THE TRADITIONAL AMALGAM OF QUANTUM THEORY AND SPECIAL RELATIVITY ADMITS A MAXIMUM PHOTON FREQUENCY

John H. Ursell
10, BOX 761, KINGSTON, ONTARIO, CANADA, K7L 4X6
currently on leave of absence from
Department of Mathematics and Statistics
Queen's University, Kingston, Ontario
Canada, K7L 3N6.

We show that in certain circumstances the traditional amalgam of quantum theory and special relativity admits a maximum photon frequency. This in turn shows that the said amalgam is self-contradictory.

Let a photon with frequency ν move along the direction of the unit vector \hat{u} and hit an electron and rebound in the direction \hat{v} backwards with frequency ν'.

Let the electron be moving before the collision in the direction of the unit vector \hat{f} perpendicular to \hat{u} with

\[\hat{f} \times \hat{u} = \hat{v} \]
velocity \(v \) cm/sec, \(v > 0 \). After the collision, let the electron move on with velocity \(w \) cm/sec, \(w > 0 \), in the direction of the unit vector \(\hat{t} = \hat{c} \sin(\phi) + \hat{f} \cos(\phi) \), inclined at angle \(\phi \) to its previous path. Let \(\hat{n} = -\hat{c} \cos(\phi) + \hat{f} \sin(\phi) \) be the unit vector perpendicular to \(\hat{t} \). Let the mass of the electron be \(m \) gms, the velocity of light be \(c \) cm/sec.

Conservation of momentum yields:

\[
\frac{hv}{c} \hat{t} + \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \hat{f} = -\frac{hv}{c} \hat{t} + \frac{mw}{\sqrt{1 - \frac{w^2}{c^2}}} \hat{n}
\]

This yields:

\[
\frac{hv}{c} = \frac{mw}{\sqrt{1 - \frac{w^2}{c^2}}} \sin(\phi)
\] \hspace{1cm} (1)

and

\[
\frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{mw}{\sqrt{1 - \frac{w^2}{c^2}}} \cos(\phi)
\] \hspace{1cm} (2)

Eliminate \(w \) from (2) and (3):
The collision is elastic and thus energy is conserved. Thus yields:

\[
\frac{h(y+y') \cos(\phi)}{c} = \frac{mv}{\sqrt{1-v^2/c^2}} \sin(\phi) - \tag{4}
\]

\[
= \frac{h \nu' c + mc^2}{\sqrt{1-v^2/c^2}} + mc^2 n - \tag{5}
\]

This gives:

\[
\frac{h(y-y')} + mc^2(1+\cos(\phi)) = \frac{mc^2}{\sqrt{1-v^2/c^2}} \sin(\phi) - \tag{6}
\]

and

\[
\frac{mc^2}{\sqrt{1-v^2/c^2}} - mc^2 \sin(\phi) = \frac{mc^2}{\sqrt{1-v^2/c^2}} \cos(\phi) - \tag{7}
\]

Eliminate \(n \) from (6) and (7),
\[r(\nu - \nu') + mc^2 \left(1 + \cos(\phi) \right) \left[\cos(\phi) \right] \]
\[= \left[\frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} - mc^2 \sin(\phi) \right] \sin(\phi) \]

Rewrite (8) as:
\[\left\{ r(\nu - \nu') \right\} \cos(\phi) + mc^2 \left(\cos^2(\phi) + \sin^2(\phi) \right) \]
\[= \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \sin(\phi) \]
This is:
\[\frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \sin(\phi) \left\{ r(\nu - \nu') \right\} + mc^2 \left(\cos^2(\phi) + \sin^2(\phi) \right) \]
\[= mc^2 \quad \text{(9)} \]

Recall that (4) is:
\[\frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \sin(\phi) = \frac{r(\nu + \nu')}{c} \cos(\phi) \]

Put (4) in (9) to eliminate \(\sin(\phi) \):
\[\left(\frac{c^2}{\nu} \right) \left(\frac{r(\nu + \nu')}{c} \right) \cos(\phi) - \left\{ r(\nu - \nu') + mc^2 \right\} \cos^2(\phi) \]
\[= mc^2 \quad \text{(10)} \]
This is:
\[\cos(\phi) \left[h \left(v + v' \right) - h \left(v - v' \right) v - mc^2 v \right] = mc^2 v \quad \text{(11)} \]

(11) gives
\[2\cos^2 \left(\frac{\phi}{2} \right) = 1 + \cos(\phi) \]
\[= \frac{\left[h(v+v') c - h(v-v') v \right]}{\left[h(v+v') c - h(v-v') v - mc^2 v \right]} \quad \text{(12)} \]

Suppose that the frame of reference \(\varepsilon \) cm/sec is such that \(\frac{\varepsilon}{c} \approx 0 \). Then
\[2\cos^2 \left(\frac{\phi}{2} \right) \approx \frac{2hv'c + hv \varepsilon}{h(v+v')c - mc^3 + hv \varepsilon} \]

Thus
\[\sec^2 \left(\frac{\phi}{2} \right) \approx (2 - \frac{mc^2}{hv}) \quad \text{(13)} \]

but in (4),
\[\tan(\phi) = \frac{h(v+v')}{mvc} \sqrt{1 - \frac{v^2}{c^2}} \quad \text{(14)} \]
(14) yields when \(v \cong c \):
\[
\tan(\theta) \approx 0.
\]
Thus \(\phi \approx 0 \) \hfill (15)

Put (15) in (13) and obtain:
\[
' = \sec^2(\theta) = \left(2 - \frac{mc^2}{\hbar v'} \right) \hfill (16)
\]
This yields
\[
v' = \frac{mc^2}{\hbar} \hfill (17)
\]

The corresponding wavelength
\(\lambda' \) is
\[
\lambda' = \frac{c}{v'} = \frac{\hbar}{mc}. \hfill \text{This is the Compton wavelength for the electron.}