Assignment 1, Due September 22

Numbered exercises refer to Bhatia.

1) Let \(n \) be a positive integer and \(\omega = e^{2\pi i/n} \).
Let \(W_n \) be the \(n \times n \) matrix with \((i, j) \)-entry \(\omega^{(i-1)(j-1)}, 1 \leq i, j \leq n \). Write out \(W_1, W_2, \) and \(W_3 \). Show that \(W_n \) is invertible and find \(W_n^{-1} \).

2) 1.1.1
3) 1.1.3
4) 1.2.1
5) 1.3.2

Math 421
Fourier Series
Autumn 2006

Topics Covered:

- Ch. 1, Fourier series and the heat equation
- Ch. 2, Convergence of Fourier series
- Ch. 3, Sine and cosine series, arbitrary periods, \(\sin(x)/x \), Gibbs’s phenomenon
- Ch. 4, Convergence in \(L^2 \) and \(L^1 \)
- Ch. 5, Applications: ergodic theorem, vibrating string
 - Fourier transform
 - Discrete Fourier transform (time permitting)
 - Wavelets (time permitting)

Instructor:
James A. Mingo, mingo@post, 533-2444

Office Hours: Jeffery 404
 - Tuesday: 1:30 - 2:30
 - Wednesday: 2:30 - 3:30

Grading Scheme:
- five assignments 40%
- midterm examination 30%
- final examination 30%.