The Diophantine equation \(x^2 + y^4 = z^2 \) has no solutions in integers, perhaps.

We have \(x = k(mn) \), \(y^2 = k(n^2 - m^2) \), \(z = k(m^2 + n^2) \).

(1) Look at \(y^2 = k(n^2 - m^2) \) in integers. Otherwise, \(x = k(m^2 - n^2) \), \(y^2 = k(2mn) \), \(z = k(m^2 + n^2) \).

(2) Look at \(y^2 = k(2mn) \) in integers.

(1) Again: use \(k = 1 \) at first. \(y^2 = (m^2 - n^2) \).

So \(m^2 = y^2 + n^2 \). Thus \(m = (p^2 + q^2) \), \(y = 2pq \) or \((p^2 - q^2) \) and \(n = (p^2 - q^2) \).

Here in (1) again, with \(k = 1 \), we have 3 equally spaced squares, namely \(y^2, m^2 = (y^2 + n^2) \) and \(z = (m^2 + n^2) = (y^2 + n^2) + n^2 = (y^2 + 2n^2) \). I think Diophantus proved that 3 squares cannot be equally spaced. Verify?