λk = (σk + σk−1 + σk−2)/3,

Mk+1 = m+

{
ρMk, as |λk| 6 0.5,

M [k]/ρ, otherwise.

Decoder output ēk = Mkσk is expended to [tk, tk+1):

ē(t) = ēk as t ∈ [tk, tk+1), (5)

where tk = kTs, k = 0, 1, . . . .
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State Estimation for Quanser–LAAS Helicopter (cont.)

Embedded State Observer:
˙̂
θ(t) = ω̂(t) + l1ē(t),
˙̂ωx(t) = −aωx

m ω̂x(t)− aθm sin
(
θ̂(t)− θ0

)
+kvmµ(t) + l2ē(t),

(6)

θ̂(t), ω̂x(t) – estimates of the pitch θ(t) and pitch angular rate
ωx(t); l1, l2 – observer gains.
The data coding/decoding and state estimation procedures for
the “Helicopter” pitch motion should be realized both at the
transmitter (sensor) and at the receiver (controller) nodes of
the system.
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State Estimation for Quanser–LAAS Helicopter (cont.)

a)

b)
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Adaptive coding procedure examination based on the in-flight data

During the experiment, two quadrotors have been employed,
making up the leader-slave formation. The leading quadrotor
has been governed by the commands from the remote
operator’s computer, the slave quadrotor has constantly
followed the leader based on the leader’s position information,
obtained through a telemetry channel with a small data rate.
The GPS receivers were used to obtain current quadrotors
position. Xbee-Pro 2.4GHz modules have been used for data
exchange between the quadrotors.

Fradkov et. al., IFAC-PapersOnLine 49-13 (2016) 275–280;
12th IFAC Workshop ALCOSP 2016.
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Adaptive coding procedure examination (cont.)

Flight Test Area
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Adaptive coding procedure examination (cont.)

Adaptive coding procedure (1), with the binary coder
q(σ,M) = M sign(σ), (σ stands for the quadrotor
latitude/longitude), and the embedded observer

σ̄k = q(σk,Mk),

x̂k+1 = x̂k + TsV̂k + l1σ̄k,

V̂k+1 = V̂k + l2σ̄k,

(7)

was examined based on the flight data. Parameters:
M0 = 5 · 10−3, m = 10−4.
Ts ∈ {0.01, 0.025, 0.04} [s] for different simulation runs (data
bitrate R ∈ {100, 40, 25} [bit/s]); decay parameter
ρ = exp(−15Ts); observer matrix L: ensuring eigenvalues
z1,2 = exp(λ1,2Ts), for λ1,2 = −0.35± 0.36i.
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Adaptive coding procedure examination based on the in-flight data from the quadrotors

Time histories of measured and estimated leader coordinates
ϕ, λ; Ts = 0.04 s (R = 25 bit/s).
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Numerical study of adaptive coding based on flight test

Adaptive adjustment of ϕ and λ coder ranges. T = 0.04 s
(R = 25 bit/s).
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Adaptive coding procedure examination based on the in-flight data from the quadrotors

Numerical study of adaptive coding based on flight test

Actual and estimated leader trajectories on the horizon plane.
T = 0.04 s (R = 25 bit/s).
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State estimation of spatially distributed systems with quantization

One-dimensional spatially distributed system:

ztt(t, x)− zxx(t, x) + z(t, x) = 0, t > 0, x ∈ [0, 1] (8)

initial conditions: z(0, x) = z0(x), zt(0, x) = z1(x),
boundary conditions: z(t, 0) = zx(t, 1) = 0.
measured output y(t) = z(t, l) at some inner point l ∈ (0, 1).

Problem: estimation of z(t, x) based on sampled and
quantized measurements of y(t).

Andrievsky B. Proc. 2016 IEEE Conference on Norbert Wiener
in the 21st Century, 21CW 2016.
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State estimation of spatially distributed systems (cont.)

Approximation of PDEs as a linear finite-dimentional system
by uniform splitting [0, 1] into K sub-intervals:

ζ̇(t) = Aζ(t), y(t) = Cζ(t), ζ(0) = ζ0, t > 0, (9)

ζ∈ R2K – state-space vector, K – number of points inside
interval x ∈ [0, 1]; A∈ R2K×2K ,
C = [0, . . . , 1, . . . , 0]∈ R1×2K .
Denote hK = K−1 – discretization step, i = 1, . . . , K − 1.

zx(t, xi) ≈
(
z(t, xi+1)− z(t, xi−1)

)
/(2h),

zxx(t, xi) ≈
(
z(t, xi+1)− 2z(t, xi) + z(t, xi−1)

)
/h2,

z(t, x0) = z(t, x1), z(t, xK) = z(t, xK−1).
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State estimation of spatially distributed systems (cont.)

Denote time derivatives zt∈ Rk as v = zt; zi(t) ≡ z(t, xi),
vi(t) ≡ zt(t, xi), i = 1, . . . , k for the corresponding state
variables of the discretized system =⇒ linear model
z̈(t) = Azz(t) with

Az =
1

h2


−1 1 0 . . . 0

1 −2 1 . . . 0

0 1
. . . . . .

...
0 . . . . . . −2 1
0 . . . 0 1 −1

 . (10)
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State estimation of spatially distributed systems (cont.)

In terms of the state vector ζ = col{x, v}∈ R2k, state-space
representation (9) has the following block matrix

A =

[
0K×K IK

Az 0K×K

]
, (11)

0K×K – (K ×K)-zero matrix, matrix Az is inherited from
(10), IK – identity matrix of order K.
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State estimation of spatially distributed systems (cont.)

For data transmission, the full-order coding-decoding
procedure with embedded observer was used

˙̂
ζ(t) = Aζ̂(t) + Lε̄(t), ŷ(t) = Cζ̂(t) (12)

on the coder side, where ε̄[k] = M [k] sign(ε(tk)), and follower

˙̂x(t) = Ax̂(t) + Lε̄(t), ŷ1(t) = Cx̂(t),

Adjustment of coder range M [k] is governed by adaptive
zooming procedure (1). Vector ζ̂(t) serves as the estimate of
plant (8) state variables z(t, xi), zt(t, xi) in specified nodes
xi = i · hK , i = 1, . . . , K − 1.
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State estimation of spatially distributed systems (cont.)

Simulation results

For simulations, PDEs are discretized in x ∈ [0, 1] by splitting
[0, 1] into N � K.

Resulting system of N − 1 ODEs of second order numerically
solved over a time interval [0, T ] by standard Matlab routine
ode45.

Parameters: K = 21, N = 2501;
L – by pole placement, s.t. λL = λA − 0.25 (λL and λA –
spectra of matrices A− LC and A).
Adaptive zooming (1): M [0] = 0.5, ρ = exp(−10Ts), m = 0.
Sampling period Ts ∈ [0.005, 0.05] s for different runs.
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State estimation of spatially distributed systems (cont.)

l = 0.24, R = 50 bit/s.
z(t, l) – solid line, estimate ẑ(t, l) – dash-dot line;
estimation error (lower plot)
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State estimation of spatially distributed systems (cont.)

R = 50 bit/s.
measured output y(t) – solid line, estimate ŷ(t) –
dash-dot line;
range M(tk) of adaptive coder (1) (lower plot).
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State estimation of spatially distributed systems (cont.)

Generalized accuracy index Q = Q(R) – maximum of the
estimation error magnitude at the interval t ∈ [20, 25] vs
R = 1/Ts (l = 0.24).
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State estimation of spatially distributed systems (cont.)

Corollary
After some transient time (≈ 15 s) the estimation error
falls to the 10% range in magnitude of recovered process
z(t, l).
M [k] automatically increases during the transients (the
“zoom-out” stage) and decreases in the steady-state
mode (the “zoom-in” stage).
For this example the limited data rate, when state
estimation is possible, is about 35 bit/s.
Accuracy does not increase on R if R > 80 bit/s. It is
explained by discretization of (8) on spatial variable x.
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Conclusions

A unified exposition of passification-based approach for
synchronization and state estimation of nonlinear systems
over the limited-band communication channel is given.
Relevance of passifiability condition for the posed
problems is demonstrated.
Experimental results for various physical systems are
provided, demonstrating the practical applicability of the
theoretical statements.
Future work: investigations on state estimation and
synchronization of nonlinear physical systems over the
limited bandwidth communication channel with time
delays, data corruption and losses.
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