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Recognizing the maps that perserve a mathematical structure
allows one to compare objects and identify equivalence ones.

6.0 Isomorphisms

When are two ring the same? From the viewpoint of ring theory,

when may we identify two rings?
The words “isomorphism” and

Definition 6.0.0. A ring homomorphism ¢: R — S is called an “automorphism” come from the Greek
. . . . . . . prefix isos meaning ‘equal’, the
zsomorphlsm if there exists 2.1 ring hc.)mornorp@sm P: S — R such Latin/Greek prefix auto meaning ‘self’,
thatyp ¢ = idgp and ¢ 9 = idg. An isomorphism that is also an and the Greek suffix morphe meaning

endomorphism is called an automorphism. ‘form’ or ‘shape’.

Problem 6.0.1. Show that complex conjugation is an automor-
phism of the field C of complex numbers.

Proof. Problem 5.0.5 establishes that complex conjugation is an
endomorphism. For any complex numbers z = a + bi, we have

z=a+bi=a-bi=a+bi=z.
Therefore, complex conjugation is an idempotent operator (or

equivalently, its own inverse) and thereby an automorphism. O

Proposition 6.0.2. A ring homomorphism ¢: R— S is an isomorphism
if and only if the map ¢ is a bijection.

A bijection is an isomorphism of sets.

Proof. We prove each implication separately.

<: Suppose that the map ¢: R — S is a ring isomorphism. By
definition, there exists another ring homomorphism %: S - R
such that ¥ ¢ = id; and ¢ ¥ = idg. In particular, the underlying
map of sets has an inverse, so it is a bijection.

=: Suppose that the underlying map of set is a bijection. It fol-
lows that there exists a map 3: S — R of sets such that ¢ ¢ = idy
and ¢ = idg. It remains to show that the map % is a ring ho-
momorphism. Since ¢ is a ring homomorphism, it follows that,
for all elements a and b in the ring S, we have

P(P(a) + P(b)) = p(P(a)) + p(¥(b)) =a + b,
P(P(@) (b)) = p(P(a)) p(¥(b)) = ab, and
p(1g) = 1s.
Applying ¥ to both side of these equations gives
(@) + P(b) = P((P(a) + P(b))) = Pla + b),
Y@ P(b) = Y@ YP(b))) = Y(ab), and
1z = P(p(1r)) = ¥(1s),

so Y is a ring homomorphism. O
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Definition 6.0.3. Two ring R and S are isomorphic, denoted by
R = S, if there exists a ring isomorphism ¢: R— S.

Proposition 6.0.4. Being isomorphic is an equivalence relation.

Proof. LetR, S, and T be rings.

(Reflexive) The identity map idg: R — R is a ring homomorphism
and its own inverse, so idy is a ring isomorphism and R = R.
(Symmetric) Suppose that R = S. There are ring homomorphisms
¢p:R—->Sandy:S—> Rsuchthatypp = idgand ¢ = idg. In
particular, the ring isomorphism #: S — R implies that S = R.
(Transitive) Suppose that R = S and S = T. By definition, there
exist ring isomorphisms ¢: R — Sand 6: S — T. Since the

composition 6 ¢ is a ring homomorphism and

P10 0p =9l ids p = ¢ p = idg
Opplol=0idg 61 =661 =idy,
the composition 6 ¢: R— T is aring isomorphism and R=T. O

Problem 6.0.5. Show that Z/(6) and Z/(2) x Z/(3) are isomorphic. One can prove that only 1 of 720 = 6!
bijections is an ring isomorphism.

Sketch of proof. One may verify that the map from the quotient
ring Z /(6) to product ring Z /(2) X Z / (3) defined by

[0]s = ([0],[0]3) [2]6 = ([0]5, [2]5) [4]6 = ([0]5,[1]5)
[1]6 = ([1]2, [1]3) [3l¢ = ([1]2, [0]3) [5]6 = ([1]2, [2]3)

is an isomorphism by constructing the addition and multiplication

tables for these rings. O
+/012345 X(012345
0/l01 23435 000 0OO0O0O0O Table 6.1: Addition and
11123450 1101 23 45 multiplication tables for the
21234501 21024024 quotientringZ/(6>andthe
3134501 2 3103 0303 productringZ/(Z)xZ/(S);for
41450123 41042042 brevity, the brackets in the
5501234 51054321 equivalence classes are omitted

+ [(0,0) (1,1) (0,2) (1,0) (0,1) (1,2) X 1(0,0) (1,1) (0,2) (1,0) (0,1) (1,2)

(0,0){(0,0) (1,1) (0,2) (1,0) (0,1) (1,2) (0,0){(0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
1,1)|(1,1) (0,2) (1,0) (0,1) (1,2) (0,0) (1,1)((0,0) (1,1) (0,2) (1,0) (0,1) (1,2)
(0,2)|(0,2) (1,0) (0,1) (1,2) (0,0) (1,1) (0,2)|(0,0) (0,2) (0,1) (0,0) (0,2) (0,1)
(1,0)((1,0) (0,1) (1,2) (0,0) (1,1) (0,2) (1,0)((0,0) (1,0) (0,0) (1,0) (0,0) (1,0)
(0,1)((0,1) (1,2) (0,0) (1,1) (0,2) (1,0) (0,1)((0,0) (0,1) (0,2) (0,0) (0,1) (0,2)
(1,2)|(1,2) (0,0) (1,1) (0,2) (1,0) (0,1) (1,2)(0,0) (1,2) (0,1) (1,0) (0,2) (1,1)

Ring isomorphism preserve all ring-theoretic properties.

Proposition 6.0.6. Letp: R — S be a ring isomorphism. An element
b in the ring R is a zero divisor if and only if the element p(b) in S is

a zero divisor. Similarly, an element b in R is a unit if and only if the
element o(b) in S is a unit.
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Proof. Suppose that the element b in R is a zero divisor. There
exists a nonzero element a in R such thatab = 0 or ba = Og.
Since ¢ is a ring homomorphism, we have

p(a) p(b) = p(ab) = ¢(0g) = 05

p(b) p(a) = p(ba) = ¢(0g) = 0s.
As @ is an isomorphism, injectivity implies that ¢(a) # ¢(0g) = Og.
Therefore, the element @(b) is a zero divisor in S. Applying the
same argument to ¢~ !': S— R gives the converse implication.

Suppose that the element b in R is a unit. There exists a ele-

ment a in R such thatab = ba = 1. Since ¢ is a ring homomor-
phism, we have

p(a) p(b) = p(ab) = p(1g) = 15

p(b)p(a) = p(ba) = p(1g) = 1s.
Therefore, the element @(b) is a unit in S. Again, applying the
same argument to ¢~': S — R gives the converse implication. O

Corollary 6.0.7. LetR and S be isomorphic rings. TheringR is a
domain if and only if the ring S is a domain. Similarly, the ring R is a
field if and only if the ring S is a field. O

Exercises

Problem 6.0.8 (2-out-of-6 property). Let8: Q> R, ¢: R— S, and
): S - T be ring homomorphisms. When the compositions ¢ 6
and 1 @ are ring isomorphisms, prove that 6, ¢, 6, and ¢ ¢ 6 are
also ring isomorphisms.
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6.1 Isomorphism Theorems

What is the most important source of isomorphisms? Original
formulated by Emmy Noether in 1927, the isomorphism theorems
describe the relations between quotients, homomorphisms, and
subobjects. Although we focus on rings, versions of these theo-
rems exist for many algebraic structures including groups and
vector spaces.

We start by observing that a ring homomorphism descends to
quotient rings whenever the image of an ideal on the source is
contained in the an ideal on the target.

Induced Map Lemma 6.1.0. Letp: R — S be a ring homomorphism.
For any ideal I in the ring R and any ideal J in the ring S satisfying
®(I) C J, the induced map @: R/I— S/J, defined for any ring element r
inR byp(r +I) = ¢(r) + J, is a well-defined ring homomorphism.

Proof. Letr and s be elements in the ring R. When r ~; s, we have
r—selandp(r)— ¢(s) € p(I) = p(r — s) C J. Hence, we deduce
that p(r) ~; @(s) and @ is well-defined.
Since ¢ is a ring homomorphism, we also have
P((r+D+(s+D)=p((r+s)+1I)
=p(r+s)+J
=(e(N + () +7
=(@er)+I)+(p)+T)=p(r+D+p(s+1I),
P((r+D(s+D)=p((rs)+1)
=p(rs)+J
= (e e(s) +J
= (e(r) +1)(p(s) +J) = (r + Dp(s + 1),
P(Ar+ D) =p(Qg)+J =15+ J.
Thus, @: R/I—>S/J is a ring homomorphism. O

The kernel and image of a homomorphism are related by an
isomorphism.

First Isomorphism Theorem 6.1.1. Letp: R — S be a ring homo-
morphism with kernel I := Ker(¢). The induced map : R /I - Im(p),
defined for any elementr inR by (r + I) = @(r), is a well-defined
ring isomorphism. Writingw: R — R/Ifor the canonical surjection
and idg|im(p): Im(¢) — S for the canonical injection, we also have the
canonical decomposition ¢ = idg|im(g) P 7.

Proof. The Induced Map Lemma 6.1.0, with the ideal J := (0Og) in
the ring S, shows that the induced map ¢ is a well-defined ring
homomorphism. For any element r in the ring R, the coset r + I
belongs to Ker(p) if and only if 0g = @(r + I) = @(r) which means
r € Ker(p). We deduce that Ker(¢) = (0 + I) in the quotient ring
R / 1, so Corollary 5.1.12 shows that the induced map @ is injective.
By definition, the induced map @ surjects onto Im(¢). Hence,
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R—2 s

ﬂl TidSIm(w)

R/I i) Im(p)

Figure 6.1: Commutative diagram
arising from First Isomorphism
Theorem 6.1.1
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Proposition 6.0.2 demonstrates that ¢ is a ring isomorphism. The
second part follows from the definition of the induced map ¢. O

Problem 6.1.2. Confirm that Z[i]/(1 + 3i) = Z/(10).

Solution. Let ¢: Z — Z[i] /(1 + 3i) be the unique ring homomor-
phism. Since i = (-1)(-i) = (3i)(—i) = 3in Z[i]/(l + 3i), the coset
containing the Gaussian integer a + bi is the coset containing the
integer a + 3b, so the map ¢ is surjective. Given an integer m in
Ker(gp), it follows that m is in (1 + 3 1i). Hence, there are integers
candd suchthatm = (¢ + di)(1 + 3i) = (¢ — 3d) + (3¢ + d)i.
We deduce that3c = —dand m = ¢ + 3(—d) = ¢ + 3(3c) = 10c.
We conclude that Ker(¢) C (10). We also have 32 = —10or10 = 0
in Z[i] /(1 + 3i), so (10) € Ker(p). Thus, the First Isomorphism
Theorem 6.1.1 yields the isomorphism Z /(10) = Z[i] /(1 + 3i). O

Problem 6.1.3. Prove that the ring C[x, y] / (xy)is isomorphic
to the subring of the product C[x] x C[y] consisting of the pairs

(f(x), g(x)) such that £(0) = g(0).

Solution. The First Isomorphism Theorem gives C[x, y]/(y) =~ C[x]
because the ideal (y) is the kernel of the map ev,_,: C[x, y] - C[x].
By symmetry, we also have C[x, y] / (x) =2 C[y]. Consider the map
Clx, y] = C[x] x C[y] defined by f(x,y) — (f(x,0), f(0,)). Its
kernel is (x) n (y) = (xy). The First Isomorphism Theorem 6.1.1
completes the proof. O

The two quotient rings arising from an ideal and a subring in a
ring are related by an isomorphism.

Second Isomorphism Theorem 6.1.4. Let R be a ring. For all ideals
I inR and all subrings S of R, the sum S + I is a subring of R, the set

I is an ideal in the subring S + I, the intersection S N I is an ideal in
the subring S, and the map 7 S/(S NnIl) - (S+ I)/I, defined for any

elements inS by(s+SnI) = s+1, is a well-defined ring isomorphism.

Proof. We firstshowthatS + 1 :={s+ g |seSandgel}isa
subring of the ring R. Consider elements 7 and s in the subring

S and elements f and g in the ideal I. It follows that the element
(r+f)—(s+g)=(r—s)+(f—g)belongstoS+1Ibecauser—s € S
and f —ge€I. Theelement(r + f)(s+g) =rs+rg+ fs+ fg
also belongsto S + I becausers € S,andrg+ fs+ f g € I. Since
1 € Sand O € I, weseethatly = 1z + O € S + I. Thus, the
subset S + I is a subring of R.

Since I is an ideal in R and S + I is a subring of R, we deduce
that I is also anidealin S + I. We next show that S n [ is an ideal
in subring S. For any elements f and g in S N I and any element s
in S, the elements f — g, s f, and f s all belong to both the ideal I
and the subring S. Since these three elements belong to S n I, we
deduce that S NI is an ideal in the subring S.

Isomorphisms 61

Aside from the First Isomorphism
Theorem 6.1.1, there are no methods
for recognizing a quotient ring, be-
cause it will usually not be a familiar
ring.

Sni
Or)
Figure 6.2: Hasse diagram arising

from Second Isomorphism
Theorem 6.1.4
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Lastly, consider the map 7: S—(S+1) /I defined for any element
sin Sby n(s) := s + I. For any elements r and s in S, we have
nN(r+s) = (r+s)+I = (r+D)+(s+I),n(rs) = (rs)+I = (r+1)(s+1),
and n(1g) = 15 + I, so the map 7 is a ring homomorphism. From
the definition of the sum S + I, we see that the map 7 is surjective.
We claim that Ker(n) = SnlI.

C: Suppose that f € Ker(n). It follows that f+I = n(f) = 0+1I =1,
so we deduce that f € I. As Ker(n) C S, we have f € S which
implies that f € SNnI and Ker(n) CSnI.

D: Supposethat f e SNnI.As f e I,wehaven(f)=f+1=1,s0
we see that f € Ker(n) and Ker(n) 2 Sn1.

Since Ker(n) = S n I and 7 is surjective, the First [somorphism

Theorem 6.1.1 proves that the induced map 7: S/(SnI) » (S+1)/I

is a ring isomorphism. O

Exercises

Problem 6.1.5. Each quotient ring R/I in the left column of Ta-
ble 6.2 is isomorphic to a ring S in the right column. Match each
quotient ring with its isomorphic partner and prove that they
are isomorphic be describing a surjective ring homomorphism
¢: R— S with kernel I.

R/1 S
Z[x] Z
(8,12, x) (3)
Q[x] z
(x2 —2) (4)
R[x] Zz
v | ®
R[x] 7
X2+ x+2)
R[x]
o) @
R[x, y]
GI=SY K
R[x, y]
(y—1,x+9) =
R[x, y]
oL 10 {a+bV2|a,beq)}
Z[x]
Q[x]
R[x]
C[x]
b
g2 o2
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The matching is neither injective nor
surjective.

Table 6.2: Table of quotient rings
and rings
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6.2 Idealsin a Quotient Ring

How are the ideals in a quotient ring related to the ideals in its
ambient ring? Every ring homomorphism produces a bijection
between certain ideals in its source and all ideals in its target.

Correspondence Theorem 6.2.0. Letp: R — S be a ring homomor-
phism with kernel K := Ker(p).

(i) Foranyideall] inS, the preimagep=(J) :={r € R| ¢(r) € J}is
anideal in R containing the ideal K.

(ii) For anyidealJ is S, the composition of the map ¢: R — S and
the canonical surjection: S — S/J induces an injective ring
homomorphismT®: R/@~'(J) — S /J. When @ is surjective, the
map 7 @ is a ring isomorphism.

(iii) Assume that ¢ is surjective. The mapsI — @(I) andJ — @~ 1(J)
are inverse inclusion-preserving bijections between the set of ideals
in R containing K and the set of ideals in S.

Proof.

(i): For any elements f and g in the preimage ¢~!(J) and any
element r in the ring R, the elements ¢(f + g) = @(f) + ¢(g),
e(r f) = o(r) 9(f), and ¢(f r) = (f) (r) belong to the ideal
J,so f + g, rf,and f r belong to the preimage ¢~1(J). Hence,
the subset ¢~1(J) is an ideal in the ring R. Since 05 € J and
»~1(0g) = K, the preimage ¢~!(J) contains the ideal K.

(ii): The Induced Map Lemma 6.1.0 demonstrates that the map
T@:R/p71(J) — S/J is a well-defined ring homomorphism.
Since Ker(7r) = J, it follows that Ker(w ¢) = ¢~'(J) and
Ker(m®) = (0 + ¢~'(J)), so this induced map is also injective.
When ¢ is surjective, the composition 77 ¢ is also surjective,
whence 7 @ is surjective.

(iii): Assume that the map ¢ is surjective. We show that, for any
ideal I in R, the image @(I) is an ideal S. For any elements p
and q in the image ¢(I) and any element s in S, there exists
elements f and g in the ideal I and an element 7 in the ring R
such that () = p, p(g) = q,and p(r) = s. The elements
P+q=9()+e@)=9(f+8).sp=e(r)e(f) = ¢(rf),and
ps = o(f) p(r) = p(f r) belong to the image ¢(I), so the subset
@(I) is an ideal in the ring S. Since p(K) = (0g), the image of
any ideal contained in the kernel X is zero ideal in S.

The preceding paragraph shows that the map I — ¢(I)
sends any ideal I in the ring R containing K to the ideal ¢(I) in
the ring S. Conversely, part (i) shows that the map J — ¢~1(J)
sends any ideal J in the ring S to the ideal ¢~!(J) in the ring
R containing K. These maps composite in either order to an
identity map. Finally, both images and preimages preserve

inclusions. O

Problem 6.2.1. Describe all ideals in the ring Z/(6).

Isomorphisms 63

R > S

R
o) > J
I / ><p(I) /
AN N

K

|

> {0s)

(ORr)

Figure 6.3: Hasse diagram of
ideals in the Correspondence
Theorem
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Solution. Given the inclusions (6) C (2) and (6) C (3), the Induced
Map Lemma 6.1.0 shows that the identity map id,: Z — Z induces
ring homomorphisms ¢: Z/(6) - Z/(2) and ¥: Z /(6) - 7 /(3) where
Ker(p) = ([2]¢) and Ker(¥) = ([3]¢). Since both Z/(2) and Z/(3) are
fields, they contain only two distinct ideals, namely the zero ideal
and the whole ring. Hence, the Correspondence Theorem 6.2.0
shows that {[2],) and ([1]¢) are the ideals in Z/<6> containing ([2]e),
and ([3]e) and ([1],) are the ideals in Z/<6) containing ([3]s). Since
[4]6 [2]¢ = [2]¢ and [5]¢ is a unit, we conclude that the four ideals in

Z/(6) are ([0]g), ([2]6), ([3]s), and ([1]5). O

Problem 6.2.2. For any positive integer m, describe all ideals in
the quotient ring C[x]/(x™).

Solution. For any nonnegative integer m, let I,,, := (x") be an ideal
in C[x]. We prove, by induction on m, that the m + 1 ideals in the
quotient ring C[x]/I,, are

O+ Iy (X™ 1+ L) (X2 4+ Ty ey (X 4 Tyy) s (1 + Iy
When m = 1, the First Isomorphism Theorem 6.1.1 establishes
that C[x] / (x) = C. Since C is a field, the only ideals are (0) and
(1), which establishes the base case. Assume that k is an integer
greater than 1. Given the inclusion Iy ,; C I, the Induced Map
Lemma 6.1.0 shows that the identity map id¢,: C[x] — C[x]
induces a ring homomorphism ¢: C[x] / I, — Clx] / I, where
Ker(¢) = (x¥ + I;;;). Hence, the induction hypothesis and the
Correspondence Theorem 6.2.0 establish that the k + 1 ideals in
the ring C[x]/(x**1) containing (x* + I, are

PO + L)) = (XK + Iiyr)
PR+ L)) = (KT + L)

P+ ) = (1 + Liyy) -

It remains to show that (0 + I ;) is the only other ideal in the

ring C[x] / I.... Hence, it suffices to prove that any nonzero ideal
contains the ideal (x* + I;,;). A nonzero polynomial f in C[x] of
degree at most k has the form f = a; x* + aj x* 1 + - + a, x¢
where ¢ is a nonnegative integer ¢, ay, ay_y, ..., @, are complex
numbers, and a, # 0. Since (a;! x*=¢ f) % x*+! = x, it follows that
(XK + TIpn) S(f + Legn)- [

The quotient rings arising from nested ideals in a ring are also
related by an isomorphism.

Third Isomorphism Theorem 6.2.3. LetI be an ideal in the ring R.
(i) Everyidealin the ringR/I has the form J/I ={r+1|reld}for
some ideal J in R containingI.
(ii) For anyidealJ in R containing I, the composition of the canonical
surjectionsR — R /I andR /I — (R /1) /(J / I) induces a ring
isomorphismR/J —(R /1)/(J / I).

Proof. We obtain both parts by applying the Correspondence
Theorem to the canonical surjection 7: R—»R /I . O
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([1le)

e N
([2l6) (Ble)
N -
([0]e)

Figure 6.4: Hasse diagram of
ideals in the quotient ring Z/(6)

1+ Iy)
I
(X + Iy)
|
i
(xm_2 + I,)
I
"L+ I,
I
0+ 1)

Figure 6.5: Hasse diagram of
ideals in the ring C[x] /I,

One can show that every element in
Clx] /Im is either nilpotent or a unit.



