<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Time</th>
<th>Place</th>
<th>Speaker</th>
<th>Title</th>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, March 26</td>
<td>Curves Seminar</td>
<td>3:00 p.m. - 4:30 p.m.</td>
<td>Jeffery 319</td>
<td>Mike Roth</td>
<td>Giambelli formula II</td>
<td>Attached</td>
</tr>
<tr>
<td>Thursday, March 27</td>
<td>CYMS Seminar</td>
<td>12:30 p.m. - 2:00 p.m.</td>
<td>Jeffery 422</td>
<td>Andre Perunicic, Queen’s University</td>
<td>Schoen’s Quintic Part III</td>
<td>Attached</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hector Pasten</td>
<td>Counting intersections without multiplicities</td>
<td></td>
</tr>
<tr>
<td>Thursday, March 27</td>
<td>Math Club</td>
<td>5:30 p.m. - 6:30 p.m.</td>
<td>Jeffery 118</td>
<td>Jennifer Wilson, University of Chicago</td>
<td>How many surfaces are there?</td>
<td>Attached</td>
</tr>
<tr>
<td>Friday, March 28</td>
<td>Number Theory Seminar</td>
<td>11:30 a.m.</td>
<td>Jeffery 422</td>
<td>Alia Hamieh, Queen’s University</td>
<td>q-analogues of some Dirichlet series</td>
<td>Attached</td>
</tr>
<tr>
<td>Friday, March 28</td>
<td>Department Colloquium</td>
<td>2:30 p.m.</td>
<td>Jeffery 234</td>
<td>Asia Matthews, Queen’s University</td>
<td>Thinking mathematically and mathematics problems in undergraduate education</td>
<td>Attached</td>
</tr>
<tr>
<td>Monday, March 31</td>
<td>Algebraic Geometry Seminar</td>
<td>4:30 p.m. - 5:30 p.m.</td>
<td>Jeffery 319</td>
<td>Jenny Wilson, University of Chicago</td>
<td>Stability phenomena for sequences of representations of the classical Weyl groups</td>
<td>Attached</td>
</tr>
</tbody>
</table>

Items for the Info Sheet should reach Anne (burnsa@mast.queensu.ca) by noon on Monday. The Info Sheet is published every Tuesday.

Wednesday, March 26, 3:00 p.m. Jeffery 319

Curves Seminar

Speaker: Mike Roth
Title: Giambelli formula II

Abstract: We will finish the proof of the Pieri rule, and use it to prove the Giambelli formula.

Thursday, March 27, 12:30 p.m. Jeffery 422

CYMS Seminar

Speaker: Andre Perunicic
Title: Schoen’s Quintic Part III

Abstract: Schoen studied the geometry of a certain quintic which arises as a determinantal section of an indecomposable rank 2 vector bundle on \mathbb{P}^4. The quintic is singular at 125 nodes, and its blowup is rigid and modular. We will discuss the geometry of this quintic and its blowup.
Speaker: Hector Pasten
Title: Counting intersections without multiplicities

Abstract: When one counts points in algebraic geometry (say, intersection points of two curves in the plane, or number of pre-images of a point by a morphism) it is common to consider suitable multiplicities in the counting, otherwise the problem is too difficult. Sometimes, this leads to numbers that do not answer the original question. In this talk I will explain what are truncated counting functions from Nevanlinna theory and how they are supposed to solve this issue.

Thursday, March 27, 5:30 p.m. Jeffery 118
Math Club
Speaker: Jennifer Wilson
Title: How many surfaces are there?

Abstract: The answer, of course, depends on your definition of "surface". In this talk we'll discuss topological and geometric notions of surfaces, how to construct them, and how to tell them apart. We'll play with disks, spheres, tori, and Klein bottles -- and we'll see how to solve a classical classification problem by drawing triangles and arrows.

Friday, March 28, 11:30 a.m. Jeffry 422
Number Theory Seminar
Speaker: Alia Hamieh
Title: q-analogues of some Dirichlet series

Abstract: In this talk we define q-analogues of some Dirichlet series and investigate the arithmetic properties of their special values at positive integers. We focus on the work of Krattenthaler, Rivoal and Zudilin which studies the values $\zeta_q(s)$, $s = 1, 2, \ldots$, where q is a complex number with $|q| < 1$ and ζ_q is the q-analogue of the Riemann zeta function. They establish a lower bound for the dimension of the \mathbb{Q}-vector space spanned by $1, \zeta_q(3), \zeta_q(5), \ldots, \zeta_q(2A + 1)$, where q is such that $\frac{1}{q}$ is an integer different from ± 1. In particular, infinitely many $\zeta_q(2k + 1)$ are irrational.

Friday, March 28, 2:30 p.m. Jeffery 234
Department Colloquium
Speaker: Asia Matthews
Title: Thinking mathematically and mathematics problems in undergraduate education

Abstract: Asking interesting mathematical questions, forming dynamic mental pictures and symbolic structure, monitoring and justifying form and procedure: these are examples of mathematical thinking which are valued at the undergraduate level of mathematics education but which are not reinforced by routine exercises. I will talk about second year students doing non-routine, unfamiliar problems and the thinking that arises from these problem sessions.

Monday, March 31, 4:30 p.m. Jeffery 319
Algebraic Geometry Seminar
Speaker: Jenny Wilson
Title: Stability phenomena for sequences of representations of the classical Weyl groups

Abstract: Over the past two years Church, Ellenberg, Farb, and Nagpal have developed machinery for studying sequences of representations of the symmetric groups, using a concept they call an FI-module.
Their work provides a framework for describing certain stability phenomena for these sequences. I will give an overview of their theory and describe how it generalizes to sequences of representations of the Weyl groups in type B/C and D. I will outline some applications, including stability results for the cohomology of the complements of Coxeter hyperplane arrangements.