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SUMMARY

Many biological characters of interest are temporal sequences of decisions. The evolution of such
characters is often modelled using dynamic optimization methods such as the maximum principle.
A quantity central to these analyses is the ‘Hamiltonian’ function, named after the mathematician
William R. Hamilton. On the other hand, evolutionary models in which individuals interact with
relatives are usually based on Hamilton’s rule, named after the evolutionary biologist William D.
Hamilton. In this article we present a generalized maximum principle that includes the effects of
interactions among relatives and we show that a time-dependent (dynamic) version of Hamilton’s
rule holds involving the Hamiltonian. This result brings together the power and generality of both
the maximum principle and Hamilton’s rule thereby providing a natural framework for understanding
the evolution of ‘dynamic’ characters under kin selection.

1. INTRODUCTION

Optimization models have played an important role
in theoretical evolutionary biology (Parker & May-
nard Smith 1990). This approach usually begins by
constructing a function that specifies the fitness of
an individual for different values of a character of
interest (e.g. clutch size), and then one seeks those
character values that are evolutionarily stable. Such
models are familiar to most evolutionary biologists
and their construction is well understood.

Consider however, constructing an optimization
model for a character that consists of a sequence
of decisions over an interval of time. For example,
suppose that an individual must ‘decide’ what pro-
portion of its available resources to devote to growth
versus reproduction each year. When weighing the
costs and benefits of different decisions in any year,
one must know the expected future reproductive out-
put given different decisions and this entails know-
ing the optimal allocation strategy in future years.
Such optimization problems are more difficult and
require the less familiar techniques of dynamic opti-
mization such as dynamic programming (Mangel &
Clark 1988) or the maximum principle (Leon 1976;
Schaffer 1983; Perrin & Sibly 1993). We refer to such
characters as ‘dynamic’ characters.

Many important biological characters are dyna-
mic. Examples include temporal patterns of resource
allocation to growth and reproduction (i.e. general
life history decisions; Leon 1976; Schaffer 1983; Per-
rin & Sibly 1993) and temporal patterns of behaviour
(Houston et al. 1988; Mangel & Clark 1988). The
maximum principle and dynamic programming have
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provided much insight into the evolution of these
characters.

Parallel to this body of literature has been the de-
velopment of the theory of kin selection and Hamil-
ton’s rule (Hamilton 1964a). Most kin selection mod-
els consider the evolution of single decisions (char-
acters) and can therefore be constructed in a rou-

‘tine way using a simple optimization or ESS ap-

proach (Taylor & Frank 1996). Although the concept
of kin selection was initially introduced to explain
the evolution of various social behaviours (Hamilton
1964a, b), its principles are important for the evolu-
tion of all characters whenever individuals preferen-
tially associate with kin, or when the movements of
individuals result in some form of population struc-
turing (e.g. patch structuring).

But how are we to model dynamic characters and
kin selection together? For example, consider the evo-
lution of the resource allocation strategy in an annual
plant. Individual plants can greatly affect the growth
and reproduction of neighbours through competition
for light and nutrients, and often these neighbours
are relatives (Kelly 1996). Predictions for resource
allocation strategies that ignore interactions with kin
are clearly inadequate. Another example is the evo-
lution of temporal virulence schedules of pathogens
(Sasaki & Iwasa 1991). Pathogens within a host may
to some degree be related and because they exploit
a common resource, it is important to determine the
effects of this relatedness on the evolution of virus
replication schedules.

To our knowledge there are only two attempts to
incorporate the effects of kin selection into models
for the evolution of dynamic characters. Mirmirani
& Oster (1978) modelled a specific case of the plant
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life history example mentioned above by constructing
a differential game between two relatives. They pro-
vided predictions for that particular model but did
not discuss a general approach for modelling the evo-
lution of dynamic characters under kin selection. Re-
cently, McNamara et al. (1994) have addressed this
issue by demonstrating how to construct kin selec-
tion models for the evolution of dynamic characters
numerically, using dynamic programming. Their re-
sults also concern interactions between two individ-
uals; however, in their model only one of the two
individuals was allowed to make decisions.

Our intention here is to present a straightforward
analytical procedure for constructing kin selection
models of dynamic characters that is based on the
maximum principle. By straightforward we mean
that it can be routinely applied in exactly the same
way as the maximum principle. We show that in such
models, an interesting dynamic version of Hamilton’s
rule holds, involving the so-called Hamiltonian func-
tion of the maximum principle. Our focus is on mod-
els of patch-structured populations where individuals
‘play the field’ (Maynard Smith 1982).

The remainder of this article is organized as fol-
lows. In §2 and § 3 we briefly review Hamilton’s rule
for single decisions and the maximum principle, re-
spectively. Section 4 then presents a generalization
of the maximum principle that includes interactions
among relatives. There we present a dynamic version
of Hamilton’s rule. Lastly, § 5 discusses the range of
applicability of this approach, as well as some short-
comings and possible future extensions.

2. HAMILTON’S RULE FOR SINGLE
DECISIONS

Here we review the ideas of inclusive fitness and
Hamilton’s rule for single decisions. Consider a char-
acter, u, that can take any value in the interval from
zero to one. For example, in a sex ratio model u
might represent the proportion of all offspring pro-
duced that are male. Suppose that the population
is patch structured and that an individual’s fitness,
W (u,u) depends on its own value of u and the patch
average, . This form of interaction is often termed
‘playing the field’ (Maynard Smith 1982).

Hamilton’s rule characterizes the ESS value of u
as follows. First imagine a population monomorphic
at v = u*, and consider the inclusive fitness effect,
AWipe of an actor altering its strategy slightly (lo-
cally) from u* to u = u* + 8, where § is small and
positive. AW, is defined to be the weighted sum of
the fitness effects on all individuals affected by the
change in strategy (including the actor), where the
weight for each individual is the relatedness of that
individual to the actor (Hamilton 1964a; Hamilton
1970; Grafen 1991). Here, the actor will affect its
own fitness through a change in both v and @, and
the sum of these effects is (OW/du)+(1/N)(0W/0u).
In this expression N is the number of individuals in
a patch and the derivatives are evaluated at u = u*.
The actor also affects the remaining N —1 individuals
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in the patch through the change in @, and weighting
this effect for individual 7 by its relatedness to the
actor r; gives the sum of these effects to be

ow 1
(5) (3) = =
i#actor
Thus the total inclusive fitness effect is

ow ow
Amﬂ*{(%9+RC%?Lm:

where R is the relatedness between two randomly
chosen individuals on the patch (with replacement).
So defined, AWjy,q can be regarded as the change in
inclusive fitness resulting from a unit increase in u
from w*.

Hamilton’s rule states that AWinq > 0 if selection
favours values of u that are larger than v*. Similarly,
AWina < 0 if selection favours values of u that are
smaller than u*. Therefore we have: if u* is an ESS
then,

if0<u*<1 then AWisg =0,
ifu*=0 then AWina <0, (1)
ifu*=1 then AW = 0.

3. DYNAMIC CHARACTERS AND THE
MAXIMUM PRINCIPLE

Although the results to be presented here and in
§4 are general, we phrase our exposition in the con-
text of a model for the evolution of energy allocation
to growth and reproduction in an annual plant. This
context aids intuition and it is a dynamic optimiza-
tion problem with a long history (Cohen 1971; Den-
holm 1975; Mirmirani & Oster 1978; King & Rough-
garden 1982q, b; Iwasa & Roughgarden 1984). We be-
gin by considering a population that is patch struc-
tured with patches of size NV, and we will assume the
population is monomorphic. We also assume that the
population lacks all forms of class structure (e.g. sex,
age, etc.). So, for example, although individual plants
within a patch age as the season progresses, no two
individuals differ in age.

Now imagine that an individual plant must
‘choose’ an energy allocation strategy at each point
in time over a season of length T (from this point
onward we assume continuous time). Let y(t) de-
note individual size, u(t) (0 < wu(t) < 1) the pro-
portion of resources devoted to growth at time ¢, and
F(t,y(t), u(t)) the rate of reproductive output at time
t. Here we allow reproductive output to depend di-
rectly on time as well as through the individual’s size
and allocation strategy at time t. We use the total
reproductive output over the season as a measure of
the individual’s fitness; i.e.

T
W= /0 £t y(t), u(®)) dt. (2)
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Suppose also that an individual’s size changes with
time according to the growth equation

dy _ a(t, y(t),u(t)),

" y(0) = yo. (3)

Here we also allow the growth rate of an individual to
depend directly on time as well as on its size and the
allocation strategy at time ¢. The maximum principle
then constructs the so-called Hamiltonian function,
H=f+Mg,ie

H{(t,y(t),u(t), A1) = f(t (1), u(t))
+AB)g(t y(t), u(t)), (4)

using a ‘costate’ variable A(¢), and provides the fol-
lowing necessary conditions for the strategy u*(t) to
be optimal:

0H dA

(i) By AT) =0, (5a)

(i) H(t,y*,u" ) = m[%ﬁ]H(t,y*,u,)\), (5b)
ue|0,

where the arguments of functions have been sup-
pressed (Knowles 1981; Pinch 1993; Perrin & Sibly
1993; Bulmer 1994).

The maximum principle may seem somewhat ab-
stract but it is rich in biological interpretation (Leon
1976; Perrin & Sibly 1993). The Hamiltonian is
constructed by introducing a ‘costate’ variable A(t)
that is closely related to the state variable y(t).
The costate variable A(t) can be interpreted as the
marginal return in future fitness of a free increment
in size at time ¢, when using the optimal allocation
strategy (Iwasa & Roughgarden 1984; Perrin & Sibly
1993). Equation (5a) specifies how this marginal
value changes over time. The terminal value A(T')
is zero because that is the marginal return in future
fitness of an increment in size at the end of the sea-
son. Equation (5 b) states that u should be chosen so
that the Hamiltonian is maximized in u at all times,
hence the name maximum principle. This strategy is
found by integrating the differential equation (5a)
backward in time from 7" with u chosen such that
condition (5b) is always satisfied. A local necessary
condition corresponding to (5b) is

if0<u*<1 then 0H/0u =0,
ifu*=0 then 0H /0u <0, (5¢)
ifu*r=1 then 0H /Ou > 0,

where (0H /0u) is evaluated at u* in each case.

4. A MAXIMUM PRINCIPLE UNDER KIN
SELECTION

Now we suppose that the fitness of an individual
also depends on the group mean size g and strategy «
(i.e. individuals ‘play the field’) and that individuals
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of the group are related. In general, an individual’s
fitness is now given by

T
W= / £t y(e), 5(0), u(t), @) dt,  (6)
0

where the sizes y;(¢) of all individuals in the group,
i=1,..., N obey the same growth equation

dy; _ _
U gt wi(0), 70, wi(0), 5(0), :(0) = o (7)
Consider a monomorphic population using the opti-
mal strategy, v*(t) and define the Hamiltonian

H(t7 Y, ga u, 1,_1,, /\ya )‘37) = f(t) Y, g) u, 1_1‘)
+Ay (D)9 (t,y, 9, u,8) + Ag(t)g(t, 9, 9,4, %).  (8)

As in §3, Ay(t) is the marginal return of a free in-
crement in individual size at time t. Now, however,
we have introduced a second ‘costate’ variable, Ay
that corresponds to the group mean state variable,
§. Ag(t) is the marginal return to the individual of
a free increment in group mean size at time t. If the
dependence of an individual’s fitness on the group
mean size results from competitive effects, we might
expect Ayz(t) to be negative.

To characterize the ESS allocation strategy we
again imagine a population monomorphic at u*(¢),
and we consider the inclusive fitness effect of an indi-
vidual altering its allocation strategy slightly at time
t. Note that now the inclusive fitness effect AWy (¢)
is a function of time. This effect is quite complicated
because changes in allocation strategy at time ¢ not
only affect reproductive output at time ¢, but at all
future times as well. In fact there are six different
pathways through which a change in allocation strat-
egy at time ¢t affects fitness (figure 1). The sum of all
of these effects can, however, be computed easily us-
ing the Hamiltonian (equation (8)). In fact figure 1
shows that

AI/Vinc:l(t): 6_H +R Qg .
Ou 0t / Lu(y=u~(t

This suggests the following theorem.

Theorem 4.1. Let u*(t) denote the optimal strat-
egy, R the relatedness of two randomly chosen in-
dividuals within a patch (with replacement), and
AWina(t) the inclusive fitness effect of a (local) mu-
tant strategy at time t. If u*(t) is an ESS then

8H _ d),

(i) ERr T Ay (T) =0, (9a)
OH  d)
=B N =, (90)
if0<u*<1 then AWina(t) =0,
(i) ifu*=0 then AWina(t) <0, ¢ (9¢)
ifu*=1 then AWy (t) >0,

where everything is evaluated in a monomorphic pop-
ulation (i.e. y =7 = y*, u=u = u*).
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Figure 1. Six pathways through which an individual’s inclusive fitness is affected by a change in its allocation strategy
at time ¢. Pathways al, a2 and a3 arise through the effects of changing u(t). Pathways b1, b2 and b3 arise because
of the change in the patch average allocation strategy u(t) that results from the individual changing its own strategy.
This individual is one of N individuals in the patch and therefore changing its u by one unit will change @ by (1/N)

units.

A thorough proof turns out to be quite lengthy and
involves formulating the model as a standard con-
trol problem with one genotypic control variable and
N +1 state variables, and then applying the standard
maximum principle and evaluating the results in a
monomorphic population. Figure 1 however, serves
as a partial, heuristic proof.

Notice the similarity of conditions (9 ¢) with those
for inclusive fitness models of single decisions (equa-
tion (1)). By defining the costate variables Ay (t)
and Ay(t) and introducing the Hamiltonian (equa-
tion (8)), the complicated dynamic kin selection
problem is converted into a temporal sequence of sim-
ple static kin selection problems where the Hamil-
tonian now serves as the fitness function. The re-
sult is that Hamilton’s rule must be satisfied at each
point in time along the ESS strategy u*(t). (3H/0u)
is the effect on fitness when an individual varies its
own strategy u(t) and (0H/0u) is the effect on the
fitness of each group member of varying the popu-
lation mean strategy @(t). Of course to determine
the inclusive fitness effect at any point in time (i.e.
AVVinC](t) = [(BH/Gu) + R(aH/a’L—L)]u(t):u*(t)) one
needs to know the values of the marginal return func-
tions Ay(t) and Ay(t) at that point in time. Equa-
tions (9a), (9b) specify the time dynamics of these
marginal returns when the optimal strategy is used,
just as equation (5a) specified the dynamics of the
marginal return for an increment in y in § 3.

To take a concrete example, suppose the plant’s
production rate, b(y, ), depends on both y and 7,
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and that there is a constant size-independent mortal-
ity rate u. The rate of reproductive output at time
t is therefore f(y,7,u) = (1 — u)e #*b(y,¥), and the
growth rate at time ¢ is g(y;, ¥, u) = ub(y;, 7). In this
example f and g are independent of @ and therefore
pathways bl, b2 and b3 of figure 1 disappear. Now
form the Hamiltonian

H = (1-u)e™"b(y, §)+Ayub(y, ) +Agub(7, 7). (10)
Assuming that b(y,§) > 0, condition (9¢) is

if 0 < u* <1 (mixed allocation),

then \y(t) + \g(t)R=e"#, (1la)
if u* = 0 (pure reproduction),

then A\y(t) + \g(t)R < e ™,  (11b)
if u* =1 (pure growth),

then \y(t) + \g()R = e .  (1l¢)

The right-hand side of inequalities (11 a)—(11¢) is the
inclusive fitness effect of a unit increment in repro-
duction at time t; it decays exponentially through
mortality. The left-hand side is the inclusive fitness
effect of a unit increment in size. If an individual’s
size was increased at time t it would gain A,(t)
through its own size increase, plus Ay(t)R through
the effect that this size increase has on all group
members from the change in §. Condition (11 a) says
that if mixed allocation is an ESS over some inter-
val of time, then the inclusive fitness effect of a unit
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increment in growth must equal that of reproduc-
tion. Condition (11b) says that if a pure reproduc-
tion strategy is an ESS over some interval of time,
then the inclusive fitness effect of a unit investment
in reproduction must be at least as big as that of
growth (and vice versa for condition (11c)).

Under a minor technical assumption, it is relatively
easy to show that «*(t) = 1 up until some time ¢*
and then u*(¢) = 0 from that time onward, where t*
is defined by the equation

t*:T+/%ln (1— <p/<§§+}zg—g))). (12)

5. DISCUSSION

The maximum principle is an important tool for
addressing problems of dynamic optimization. Its use
in evolutionary biology arises naturally in many con-
texts because many biological characters of inter-
est are ‘dynamic’ (Perrin & Sibly 1993). Similarly,
Hamilton’s rule is an important conceptual and an-
alytical tool for understanding evolution in the con-
text of kin selection. Its use in evolutionary biology
also has been widespread and fruitful. The ideas pre-
sented in this paper are an attempt to unify these
two tools so that the insights available through each
might be combined.

One of the nice results is the dynamic version of
Hamilton’s rule (equation (9c¢)). Using the Hamil-
tonian as the fitness function, Hamilton’s rule must
be satisfied at all times (see also McNamara et al.
1994). The simplicity of this result is appealing. Be-
cause dynamic optimization models are often com-
putationally difficult even without kin selection, it is
significant that the incorporation of kin selection still
results in a functional analytical tool. Additionally,
the dynamic version of Hamilton’s rule can serve as
a conceptual tool as well, even without obtaining ex-
plicit solutions for the ESS strategy u*(t) (e.g. see
equations (11a)—(11c)).

Although our exposition was couched largely in
terms of the evolution of general life history at-
tributes, these ideas can be used to construct kin se-
lection models for the evolution of any dynamic char-
acter. For example, we are using these ideas to model
the evolution of temporal patterns of cooperation or
altruism (Day & Taylor 1997). Most previous theo-
retical accounts for the evolution of cooperation seek
a single, evolutionarily stable level of cooperation.
However, when individuals interact over a period of
time, maintaining a constant level of cooperation or
altruism is not necessarily the best strategy.

Although there are a wide variety of biolog-
ical questions that can be addressed using this
framework, certain caveats should also be born in
mind. Our assumption of a monomorphic population
greatly simplifies the results but it also implies an un-
derlying degree of symmetry among group members
that may not always be valid. For example, the ap-
proach would have to be altered if there are asymmet-
ric interactions between different types of individuals
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within a group. This is an important extension that
we are presently exploring.

Additionally, the present results make the assump-
tion that relatedness, R, remains constant over the
interval of time in question. Since R is the average re-
latedness over all patch members including the actor,
this assumption is problematical if the number of in-
dividuals within the patch changes. Thus for models
which include mortality (such as the plant life history
example above) this assumption is reasonable only
if mortality is regarded primarily as ‘patch’ mortal-
ity or if the number of individuals within a patch
is large and individual mortality rates are low. Dy-
namic models which allow patch size, and thus relat-
edness, to change through time are mathematically
more difficult but are biologically important and we
are currently considering how to extend the present
results in this direction.

Also, the above results have been presented for uni-
variate ‘state’ and ‘control’ variables, y(t) and u(t).
For many biological questions, one requires multi-
variate state and control variables to adequately de-
scribe individuals (e.g. perhaps an individual can
allocate resources to several different organs; there
would need to be a state and control variable for
each). In the proof of the above theorem we extend
the approach to allow for vector state and control
variables as well as more general fitness functions
(Day & Taylor, unpublished results).

Lastly, we note that in the above formulation, the
allocation strategy (or control variable) u(t) is con-
sidered to be genetically programmed for each indi-
vidual. That is, each individual is programmed with
a strategy u(t) that it uses throughout the season and
individuals do not deviate from this course of action
(an ‘open-loop’ strategy; Basar & Olsder 1982). This
will be accurate only to the extent that the system
is deterministic and individuals cannot change their
strategy during the season in response to their cur-
rent situations. Including the effects of stochasticity
increases the complexity of models significantly. The
ESS strategy then must be specified in a conditional
or feedback form to account for all possible situa-
tions that an individual might encounter at all times
(a ‘closed-loop’ strategy; Basar & Olsder 1982). In
such cases one would likely have to employ numeri-
cal procedures.
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funded by an Ontario Graduate Scholarship to T.D. and
a grant from the Natural Sciences and Engineering Re-
search Council of Canada to P.D.T.
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