Q.

AN ELEMENTARY PROOF OF BOTH CASES OF FERMAT'S LAST THEOREM.

JOHN H. URSELL

KINGSTON ON, KY, 4X6.

Wiles proved it with an advanced proof. See:

Wiles
Taylor-Wiles

Annals of Math.

books on it:
van der Poorten
Ram Murty
Kumar Murty

Etc.
FLT proved for exponent 4 by Fermat: proof extant. Fermat claimed to have proved that
\[x^n + y^n = z^n \]
has no solutions in non-zero integers \(x,y,z \) for each integer exponent \(n > 2 \). His proof is lost.

FLT fails when
We see that FLT holds for exponent \(mn \) if it holds for exponent \(n, m > 1 \) and integral.
So to complete it would suffice to prove it for all odd prime exponents \(p \).

FLT fails for odd prime exponent \(p \) if there exist relatively prime integers \(x,y,z \) such that \(p \) does not divide \(xyz \) but \(x^p + y^p = z^p \).

FLT fails for odd prime exponent such that \(p \) divides \(xyz \) but \(x^p + y^p + z^p = 0 \).
Consider FLT 1 for \(p > 5 \).

Let rel prime integers \(x, y, z \) exist such that \(p \) does not divide \(xyz \) but \(x^p + y^p + z^p = 0 \). We obtain a contradiction, proving FLT 1.

\[
(y + z) \text{ and } \left(\frac{y^p + z^p}{y + z} \right) \text{ have gcd 1, so both are } p \text{th powers.}
\]

Let \(y + z = a^p \) with \(a \mid x \)

\[
3 + x = b^p \text{ with } b \mid y
\]

and \(x + y = c^p \) with \(c \mid z \).

\[
\begin{align*}
2x &= b^p + c^p - a^p \\
2y &= c^p + a^p - b^p \\
2z &= a^p + b^p - c^p
\end{align*}
\]

so

\[
(b^p + c^p - a^p)^p + (c^p + a^p - b^p)^p + (a^p + b^p - c^p)^p = 0 \quad \text{(1)}
\]
One of \(x, y, z \) is even. Let \(y, z \) be odd. Then \(a^k \) is even; \(a \) is even. Let \(2^k \mid x \), \(2^{(k+1)} \mid x \) \(\forall k \geq 1 \) and integral. Then \(2^k \mid a^k \), \(2^{(k+1)} \mid a \).

Look at (1). Each term is in

\[
\frac{p!}{u!v!w!} (a^u)(b^v)(c^w)
\]

where \(u, v, w \) are integers \(\geq 0 \) and \(u + v + w = p \).

If \(u, v, w \) are all odd, then we get

\[
-3 \frac{p!}{u!v!w!} (a^u)(b^v)(c^w)
\]

Take this to the other side and add terms to make

\[3(a^l + b^l + c^l)\]

We get
$$3(a^2+b^2+c^2)^p = 4(a^2+b^2)^p - 4c^{2p}$$
$$+ 4(b^2+c^2)^p - 4a^{2p}$$
$$+ 4(c^2+a^2)^p - 4b^{2p}$$
$$+ 2a^{p}\, \text{and terms in } a^{2p}$$

(a)

$$a^2+b^2+c^2 = 2(x^2+y^2+z^2), \text{ so}$$

$$2^{p+1} \left| \frac{3}{2} (a^2+b^2+c^2)^p \right.$$

- $$2^{p+1} \mid \text{Each term in } a^{2p}$$
- $$2^{p+1} \mid 2a^p (b^2+c^2)^{p-1}$$
- $$2^{p+1} \mid 2a^p (b^2+c^2)^{p-1}$$

Modulo $$2^{p+5}$$ (a) is

$$0 \equiv 4(a^2+b^2)^p - 4b^{2p}$$
$$+ 4(c^2+a^2)^p - 4c^{2p}$$
$$+ 4(b^2+c^2)^p - 4a^{2p}$$.
This simplifies to
\[0 = 4aP \{ (b^p)^{p-1} + (c^p)^{p-1} \} + 4(b^p + c^p) \] —— (3)
but \(b^p + c^p = y + z + 2x \equiv 0 \pmod{2^{p+1}} \).

(3) is thus
\[0 = 4aP \{ (b^p)^{p-1} + (c^p)^{p-1} \} \pmod{2^{p+5}} \]
Divide by \(4aP \equiv 0 \pmod{2^{p+2}} \)
\[0 \equiv \{ (b^p)^{p-1} + (c^p)^{p-1} \} \pmod{2^3} \]
but \(b + c \) are odd and \((p-1) \) is even power. So \((b^p)^{p-1} \equiv 1 \pmod{8} \), etc.

So \(0 \equiv 2 \pmod{8} \),
This contradiction proves FLT 1.

Time is too short to give special proof for \(p = 3 \) differences.

I think that Fermat had this proof.