(; 3-0-0)		Probability II	STAT-353*
Textbook:	Fundamentals of Probability, 2nd Edition by S. Ghahramani (Prentice Hall)		
Instructor:	G. Takahara		
Prerequisite	e: STAT-251*; MATH	I 110 or 111 or 112 [*] ; MATH 281 [*] .	
Evaluation:	Homework Midterm Test Final Examination	20% 20% 60%	
Outline:			

- Multiple Random Variables: multivariate distributions, joint probability, density, and distribution functions, marginal distributions, independent random variables; order statistics; multinomial distribution; transformations of n random variables; beta, t, χ^2 and F distributions (Sections 8.4-8.7 of text and class notes).
- Expectations Involving Multiple Random Variables: expectation of a sum of random variables; covariance and correlation; calculating expectations by conditioning; multi-variate normal distributions (Sections 9.1-9.5 of text and class notes).
- *Limit Theorems*: moment generating functions; sums of independent random variables; markov and chebyshev inequalities; laws of large numbers; chernoff bounds and large deviations; central limit theorem (Sections 10.1-10.5 of text and class notes).
- *Statistics*: statistical inference, maximum likelihood estimation, bayesian estimation; confidence intervals (Class notes). and/or

Random Walks and Brownian Motion: random processes, counting sample paths, time and spatial homogeneity, independent increments, Markov property (Class notes).