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Abstract

The idea of sliding mode control for stabilisation is investigated to determine its
geometric features. A geometric definition is provided for a sliding submanifold, and
for various properties of a sliding submanifold. Sliding subspaces are considered for
linear systems, where a pole placement algorithm is given that complements existing
algorithms. Finally, it is shown that at an equilibrium for a nonlinear system with a
controllable linearisation, the sliding subspace for a linearisation gives rise to many local
sliding submanifolds for the nonlinear system. This theory is exhibited on the standard
pendulum/cart system.
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1. Introduction

In sliding mode control, the idea is that one provides a surface on which the dynamics
of the system, when restricted to the surface, have desired properties, e.g., all trajectories
asymptotically approach a desired equilibrium point. The surface should also have the
property that one can, by a suitable control law, force trajectories to the surface in finite
time. In this way, one can ensure that the system eventually behaves as behaves the system
on the surface. Sometimes, in applications, the surface is obtained via the use of a linearising
output. A rather thorough review of the classical notion of sliding mode control is provided
by Utkin [1992]. The topic is also covered in the book by Slotine and Li [1990], and a recent
book concerning sliding mode control is that of Edwards and Spurgeon [1998]. There is
also a significant number of journal papers devoted to sliding mode control, many of them
concerning specific applications of sliding mode control.

Our intent is to understand sliding mode control in a geometric way. In particular, we
wish to place the emphasis on understanding the relationship between the surface and the
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ambient system dynamics, and, by exploiting this understanding, to develop some intuition
for the design of sliding mode controllers. In this paper we consider this way of thinking
about sliding mode control for linear systems, and for nonlinear systems near equilibria
with controllable linearisations. The emphasis of the present paper is not so much to give
new results, but to understand in a different light existing results concerning sliding mode
control, and to better understand the very notion of sliding mode control. This insightful
manner of presenting sliding mode control will be explored in subsequent papers where our
different way of looking at things really does help to understand what one is doing.

In Section 2 we set up a general scheme for sliding mode control. We give general
definitions for various concepts related to sliding mode control. A key idea is the notion
of a “restriction” of a system, which helps to clarify what is typically referred to as the
“equivalent control.” We also present a simple example that illustrates our approach by
providing a simple, intuitive characterisation of all sliding mode controllers for the system.
We investigate in detail the linear case in Section 3. Here we look for subspaces on which
the dynamics can be specified to be stable. We provide a proof, different from that of Utkin
[1992], that one can achieve any characteristic polynomial on the sliding subspace. As a
corollary to our proof we provide a characterisation of all the ways in which one can obtain
a sliding subspace with a certain characteristic polynomial. For linear systems we also
provide algorithms, defined in a geometrically intuitive manner, that steer the system to a
given sliding subspace in finite time. Although there are many ways to do this, we consider
two, one being local in nature and using bounded controls, and the other being global, but
perhaps requiring unbounded controls. In Section 5 we consider nonlinear systems at an
equilibrium with a controllable linearisation. We show that for these systems the linear
sliding subspace defines a many local sliding submanifolds for the nonlinear system. For
the pendulum/cart system, we compare the performance of a sliding mode controller with
a LQR controller.

There is, of course, a wealth of papers which use sliding mode control, as it is often quite
effective in applications. The intent in this paper is to propose a way of thinking about
sliding mode control, and to illustrate that this way of thinking about sliding mode control
offers some nice insights into existing strategies. In future work we will explore how to use
our geometric approach in cases that are more interesting than those that are linear, or
have controllable linearisations. Since the preponderance of existing applications of sliding
mode control employ some sort of linear controllability assumption, this future work will
well exhibit the utility of a geometric approach such as is initiated in this paper.

2. A general picture of sliding mode control

In this section we develop our geometric approach to sliding mode control. We intend
to develop a sufficiently general picture to allow for applications more general than are
considered in this paper.

2.1. Setup. In this paper, for concreteness and to emphasise the geometric nature of our
constructions, we consider control-affine systems. By a control-affine system we mean a
triple Σ = (M,F = {f0, f1, . . . , fm}, U) where M is a smooth manifold of dimension n, F
is a collection of smooth vector fields on M , and U ⊂ Rm is the set within which controls
will take their values. Thus a controlled trajectory is a pair (ξ : I → M,u : I → U) of



Geometric sliding mode control: The linear and linearised theory 3

curves defined on the interval I ⊂ R with u measurable and which together satisfy the
differential equation

ξ̇(t) = f0(ξ(t)) +
m∑
a=1

ua(t)fa(ξ(t)).

Throughout the paper we make the assumption that the distribution F whose fibre at x ∈M
is defined by

Fx = spanR(f1(x), . . . , fm(x))

has constant rank. We do not wish that considerations of the exact nature of the control
set get in the way of our geometric constructions, so we ask that U = Rm, unless we state
otherwise. In practice, of course, one typically has only finite control action available. We
will consider the consequences of this at various times, but to simplify parts of the general
presentation we will take as default the case where control values are unrestricted. If X ⊂M
is an open submanifold then Σ|X denotes the control-affine system (X,F |X, U), where F |X
is the collection of vector fields in F , restricted to X.

2.2. Restrictions of control-affine systems. We wish to have our sliding submanifold have
the property that we may restrict the system to it. In cases when the restricted system
is unique, the control giving rise to this restriction is called the “equivalent control.” In
this section, we formulate this idea of restriction to a submanifold, and of characterising the
equivalent control, in a slightly different manner than is the norm. We consider control-affine
systems Σ = (M,F = {f0, f1, . . . , fm}, U = Rm) and Σ̃ = (S, F̃ = {f̃0, f̃1, . . . , f̃m̃}, Ũ =
Rm̃) with the property that S is a submanifold of M . We shall say that Σ̃ is a restriction
of Σ if for every controlled trajectory (ξ̃, ũ) for Σ̃ there is a control u for which (iS ◦ ξ̃, u) is a
controlled trajectory for Σ, where iS : S →M is the inclusion. A submanifold S is Σ-rigid
if

1. there is only one control-affine system Σ̃ = (S, F̃ , Ũ = Rm̃) that is a restriction of Σ
and if

2. F̃ = {f̃0} for some smooth vector field f̃0 on S.

The following result characterises Σ-rigid submanifolds.

2.1 Proposition: For a control-affine system Σ = (M,F , U = Rm) a submanifold S ⊂M
is Σ-rigid if for each x ∈ S we have TxM = TxS ⊕ Fx. Conversely, if S is Σ-rigid then
TxS ∩ Fx = {0}.

Proof: First suppose that TxM = TxS ⊕ Fx for each x ∈ S and let (ξ, u) be a controlled
trajectory for Σ passing through x at time, say, t ∈ R, and having the property that
ξ(I) ⊂ S. Then

ξ̇(t) = f0(x) +

m∑
a=1

ua(t)fa(x) ∈ TxS.

This means

f0(x) +
m∑
a=1

ua(t)fa(x)
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lies in the subspace TxS ⊂ TxM as well as lying in the affine subspace

f0(x) + Fx =
{
f0(x) +

m∑
a=1

uafa(x)
∣∣∣ u ∈ Rm

}
.

We claim that since TxM = TxS⊕Fx we have (f0(x)+Fx)∩TxS = {vx} for some vx ∈ TxM .
Indeed, let {v1, . . . , vk} be a basis for TxS and let {vk+1, . . . , vn} be a basis for Fx. The
equation

c1v1 + · · ·+ ckvk + ck+1vk+1 + · · ·+ cnvn = f0(x)

then has a unique solution for the constants c1, . . . , cn. We also have

TxS ∋ c1v1 + · · ·+ ckvk = f0(x)− ck+1vk+1 − · · · − cnvn ∈ f0(x) + Fx,

so it follows that (f0(x) + Fx) ∩ TxS ̸= ∅. To show that the intersection consists of a
single vector also follows from elementary linear algebra. This shows that TxM = TxS⊕Fx

implies that (f0(x) + Fx) ∩ TxS = {vx} for some vx ∈ TxM , thus showing that there is a
unique vector f1(x) ∈ Fx for which f0(x)+f1(x) ∈ TxS. Thus S is indeed Σ-rigid by taking
F̃ = {f0 + f1}, thinking of f0 + f1 as being a vector field on S.

Conversely, suppose that S is Σ-rigid. Then for each x ∈ S there exists a unique
f1(x) ∈ Fx with the property that f0(x)+f1(x) ∈ TxS. Let us abbreviate vx = f0(x)+f1(x).
Thinking of f0(x) + Fx and TxS as submanifolds of TxM this means that Tvx(f0(x) + Fx)
and Tvx(TxS) intersect in {0}. However, since Tvx(f0(x) + Fx) ≃ Fx and Tvx(TxS) ≃ TxS
this part of the proposition follows. ■

In the case that TxM = TxS ⊕ Fx, let prS : TM |S → TS be the projection onto the
tangent bundle of S and let prF : TM |S → F|S be the projection onto the input distribution
on S, both defined with respect to the decomposition TxM = TxS ⊕ Fx.

2.2 Remark: In most of the literature on sliding mode control, sliding surfaces are assumed
to be rigid. The equivalent control is then often characterised by considering the limits of
closed-loop controls off the sliding surface as they approach the sliding surface. It is not
perfectly obvious that the equivalent control defined in this way is unique, i.e., does not
depend on the control off the surface. The characterisation of Proposition 2.1 makes this
clear. Indeed, the equivalent control uS : S → Rm is defined as satisfying

prF

(
f0(x) +

m∑
a=1

uaS(x)fa(x)
)
= 0, x ∈ S.

Note that for the equivalent control to really be unique, the vector fields {f1, . . . , fm} should
be linearly independent. If this is not true, then one should really say that the vector field∑m

a=1 u
a
Sfa is unique, even though the coefficients uaS , a ∈ {1, . . . ,m}, are not. In either

case, the important thing is that the dynamics on S are simply prescribed by the vector
field f̃0 that is defined by

f̃0(x) = prS(f0(x)), x ∈ S. •

2.3. Sliding submanifolds and their properties. In this section we provide a general char-
acterisation of sliding submanifolds and some of the properties they may possess. If S ⊂M ,
iS : S →M denotes the inclusion.
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2.3 Definition: Let Σ = (M,F , U) be a C∞ control-affine system and let x0 ∈M .

(i) A sliding submanifold for (Σ, x0) is a C
∞ submanifold ofM\{x0} with the following

properties:

(a) x0 ∈ cl(S);

(b) TxS + Fx = TxM .

(ii) A sliding submanifold S for (Σ, x0) is C
r, r ∈ Z+, if S ∪ {x0} is a Cr submanifold of

M .

(iii) A sliding submanifold S for (Σ, x0) is rigid if it is Σ-rigid.

(iv) For a rigid sliding submanifold S for (Σ, x0), let f̃0 be the vector field induced on S.
S is stabilising if there exists a map T : S → ]0,∞] so that the solution to the initial
value problem

ξ̇(t) = f̃0(ξ(t)), ξ(0) = x,

is defined on [0, T (x)[ and satisfies limt↑T (x) ξ(t) = x0.

(v) For a sliding submanifold S for (Σ, x0), let Σ̃ = (S, F̃ = {f̃0, f̃1, . . . , f̃m̃, Ũ) be the
restriction to S. S is Cr-stabilisable , r ∈ Z+, if there exists a C

r function ũ : S → Ũ
and a map T : S → ]0,∞] so that the solution to the initial value problem

ξ̇(t) = f̃0(ξ(t)) +
m̃∑
a=1

ũa(ξ(t))f̃a(ξ(t)), ξ(0) = x,

is defined on [0, T (x)[ and satisfies limt↑T (x) iS ◦ ξ(t) = x0.

(vi) A sliding submanifold S is locally attracting if for any Tmax > 0 there exists a
neighbourhood N of S in M and a map T : N \ S → ]0, Tmax] with the property that
for each x ∈ N\S there is a control u : [0, T (x)[→ U so that the solution to the initial
value problem

ξ̇(t) = f0(ξ(t)) +

m∑
a=1

ua(t)fa(ξ(t)), ξ(0) = x,

is defined on [0, T (x)[ and limt↑T (x) ξ(t) ∈ S.

(vii) A sliding submanifold S is smoothly locally attracting if there exists a C∞ section
fcl of the vector bundle F|(M\S) so that for any Tmax > 0 there exists a neighbourhood
N of S inM and a map T : N\S → ]0, Tmax] with the property that for each x ∈ N\S
the solution to the initial value problem

ξ̇(t) = f0(ξ(t)) + fcl(ξ(t)), ξ(0) = x,

is defined on [0, T (x)[ and limt↑T (x) ξ(t) ∈ S.

(viii) A local sliding submanifold for (Σ, x0) is a sliding submanifold for (Σ|X, x0) where
X is a neighbourhood of x0 in M . •
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2.4 Remark: 1. We exclude x0 from being in S in order to allow certain examples where
it is helpful to be able to design S to have a singularity at x0.

2. In part (v) of the definition, one can allow other forms of stabilisability of the restric-
tion to S, if desired. •

2.4. A nonlinear controller for a simple linear system. To give an indication of how one
may use the geometric approach, we consider a rather simple example,

ẋ1 = x2

ẋ2 = u,
(2.1)

and we see what it might mean to design a “sliding mode controller” for the system that
stabilises x0 = (0, 0). In terms of the definitions of the preceding section, we shall design a
rigid stabilising smoothly locally attracting sliding submanifold S. Let us write (2.1) as a
single-input control affine system Σ = (R2,F = {f0, f1}, U) where

f0(x1, x2) = x2
∂

∂x1
, f1(x1, x2) =

∂

∂x2
.

We first choose S so that it contains x0 in its closure. Next we must choose S so that the
system (2.1) restricts to it. By Proposition 2.1 this means that we should choose S so that,
away from x0, TxS is not parallel to the vector (0, 1). Another requirement of S is that the
dynamics, when restricted to S as in Proposition 2.1, should have x0 as an asymptotically
stable “equilibrium point.” The geometry underlying this second condition is more subtle
to understand, but can still be done in an intuitive manner by considering the vector field
f0, and how it influences the restriction to S. In Figure 1 we show how this produces a

S

f0(x)

TxS

x ∈ S

f̃(x)

S

f0(x)

TxS

x ∈ S
f̃(x)

Figure 1. The character of the restricted dynamics in the (−,+)-
quadrant (left) and in the (+,+)-quadrant (right)

vector field f̃0 on S for x2 > 0. We see that when x1 > 0 the restricted dynamics on S
renders x0 unstable, whereas the behaviour on S is desirable for x1 < 0. Thus we are forced
to ask that S intersect the upper half plane only in the (−,+)-quadrant. Similar arguments
demand that S intersect the lower half place in the (+,−)-quadrant.

At this point we have a pretty good idea of what a stabilising rigid sliding surface
may look like. It must be the graph of a strictly decreasing function that passes through
x0 = (0, 0). The only remaining issue to confront is how it should pass through x0. It may
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easily be checked that as long as S does not have a vertical tangency at x0, the dynamics
on S, and the control giving rise to these dynamics, is well behaved. However, vertical
tangencies are also allowed for S at x0, provided that they are not “too vertical.” We shall
not address this in the present paper, although it will be investigated in a future paper.

Now that we have a sliding surface on which the dynamics behave in a satisfactory
manner we should set about forcing the system trajectories near S to reach the sliding
surface in finite time. In fact, in this example one can easily design bounded controls that
steer the system to S in finite time, although this time will not be uniformly bounded. In
Figure 2 we show the closed-loop phase portrait for the system having chosen

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 

x1

x
2

Figure 2. Phase portrait for closed-loop controller with a sliding
surface S = {(x1,−x1) | x1 ∈ R}

S = {(x1, x2) ∈ R2 \ {(0, 0)} | x1 = 1
2x

2
2},

and having chosen a constant control (of magnitude 5 in this case) away from S to steer to S.
Note that S is a C1 rigid, stabilising submanifold. An interesting feature of this particular
sliding submanifold is that the control required to stay on S has constant magnitude 1.
Thus the closed-loop phase portrait of Figure 2 is obtained with controls taking values in
the set {−5,−1, 1, 5}.

3. Geometric sliding mode control for linear systems

The ideas so far have been general in character. In this section we consider the particular
case of linear systems and rigid sliding subspaces. The results in this case are known, of
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course [e.g., Utkin 1992, §7.2]. However, our approach is slightly different. This leads to,
for example, a complete characterisation in Proposition 3.2 of rigid sliding subspaces and
how to obtain them.

We let U and V be R-vector spaces of dimensionm and n, and say that a linear system
on V with inputs in U is a pair Λ = (A,B) with A ∈ L(V;V) and B ∈ L(U;V). Note that
a linear system is also a control-affine system, so all the definitions of Section 2 apply. As
usual the equations governing the linear system Λ are

ξ̇(t) = A(ξ(t)) +B(u(t)). (3.1)

We will assume without loss of generality that B is injective. (If it is not, let Ũ = U/ ker(B)
and B̃(u+ker(B)) = B(u). Then (A, B̃) is a linear system on V with inputs in Ũ , and B̃ is
injective. Furthermore, if (ξ, u) is a controlled trajectory for (A,B) then (ξ, u+ ker(B)) is
a controlled trajectory for (A, B̃).) A sliding submanifold for (Λ, 0) that is also a subspace
is a sliding subspace .

Our objective in this section is to consider a systematic method for producing sliding
subspaces on which the dynamics have a prescribed characteristic polynomial. This is done
in Section 3.1. In Section 3.2 we consider the problem of steering the system to the sliding
subspace in a systematic way. In doing so, we provide a geometric characterisation of the
standard output-based sliding mode control law. Our characterisation does not rely on the
presence of an output (typically denoted “s” in the sliding mode control literature).

3.1. Sliding subspaces for linear systems. If S is a rigid sliding subspace for Λ = (A,B)
then we must have V = S ⊕ image(B). Denote prB : V → image(B) and prS : V → S the
projections relative to the direct sum decomposition in this case. The inclusions we denote
iB : image(B) → V and iS : S → V. The vector field on S obtained by restriction of the
system (3.1) will be obtained by projecting A(x) to S for x ∈ S. The control at x ∈ S will
then be the unique (since B is assumed injective) u ∈ U satisfying B(u) = −prB(A(x)).

The following result provides the essential feature of the preceding constructions. If L ∈
L(V;V) then spec(L) ⊂ C denotes the eigenvalues of L and if P ∈ R[λ] then spec(P ) ⊂ C
denotes the roots of P .

3.1 Theorem: Let V and U be R-vector spaces of dimension n and m, respectively, and let
A ∈ L(V;V) and B ∈ L(U;V) be linear maps with the property that (A,B) is controllable.
If P ∈ R[λ] is a monic polynomial of degree n−m then there exists a subspace S with the
following properties:

(i) V = image(B)⊕ S;

(ii) spec(AS) = spec(P ) where AS = prS ◦A ◦ iS.

Proof: Let us choose a linear map F0 ∈ L(V;U) for which there exists bases {v1, . . . , vn} for
V and {u1, . . . , um} for U having the property that the representations of A+B ◦F0 and B
in these bases are in Brunovsky form. Thus, letting the matrix representation of A+B ◦F0

be denoted A ∈ Rn×n and the matrix representation of B be denoted B ∈ Rn×m we have

A =


Jκ1 0 · · · 0
0 Jκ2 · · · 0
...

...
. . .

...
0 0 · · · Jκm

 , B =


eκ1 0 · · · 0
0 eκ2 · · · 0
...

...
. . .

...
0 0 · · · eκm

 ,
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where

Jκj =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


︸ ︷︷ ︸

κj


κj , eκj =


0
0
...
0
1




κj , j ∈ {1, . . . ,m},

and where κ = (κ1, . . . , κm) are the controllability indices. Now consider an arbitrary
F ∈ Rm×n and write it as

F =


f11 f12 · · · f1m

f21 f22 · · · f2m
...

...
. . .

...
fm1 fm2 · · · fmm,


for f jk ∈ R1×κk , j, k ∈ {1, . . . ,m}. Let us write f jk as

f jk =
[
fjk1 fjk2 · · · fjkκk

]
.

We shall decompose Rm×n as R(m−1)×n ⊕R1×n by writing F ∈ Rm×n as

F =


f1
...

fm−1

0

+


0
...
0
fm

 , (3.2)

where f j ∈ R1×n, j ∈ {1, . . . ,m}. We denote by π1(F ) the first term on the right-hand
side of the above equation, and by π2(F ) the second term.

We now consider the single input bm = (0, . . . , 0, 1). We claim that the determinant of
the controllability matrix for the single-input system (A+BF , bm) depends only on π1(F ).
That is to say, if F 1,F 2 ∈ Rm×n have the property that π1(F 1 − F 2) = 0, then

det
[
bm (A+BF 1)bm · · · (A+BF 1)

n−1bm
]

= det
[
bm (A+BF 2)bm · · · (A+BF 2)

n−1bm
]
.

Indeed, if π1(F 1 − F 2) = 0 then there exists f ∈ R1×n so that

F 2 = F 1 +


0
...
0
f

 .
In this case we have

BF 2 = BF 1 + bmf ,
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and one easily shows by induction that[
bm (A+BF 2)bm (A+BF 2)

2bm · · · (A+BF 2)
n−1bm

]
=

[
bm (A+BF 1)bm (A+BF 1)

2bm · · · (A+BF 1)
n−1bm

]
+
[
0 lc(bm) lc(bm, (A+BF 1)bm) · · · lc(bm, (A+BF 1)bm, . . . , (A+BF 1)

n−1bm
]
,

where lc(v1, . . . ,vk) stands for some linear combination of the vectors v1, . . . ,vk. By per-
forming determinant preserving column operations we may reduce the expression on the
right-hand side to that on the left-hand side, thus proving our claim.

The dependence of the controllability matrix for (A + BF , bm) only on π1(F ) allows
us to assert that there is an open, dense subset Oκ of R(m−1)×n with the property that
(A+BF , bm) is controllable if and only if π1(F ) ∈ Oκ. Now let P ∈ R[λ] be the polynomial
given in the statement of the theorem, and let Q ∈ R[λ] be monic, degree m, and coprime
with P . For each F 1 ∈ Oκ ⊂ R(m−1)×n ⊂ Rm×n there then exists a unique F F 1 ∈ π−1

1 (F 1)
with the property that

spec(A+BF F 1) = spec(P ) ∪ spec(Q).

Indeed, one constructs F F 1 by asking that fF 1
= π2(F F 1) be chosen so that

spec(A+BF 1 + bmfF 1
) = spec(P )spec(Q),

this being possible since F 1 ∈ Oκ. Since

B(F 1 + fF 1
) = BF 1 + bmfF 1

,

this does give the desired F F 1 . (Note the abuse of notation in the above equation. On the
left, fF 1

∈ R1×n, but one thinks of R1×n ⊂ Rm×n as per (3.2). On the right, one does
not think of fF 1

∈ R1×n as an element of Rm×n.) If one thinks for a moment about the
pole-placement algorithm, one sees that F 1 7→ F F 1 is a rational function in the (m − 1)n
components of the matrix F 1. Thus we have a subset AP,Q of Rm×n with the following
properties:

1. if F ∈ AP,Q then spec(A+BF ) = spec(P ) ∪ spec(Q);

2. AP,Q is the graph of a rational function over the open dense subset Oκ of R(m−1)×n.

By virtue of our choosing Q coprime to P , for every F ∈ AP,Q we have a decomposition
Rn = PF ⊕ QF into (A + BF )-invariant subspaces with the characteristic polynomial
of (A + BF )|PF being P , and the characteristic polynomial of (A + BF )|QF being Q.
Furthermore, again since Q and P are coprime, the Cayley-Hamilton theorem (essentially)
asserts that PF = ker(P (A+BF )). We will now show that it is possible to choose F ∈ AP,Q

so that PF ∩ image(B) = {0}. Since PF = ker(P (A+BF )), PF ∩ image(B) = {0} if and
only if for every b ∈ image(B) \ {0} we have P (A + BF )b ̸= 0. Equivalently, for every
u ∈ Rm \ {0} we should have P (A+BF )Bu ̸= 0. This means that P (A+BF )B should
be injective. We let Πm : Rn×m → Rm×m be the map that extracts from an n×m matrix
its top m rows. A matrix M ∈ Rn×m will be injective if (but not only if) det(Πm(M)) ̸= 0.
Thus, to show that we may choose F ∈ AP,Q so that PF ∩ image(B) = {0} it suffices to
show that the function

det
(
Πm

(
P (A+BF )B

))
,

thought of as a function on AP,Q, is not identically zero. The following technical lemma is
devoted to proving this fact.
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1 Lemma: There exists a curve α 7→ F α in AP,Q with the property that

α 7→ det
(
Πm

(
P (A+BF α)B

))
is a nontrivial polynomial in α.

Proof: We take

F α =


0 · · · α 1 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · α 1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · α 1 · · · 0
f1 · · · fρ1 fρ1+1 · · · fρ2 fρ2+1 · · · fρm−1 fρm−1+1 · · · fρm


where ρj =

∑j
i=1 κi, and where the last row of F α is chosen so that Aα ≜ A +BF α has

characteristic polynomial P (λ)Q(λ).
For i ∈ {1, . . . ,m} define integers ℓi by

ℓ1 = κm − 1, ℓ2 = ℓ1 + κm−1 − 1, . . . , ℓm = ℓm−1 + κ1 − 1.

For k ∈ {0, 1, . . . , n−m} define integers ri(k), i ∈ {1, . . . ,m}, as follows. For k = 0 we let

ri(0) =
i∑

j=1

κj , i ∈ {1, . . . ,m}.

For k ∈ {1, . . . , ℓ1} we let

ri(k) = κ1 + · · ·+ κi, i ∈ {1, . . . ,m− 1}
rm(k) = n− k.

Generally, for k ∈ {ℓj + 1, . . . , ℓj+1} define

ri(k) = κ1 + · · ·+ κi, i ∈ {1, . . . ,m− j − 1}
rm−j(k) = n− k − j

...

rm(k) = n− k.

If
P (λ) = λn−m + pn−m−1λ

n−m−1 + · · ·+ p1λ+ p0,

for k ∈ {0, 1, . . . , n−m} we denote by Pk the polynomial

Pk(λ) = λk + pn−1λ
k−1 + · · ·+ pn−kλ+ pn−k−1.

With this notation, we let Mα(k), k ∈ {0, 1, . . . , n − m}, be the m × m matrix whose
ith row is the ri(k)th row of Pk(Aα)B. Since ri(n − m) = i, i ∈ {1, . . . ,m}, Mα(n −
m) = Πm(P (Aα)B). A messy iterative computation shows that det(Mα(k)) is a monic
polynomial in α of degree ℓ1 + · · ·+ ℓj if k ∈ {ℓj , . . . , ℓj+1}. In particular, this calculation
shows that det

(
Πm(P (Aα)B)

)
is a monic polynomial of degree ℓ1+ · · ·+ ℓm, and from this

the lemma follows. ▼
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Continuing with the proof, since dim(PF ) = n −m and since PF ∩ image(B) = {0},
we now have Rn = PF ⊕ image(B). Going back now to the basis independent setting of
V and U we have shown the existence of F1 ∈ L(V;U) so that the linear map A + B ◦ F ,
F = F0 + F1, has the following properties:

1. there exists a decomposition V = PF ⊕QF of (A+B ◦F )-invariant subspaces so that
the characteristic polynomial of (A+B ◦F )|PF is P and the characteristic polynomial
of (A+B ◦ F )|QF is Q;

2. PF forms a complement to image(B) in V.

We now claim that S = PF has property (ii) in the statement of the theorem. Let v ∈ S.
Since S is (A+B ◦ F )-invariant, (A+B ◦ F ) ◦ iS(v) ∈ S. Also, since prS ◦B = 0 we have

(A+B ◦ F ) ◦ iS(v) = prS ◦ (A+B ◦ F ) ◦ iS(v) = prS ◦A ◦ iS(v).

Thus the characteristic polynomial of prS ◦A ◦ iS is the same as that of (A+B ◦F )|S, giving
the result. ■

The proof of the theorem suggests that it is actually quite easy to find the desired
subspace S. Indeed, the first part of the following result follows directly from the proof of
the theorem.

3.2 Proposition: Let V, U, A, B, and P be as in Theorem 3.1.
Let b ∈ L(R; image(B)) be nonzero and let Q ∈ R[λ] be a monic polynomial of degree

m coprime with P . Denote by L(V;U)b the open dense subset of L(V;U) with the property
that if F ∈ L(V;U)b then (A+B ◦ F, iB ◦ b) is controllable.

Consider the algorithm taking F0 ∈ L(V;U)b and producing a subspace S(F0) as follows:

(i) choose (by, say, Ackermann’s formula) the unique fF0 ∈ L(V;R) so that

spec(A+B ◦ F0 + b ◦ fF0) = spec(P ) ∪ spec(Q);

(ii) define FF0 ∈ L(V;U) by FF0(v) = F0(v) + fF0(v)b(1);

(iii) define S(F0) = ker(P (A+B ◦ FF0)).

Then, S satisfies conditions (i) and (ii) of Theorem 3.1 for all choice of F0, except for
a subset that is locally the intersection of zeros of a finite collection of analytic functions.

Conversely, if S is a rigid sliding subspace for which the characteristic polynomial of AS

is P , then there exists a monic degree m polynomial Q ∈ R[λ] coprime with P , a nonzero
b ∈ L(R; image(B)), and F0 ∈ L(U;V)b so that S = S(F0).

Proof: The only part that does not follow directly from the proof of Theorem 3.1 is the
second assertion. So let S have the properties that V = S⊕ image(B) and that spec(AS) =
spec(P ). Also let Q ∈ R[λ] be monic, degree m and coprime with P . We claim that
this implies that S is an invariant subspace for A + B ◦ F for some F ∈ L(U;V), and that
furthermore F may be chosen so that spec(A + B ◦ F ) = spec(P ) ∪ spec(Q). To see this,
note that relative to the decomposition V = S⊕ image(B) we may write

A =

[
AS A12

A21 A22

]
, B =

[
0
B2

]
,
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where B2 is invertible by our assumption that B is injective. Taking

F =
[
−B−1

2
◦A21 F2

]
gives

A+B ◦ F =

[
AS A12

0 A22 +B2 ◦ F2

]
.

Note that (A22, B2) is controllable, so our claim follows by taking F2 ∈
L(image(B); image(B)) so that A22 + B2 ◦ F2 has characteristic polynomial Q. It remains
to show that F ∈ L(U;V)b for some nonzero b ∈ L(R; image(B)). This, however, follows
since (A + B ◦ F,B) is controllable, and so there is some vector v ∈ image(B) for which
A+B ◦ F is cyclic on v. ■

3.2. Steering to the sliding subspace. Since S as constructed in Proposition 3.2 is transver-
sal to image(B) it follows immediately that it is possible to find a control law around S

that renders S attractive in finite time. In this section we explicitly indicate how to do
this in two ways. Of course, there are many ways to design a controller that renders S

attracting, at least near 0. Our intent is to design a specific control law in a manner that
benefits from our geometric way of thinking of things. One of our controllers is designed to
locally attract to S using bounded controls. The other gives a geometric interpretation of
the “usual” sliding mode control law.

First let us provide a locally valid controller that attracts trajectories near 0 to S in finite
time. To make clear the geometry behind our construction we endow the input space U with
an inner product ⟨·, ·⟩ and we denote by ∥·∥ the norm defined by this inner product. Since
B defines an isomorphism of U with image(B) (we are still assuming that B is injective),
the inner product may also be thought of as being on image(B) ⊂ V. We shall, without
indicating that we are doing so, write ⟨·, ·⟩ and ∥·∥ for the inner product and norm on both
U and image(B). For K > 0 we define uloc,K(x) ∈ U by asking that B(uloc,K(x)) be given
by

B(uloc,K(x)) = −K prB(x)

∥prB(x)∥
.

Thus B(uloc,K(x)) should be thought of as a tangent vector of length K at TxV and pointing
along image(B) towards the point prS(x) ∈ S. Note that on V \ S the dynamical system

ξ̇(t) = A(ξ(t)) +B(uloc,K(ξ(t)))

is C∞ and so it possesses maximal integral curves in the usual sense. When we refer to
maximal integral curves for this equation below, we mean for the system on the open subset
V \ S.

The control law uloc,K is sufficient to locally attract to S no matter the nature of A.
What’s more, the time to reach S can be uniformly bounded for points near 0.

3.3 Proposition: Let S ⊂ V be a rigid sliding subspace for Λ = (A,B). For any K,Tmax > 0
and for any neighbourhood X1 of 0 ∈ V, we may find a neighbourhood X0(K,Tmax,X1) of
0 ∈ V with the property that if ξ : [0, T (x)[→ V \ S is the maximal integral curve for the
initial value problem

ξ̇(t) = A(ξ(t)) +B(uloc,K(ξ(t))), ξ(0) = x ∈ X0(K,Tmax,X1) \ S, (3.3 )
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then

(i) T (x) ≤ Tmax,

(ii) ξ(t) ∈ X1 for t ∈ [0, T (x)[ , and

(iii) limt↑T (x) ξ(t) ∈ S.

Proof: For the proof let us extend the inner product ⟨·, ·⟩ on image(B) to all of V, and do
so in such a way that S is orthogonal to image(B). The extended inner product and norm
we still denote by ⟨·, ·⟩ and ∥·∥, respectively. The induced norm on L(V;V) we denote by
||| · |||. Denote by BR(x) the open ball of radius R centred at x.

Let us first obtain an estimate on the growth of ξ(t). We let ψ(x) = 1
2∥x∥

2 and compute

dψ

dt
(ξ(t)) = ⟨A(ξ(t)), ξ(t)⟩ − K

∥prB(ξ(t))∥
⟨prB(ξ(t)), ξ(t)⟩

= ⟨A(ξ(t)), ξ(t)⟩ −K∥prB(ξ(t))∥
≤ |||A|||∥ξ(t)∥2 = 2|||A|||ψ(ξ(t)),

where we have used the Cauchy-Bunyakovsky-Schwarz inequality. By Gronwall’s lemma it
now follows that

ψ(t) ≤ ψ(0)e2|||A|||t

=⇒ ∥ξ(t)∥ ≤ ∥ξ(0)∥e|||A|||t. (3.4)

Now let us obtain an estimate governing the behaviour of the distance of ξ(t) from S.
Define ϕ : V → R by ϕ(x) = 1

2∥prB(x)∥
2. We then have

dϕ

dt
(ξ(t)) =

〈
prB ◦A(ξ(t))), prB(ξ(t))

〉
−K∥prB(ξ(t))∥

≤ ∥prB ◦A(ξ(t))∥∥prB(ξ(t))∥ −K∥prB(ξ(t))∥

≤
(
|||prB ◦A|||∥ξ(t)∥ −K

)√
ϕ(ξ(t))

≤
(
|||prB ◦A|||∥ξ(0)∥e|||A|||t −K

)√
ϕ(ξ(t)),

where we have used the Cauchy-Bunyakovsky-Schwarz inequality along with (3.4). Applying
Gronwall’s lemma to the last inequality gives

ϕ(ξ(t)) ≤
(
C1∥ξ(0)∥(eC2t − 1) + C2(2

√
ϕ(ξ(0))−Kt)

)2
4C2

2

≤
(
C1∥ξ(0)∥(eC2t − 1) + C2(

√
2∥ξ(0)∥ −Kt)

)2
4C2

2

,

where
C1 = |||prB ◦A|||, C2 = |||A|||.

We define fα : R → R by

fα(t) = C1α(e
C2t − 1) + C2(

√
2α−Kt),



Geometric sliding mode control: The linear and linearised theory 15

We now show that for fixed positive constants C1 and C2, for any ϵ > 0 it is possible to
choose α so that fα has a root in [0, ϵ[ . To show this note that for t ∈ [0, ϵ] we have

fα(t) ≤ fα,ϵ(t) ≜ C1α(e
C2ϵ − 1) + C2(

√
2α−Kt).

Thus it suffices to show that we may choose α sufficiently small that fα,ϵ has a root in [0, ϵ[ .
This, however, is clear. Indeed, fα,ϵ is a linear function of t satisfying

fα,ϵ(0) = α
(
C1(e

C2ϵ − 1) +
√
2C2

)
, f ′α,ϵ(0) = −KC2.

By choosing α sufficiently small, fα,ϵ can be made to have a positive root as small as one
likes.

To complete the proof, let R1 > 0 have the property that BReC2Tmax (0) ⊂ X1 and let
R2 > 0 have the property that fR2 has a root in ]0, Tmax[ . Define R = min{R1, R2}. Taking
X0(K,Tmax,X1) = BR(0) gives the result. ■

3.4 Remark: If A is Hurwitz, then the condition that the time to reach S be uniformly
bounded can be relaxed (i.e., take Tmax = ∞) with the ensuing advantage of being able to
take X0(Tmax) = V. On the other hand if one demands at least of the following properties
of the control law:

(i) the time to reach S be bounded uniformly in x by Tmax;

(ii) A be allowed to be non-Hurwitz;

then X0(Tmax) will have to be contained in a compact subset containing 0. •
Now let us define a global control law, again in a geometric manner. For x ∈ V \ S we

define uglob,K(x) ∈ U by

B(uglob,K(x)) = uloc,K(x)− prB ◦A(x).

The idea here is simply that we augment our local control law with a “cancellation of as
much of the uncontrolled dynamics as possible.” Such interpretations aside, let us show
that this control law does in fact globally attract trajectories to S.

3.5 Proposition: Let S ⊂ V be a rigid sliding subspace for Λ = (A,B). For each x ∈ V \ S
there exists T (x) > 0 so that the maximal integral curve for the initial value problem

ξ̇(t) = A(ξ(t)) +B(uglob,K(ξ(t))), ξ(0) = x

is defined on [0, T (x)[ and so that limt↑T (x) ξ(t) ∈ S.

Proof: As in the proof of Proposition 3.3, we extend the inner product on image(B) to all
of V so that S is orthogonal to image(B), and we adopt the notation introduced in that
proof. We again define ψ(x) = 1

2∥x∥
2 and a similar estimate to that performed in the proof

of Proposition 3.3 gives

∥ξ(t)∥ ≤ ∥ξ(0)∥eCt
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for some C > 0. Thus trajectories do not blow up in finite time. Also again defining
ϕ(x) = 1

2∥prB(x)∥
2 we have

dϕ

dt
(ξ(t)) = ⟨prB ◦A(ξ(t)), prB(ξ(t))⟩ −K∥prB(ξ(t))∥ − ⟨prB ◦A(ξ(t)), prB(ξ(t))⟩

= −K∥prB(ξ(t))∥ = −K
√
ϕ(ξ(t)).

This gives
ϕ(ξ(t)) = 1

4(Kt− 2
√
ϕ(ξ(0)))2,

and from this the result follows immediately. ■

3.3. An example. Let’s look first at a simple example that we treat in some detail to aid in
providing some intuition behind the constructions of Sections 3.1 and 3.2. We take V = R2

and U = R and consider [
ẋ1
ẋ2

]
=

[
1 1
0 2

] [
x1
x2

]
+

[
0
1

]
u.

For this system we wish to find a codimension one subspace S to serve as a rigid sliding
subspace. Rigidity demands that S = Sa = spanR((1, a)) for some a ∈ R. Let us denote
va = (1, a) so that

ASa(va) = prSa ◦A ◦ iSa(va) = (1 + a)va.

Therefore Sa is a stabilising sliding subspace provided that a < −1. In Figure 3 we show
the phase portrait for the system ẋ = A(x), and the subspaces S−1 and S−∞. Stabilising
rigid sliding subspaces lie within the shaded region in the figure. Note that there is a
simple interpretation one can make here that really illustrates what one does in choosing a
stabilising rigid sliding subspace. At each tangent space one makes the decomposition into
the input direction and the tangent space to the sliding subspace. The sliding subspace
will be stabilising when the drift vector field, projected onto the sliding subspace, has the
origin as an asymptotically stable equilibrium point. In this example, this amounts to the
projection pointing towards the origin. The control exerted to maintain a trajectory on Sa
is readily verified to be uS(x) = a(a− 1)x1.

Now that we have a stabilising rigid sliding subspace for the linear system on which the
restricted dynamics can be specified to be stable, let us look into the control laws uloc,K
and uglob,K defined in Section 3.2. We take as inner product on the input space the usual
Euclidean inner product. One then verifies that

uloc,K(x1, x2) = K
ax1 − x2
|ax1 − x2|

.

This is then a control of magnitude K that points “down” when we are “above” Sa and that
points “up” when we are “below” Sa, these notions making sense provided that a < −1,
as required for stability. In Figure 4 we show the closed-loop phase portrait off Sa with
the local controller. Note that with the chosen gain for the controller off Sa, the basin of
attraction is a region shaped as shown in Figure 5. In particular, we see that with bounded
controls, our local controller is not able to globally stabilise x0. The closed-loop phase
portrait for the global controller is shown in Figure 6.
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Figure 3. The uncontrolled phase portrait (in blue), the subspaces
S−1 and S−∞ (in red), and the region occupied by stabilising
sliding subspaces (shaded)

4. Output stabilisation using the sliding mode philosophy

Sliding mode control is often presented in the context of output tracking, and the sliding
surface is then one on which the dynamics can at least partially be prescribed. In this section
we investigate this for SISO linear systems, and compare what comes out of this approach
with what comes out of Theorem 3.1.

We consider a system with state space V, an n-dimensional R vector space, and with
input and output spaces being R. The system satisfies the equations

ξ̇(t) = A(ξ(t)) + bu(t)

η(t) = c(ξ(t)),

where b ∈ V and c ∈ V∗. The relative degree of (A, b, c) is the unique integer r for which
c ◦ Ar−1(b) ̸= 0 and c ◦ Ar−2(b) = 0. We shall assume that the relative degree lies in the
range 1 ≤ r ≤ n (it can happen that the relative degree is undefined if the transfer function
for the system is identically zero, and we exclude this possibility). We then choose a monic,
degree r − 1 Hurwitz polynomial

P (λ) = λr−1 + pr−2λ
r−2 + · · ·+ p1λ+ p0 ∈ R[λ],

and define a sliding subspace using P , this being given by

SP = ker(c ◦ P (A)) ⊂ V.



18 R. M. Hirschorn and A. D. Lewis

-2 -1 0 1 2 3

-2

-1

0

1

2

3
 

x1

x
2

Figure 4. The closed-loop phase portrait on V \Sa for uloc,K with
a = −2 and K = 5

Figure 5. The domain of attraction for the local controller
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Figure 6. The closed-loop phase portrait on V\Sa for uglob,K with
a = −2 and K = 5

The definition of relative degree ensures both that dim(SP ) = n−1, and that b ̸∈ SP . Thus
SP is indeed a bona fide rigid sliding subspace for the system Λ = (A, b). As such, the
dynamics on SP are uniquely determined by Proposition 2.1. Our wish is to characterise
these dynamics.

As a first step in doing this, we recall that a subspace W ⊂ V is (A, b)-invariant if
there exists f ∈ V∗ so that W is an invariant subspace for A+b◦f . We denote by Z(A,b,c) the
largest (A, b)-invariant subspace contained in ker(c). The following description of Z(A,b,c)

will be useful to us, and does not seem to follow immediately from existing characterisations
in the literature, as far as we know.

4.1 Lemma: Z(A,b,c) = ker(c) ∩ ker(c ◦A) ∩ · · · ∩ ker(c ◦Ar−1).

Proof: Let
S = ker(c) ∩ ker(c ◦A) ∩ · · · ∩ ker(c ◦Ar−1).

Clearly S ⊂ ker(c). Let us define

f = − 1

c ◦Ar−1(b)
c ◦Ar ∈ V∗. (4.1)

We claim that S is an invariant subspace for A+ b ◦ f . Indeed, let v ∈ S and compute

c ◦ (A+ b ◦ f)(v) = c ◦A(v)− c(b)

c ◦Ar−1(b)
c ◦Ar(v) = c ◦A(v) = 0,
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where we have used the definition of relative degree and the fact that v ∈ S. In like manner
we compute

c ◦Ak ◦ (A+ b ◦ f)(v) = 0, v ∈ S, k ∈ {1, . . . , r − 2}.

We finally compute

c ◦Ar−1 ◦ (A+ b ◦ f)(v) = c ◦Ar(v)− c ◦Ar−1(b)

c ◦Ar−1(b)
c ◦Ar(v) = 0,

thus showing that S is (A, b)-invariant. This means that S ⊂ Z(A,b,c). To show that S =
Z(A,b,c) we recall that dim(Z(A,b,c)) = n − r = dim(S), with the assumption that (A, b) is
controllable and (A, c) is observable. ■

If
F(A,b,c) = {f ∈ V ∗ | (A+ b ◦ f)(Z(A,b,c)) ⊂ Z(A,b,c)},

one may show that spec((A+ b ◦ f)|Z(A,b,c)) is independent of f ∈ F(A,b,c). We denote this
spectrum by ζ(A,b,c) (this is the spectrum of the zero dynamics). The following theorem
now provides the spectrum for the dynamics on SP .

4.2 Theorem: With SP constructed as above we have

spec(AP ) = spec(P ) ∪ ζ(A,b,c),

where AP = prSP ◦A ◦ iSP .

Proof: First let us find f ∈ V ∗ so that A+ b ◦ f has SP as an invariant subspace. We claim
that

f = − 1

c ◦ P (A)(b)
c ◦ P (A) ◦A (4.2)

does the job. To see this, let v ∈ SP and compute

c ◦ P (A) ◦ (A+ b ◦ f)(v) = c ◦ P (A) ◦A(v)− c ◦ P (A)(b)

c ◦ P (A)(b)
c ◦ P (A) ◦A(v) = 0.

We also claim that f ∈ F(A,b,c). Indeed, for v ∈ Z(A,b,c) we compute

c ◦ (A+ b ◦ f)(v) = c ◦A(v)− c(b)

c ◦ P (A)(b)
c ◦ P (A)(v) = c ◦A(v) = 0,

by Lemma 4.1 and the definition of relative degree. In like manner we compute

c ◦Ak ◦ (A+ b ◦ f)(v) = 0, v ∈ Z(A,b,c), k ∈ {1, . . . , r − 2}. (4.3)

We further compute

c ◦Ar−1 ◦ (A+ b ◦ f)(v) = c ◦Ar(v)− c ◦Ar−1(b)

c ◦ P (A)(b)
c ◦ P (A) ◦A(v).

Now we note that c ◦P (A)(b) = c ◦Ar−1(b) by definition of relative degree, and we compute
c ◦P (A) ◦A(v) = c ◦Ar(v) by Lemma 4.1. Thus we have c ◦Ar−1(AP (v)) = 0 if v ∈ Z(A,b,c).
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This, along with (4.3), shows that AP (v) ∈ Z(A,b,c) whenever v ∈ Z(A,b,c). Thus AP restricts
to Z(A,b,c), and the spectrum of the restriction is exactly ζ(A,b,c).

Let us denote by ÃP ∈ L(SP /Z(A,b,c); SP /Z(A,b,c)) the linear map induced by AP .

We claim that spec(ÃP ) = spec(P ). To look at this we define a basis for V∗ by
{ω0, . . . , ωr−2, ωr−1, β1, . . . , βn−r} where ωk = c ◦ Ak. Also let {v0, . . . , vr−1, w1, . . . , wn−r}
be the basis for V dual to the given basis for V∗. Note that with respect to this basis, SP
is defined by those vectors whose components satisfy the relation

vr−1 + pr−2vr−2 + · · ·+ p1v1 + p0v0 = 0. (4.4)

We claim that ω0, . . . , ωr−2 are linearly independent on SP . Indeed, suppose that there are
α0, . . . , αr−2 ∈ R so that

r−2∑
j=0

αjω
j(v) = 0, v ∈ SP .

Note that vj = pjvr−1 + vj , j ∈ {0, 1, . . . , r − 2}, lies in SP by (4.4). But we also have

r−2∑
k=0

αkω
k(vj) = αj = 0,

thus showing linear independence of {ω0, . . . , ωr−2} restricted to SP . Now note that
ω0, ω1, . . . , ωr−2 ∈ ann (Z(A,b,c)), and so naturally form a basis for (SP /Z(A,b,c))

∗, where
ann (·) denotes the annihilator. We denote by {y0, y1, . . . , yr−2} the dual basis for
SP /Z(A,b,c). First let us determine the representation for Ã∗

P in the basis {ω0, ω1, . . . , ωr−2}.
Thinking of these as elements of V∗ we have

(A+ b ◦ f)∗ω0 = ω0 ◦ (A+ b ◦ f) = ω1

(A+ b ◦ f)∗ω1 = ω1 ◦ (A+ b ◦ f) = ω2

...

(A+ b ◦ f)∗ωr−2 = ωr−2 ◦ (A+ b ◦ f) = ωr−1,

using the fact that c ◦Ak(b) = 0, k ∈ {0, . . . , r − 2}. Restriction to SP gives

ωr−1 = −p0ω0 − p1ω
1 − · · · − pr−2ω

r−2.

Therefore the matrix representative of Ã∗
P is given by

0 0 0 · · · 0 −p0
1 0 0 · · · 0 −p1
0 1 0 · · · 0 −p2
...

...
...

. . .
...

...
0 0 0 · · · 0 −pn−3

0 0 0 · · · 1 −pn−2


.

From this we immediately see that the characteristic polynomial of Ã∗
P , and therefore that

of ÃP , is P , as desired. ■
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5. Sliding submanifolds for systems with controllable linearisations

As one might expect, the linear results from the preceding section can be applied locally
around an equilibrium point with a controllable linearisation. In this section we address
this matter explicitly and indicate some of the relevant issues involved.

We a consider control-affine system Σ = (M,F , U) as in Section 2.1. An equilibrium
point for Σ is a pair (x0, u0) ∈M × U for which

f0(x0) +

m∑
a=1

ua0fa(x0) = 0x0 ,

where 0x0 denotes the zero vector in Tx0M . The linearisation of Σ at an equilibrium
point (x0, u0) is defined by AΣ(x0) ∈ L(Tx0M ;Tx0M) and BΣ(x0) ∈ L(Rm;Tx0M) where

AΣ(x0)(v) = fT0 (v) +

m∑
a=1

ua0f
T
a (v), BΣ(x0)(u) =

m∑
a=1

uafa(x0),

and where XT denotes the complete lift to TM of a vector field X on M . In natural
coordinates (x, v) for TM we have

XT = Xi ∂

∂qi
+
∂Xi

∂xj
vj

∂

∂vi
,

so this reduces to the usual notion of linearisation in coordinates where one uses the Ja-
cobian. We assume that U is convex and contains u0 in its interior. Thus one has some
control “left over” once one has established the equilibrium.

5.1. From linear to local. We wish to use a sliding mode control law for the linearisation
at an equilibrium to control the nonlinear system in a neighbourhood of the equilibrium
point. This requires a means of “transferring” the control law from the tangent space to
the state manifold. In practice, this is done naturally when one chooses coordinates. Here
we briefly describe what is going on geometrically when one does this. Although this is
simple, we could not find this procedure described explicitly in the literature.

We consider a manifold M of dimension n and fix a point x0 ∈ M . If ϕ : M → N
is a smooth mapping between manifolds, Txϕ : TxM → Tϕ(x)N denotes the derivative at
x ∈M .

5.1 Definition: A near identity diffeomorphism at x0 is a triple (ϕ,X0,X1) where

(i) X0 ⊂ Tx0M is a neighbourhood of 0x0 ,

(ii) X1 ⊂M is a neighbourhood of x0, and

(iii) ϕ : X0 → X1 is a diffeomorphism satisfying

(a) ϕ(0x0) = x0 and

(b) T0x0ϕ = idTx0M
(where we make the natural identification of T0x0 (Tx0M) with

Tx0M). •
In practice, a near identity diffeomorphism arises from a coordinate chart as described

by the following lemma. The lemma also tells us that this is the most general way to obtain
such a diffeomorphism.
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5.2 Lemma: Let (A, χ) be a coordinate chart for M satisfying χ(x0) = 0 ∈ Rn. Then the
triple (ϕ = χ−1 ◦ Tx0χ,X0 = ϕ(A),X1 = A) is a near identity diffeomorphism at x0.

Conversely, let (ϕ,X0,X1) be a near identity diffeomorphism at x0 and let L : Tx0M →
Rn be an isomorphism. Then (A = X1, χ = L ◦ ϕ−1) is a coordinate chart for M satisfying
χ(x0) = 0 ∈ Rn and ϕ = χ−1 ◦ Tx0χ.

Proof: With (ϕ,X0,X1) as defined in the first part of the lemma we compute

ϕ(0x0) = χ−1 ◦ Tx0χ(0x0) = χ−1(0) = x0

and, using the chain rule,

T0x0ϕ(v) = T0x0 (χ
−1 ◦ Tx0χ)(v)

= TTx0χ(0x0 )
χ−1 ◦ T0x0 (Tx0χ)(v)

= T0χ
−1 ◦ Tx0χ(v)

= Tx0(χ
−1 ◦ χ)(v) = v,

showing that (ϕ,X0,X1) is indeed a near identity diffeomorphism at x0.
Now let (χ,A) be as defined in the second part of the lemma. We then have

χ(x0) = L ◦ ϕ−1(x0) = L(0x0) = 0

and
χ−1 ◦ Tx0χ = ϕ ◦ L−1 ◦ Tx0(L ◦ ϕ) = ϕ ◦ L−1 ◦ Tϕ(x0)L ◦ Tx0ϕ = ϕ,

thus giving the desired assertion. ■

5.2. From sliding subspaces to sliding submanifolds. The main result in this section is the
following result which essentially tells us that any implementation of a locally stabilising
linear sliding mode controller for the linearisation of a nonlinear system will be locally
stabilising for the full system. There are three components to this: (1) showing that a rigid
sliding subspace for the linearisation gives rise to many rigid sliding submanifolds; (2) that if
the sliding subspace for the linearisation is stabilising, then locally so are all corresponding
sliding submanifolds; (3) that one can reach the sliding submanifold in finite time.

5.3 Theorem: Consider a control-affine system Σ = (M,F , U) with a controllable lineari-
sation at (x0, u0) ∈M×U defined by AΣ(x0) and BΣ(x0). If Sx0 ⊂ Tx0M is a rigid sliding
subspace for the linearisation, and if S ⊂ M is a C1 submanifold passing through x0 and
having the property that Tx0S = Sx0, then there exists a neighbourhood X of x0 for which
S ∩ X is a rigid local sliding submanifold for Σ. If Sx0 is stabilising, then so too is S ∩ X,
provided that X is taken sufficiently small.

Furthermore, suppose that (ϕ, X̄0, X̄1) is a near identity diffeomorphism at x0. Then, for
any K,Tmax > 0 and for any neighbourhood X1 of x0 ∈ X̄1, we may find a neighbourhood
X0(K,Tmax,X1) of x0 ∈ X̄1 with the property that if ξ : [0, T (x)[→ X̄1 \ S is the maximal
integral curve for the initial value problem

ξ̇(t) = f0(ξ(t)) +
∑
a=1

(
ua0 + ualoc,K(ϕ−1(ξ(t)))

)
fa(ξ(t)), ξ(0) = x ∈ X0(K,Tmax,X1)

then
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(i) T (x) ≤ Tmax,

(ii) ξ(t) ∈ X1 for t ∈ [0, T (x)[ , and

(iii) limt↑T (x) ξ(t) ∈ S.

Proof: If S is a submanifold of M for which Tx0S = Sx0 then it is clear that it Tx0S is
transverse to Fx0 (as will be the case if Sx0 is a rigid sliding subspace for the linearisation),
then TxS is transverse to Fx for x in a neighbourhood X of x0. This is the first part of the
first assertion.

Let prS : TM |(S ∩ X) → TS|(S ∩ X) be the projection onto the tangent bundle of S
and let prF : TM |(S ∩ X) → F|(S ∩ X), both defined with respect to the decomposition
TxM = TxS ⊕ Fx for x ∈ X. Let f̃0 be the vector field induced by Σ on S ∩ X by rigidity
of S, as in Proposition 2.1. Let uS : S ∩ X → U be the control with the property that

f̃0(x) = f0(x) +
m∑
a=1

uaS(x)fa(x). (5.1)

Let us extend the controls uS to a neighbourhood of S in an arbitrary way so that we
may use (5.1) to define a vector field in a neighbourhood of S. By rigidity we must have
uS(x0) = u0. Therefore, x0 is an equilibrium point for f̃0. What’s more, for v ∈ Sx0 we
may compute

f̃T0 (v) = prS

(
fT0 (v) +

m∑
a=1

ua0f
T
a (v) +

m∑
a=1

dua(v)fa(x0)
)

= prS

(
fT0 (v) +

m∑
a=1

ua0f
T
a (v)

)
.

Thus the linearisation of f̃0 at x0 is the restriction of AΣ(x0) to Sx0 . Since this restriction
is Hurwitz provided Sx0 is stabilising, x0 is an asymptotically stable equilibrium point for
f̃0, meaning that S ∩ X is stabilising for a sufficiently small neighbourhood X of x0.

Now we show that we may choose X0(K,Tmax,X1) sufficiently small that trajectories
with initial conditions in the set will reach S in finite time. To do this, choose a chart (A, χ)
about x0 with coordinates (x1, . . . , xn) having the following properties:

1. χ takes values in Rn−m ×Rm;

2. χ(S ∩A) = χ(A) ∩ (Rn−m × {0});

3. χ(x0) = (0,0);

4. spanR(
∂

∂xn−m+1

∣∣
x0
, . . . , ∂

∂xn

∣∣
x0
) = Fx0 ;

5. the inner product on Fx0 induced by the inner product on the control space Rm is
exactly the standard inner product in the coordinates (xn−m+1, . . . , xn).

With these coordinates, let us now agree to identify M with χ(A). Thus we write a point
in M as x. We let A and B be the matrix representations for the linearisation. Let
pr1 : R

n → Rn−m × {0} and pr2 : R
n → {0} ×Rm be the projections. Now write

f0(x) +
m∑
a=1

ua0fa(x) = Ax+ f̃(x),
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so defining f̃(x). Similarly write

m∑
a=1

ualoc,K(ϕ−1(x))fa(x) = −K pr2(x)

∥pr2(x)∥
+ g̃(x),

so defining g̃(x). Note that with f̃ and g̃ defined in this way we have f̃(0) = g̃(x) = 0.
Therefore, there exists R1 > 0 so that

∥f̃(x) + g̃(x)∥ ≤M∥x∥, x ∈ BR1(0).

Define ψ(x) = 1
2∥x∥

2 and compute

dψ

dt
(x(t)) = ⟨A(x(t)),x(t)⟩ − K

∥pr2(x(t))∥
⟨pr2(x(t)),x(t)⟩

+
〈
f̃(x(t)) + g̃(x(t)), pr2(x(t))

〉
= ⟨Ax(t),x(t)⟩ −K∥pr2(x(t))∥+

〈
f̃(x(t)) + g̃(x(t)), pr2(x(t))

〉
≤ |||A|||∥x(t)∥2 +M∥x(t)∥∥pr2(x(t))∥
≤ (|||A|||+M)∥x(t)∥2 = 2(|||A|||+M)ψ(x(t)),

where we have twice use the Cauchy-Bunyakovsky-Schwarz inequality. Gronwall’s lemma
then gives

∥x(t)∥ ≤ ∥x(0)∥e(|||A|||+M)t. (5.2)

Now we define ϕ(x) = 1
2∥pr2(x)∥

2 and compute

dϕ

dt
(x(t)) =

〈
pr2(A(x(t))), pr2(x(t))

〉
−K∥pr2(x(t))∥

+
〈
pr2(f̃(x(t)) + g̃(x(t))), pr2(x(t))

〉
≤ ∥pr2(A(x(t)))∥∥pr2(x(t))∥ −K∥pr2(x(t))∥+M∥x(t)∥∥pr2(x(t))∥

≤
(
(|||pr2A|||+M)∥x(t)∥ −K

)√
ϕ(x(t))

≤
(
(|||pr2A|||+M)∥x(0)∥e|||A|||t2 −K

)√
ϕ(x(t)),

again using the Cauchy-Bunyakovsky-Schwarz inequality several times. The result now
follows from a repetition of the calculations at the end of the proof of Proposition 3.3. ■

6. An example

We consider in this section the pendulum/cart problem as depicted in Figure 7, where
the pendulum is assumed to be a rod of uniform mass density. The state space for the
system is M = T (R × S1), the tangent bundle of the cylinder. We use coordinates (x, θ)
for the cylinder as shown in Figure 7, and use as coordinates for M the induced natural
coordinates (x, θ, vx, vθ). The input to the system is a force u pushing the cart. In these
coordinates, the Euler-Lagrange equations are

ẍ =
6mg cos θ sin θ −mℓ sin θθ̇2

2m+ 5M + 3M cos(2θ)
+

5 + 3 cos(2θ)

2m+ 5M + 3M cos(2θ)
u

θ̈ =
12(M +m)g sin θ + 3Mℓ sin(2θ)θ̇2

(2m+ 5M + 3M cos(2θ))ℓ
+

12 cos θ

(2m+ 5M + 3M cos(2θ))ℓ
u,

where
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x

θ

Figure 7. Pensulum on a cart

M mass of cart
m mass of pendulum
ℓ length of pendulum arm
g acceleration due to gravity.

The equilibrium state we consider is that corresponding to the pendulum pointing straight
up with no force exerted. The linearisation at this equilibrium is

A =


0 0 1 0
0 0 0 1

0 3mg
4M+m 0 0

0 6(M+m)g
(4M+m)ℓ 0 0

 , B =


0
0
4

4M+m
6

(4M+m)ℓ


We think of the matrices A and B as being the representatives of respective linear maps
relative to the basis { ∂

∂x ,
∂
∂θ ,

∂
∂vx

, ∂
∂vθ

} for the tangent space at the equilibrium position.

6.1. Output stabilisation. We shall consider a large class of outputs, and consider the na-
ture of the output stabilisation problem by determining the relative degree and the character
of the zero dynamics. Thus we take as output

c =
[
cx cθ 0 0

]
where c2x + c2θ ̸= 0. Thus we take as output a linear function of the positions of the system.
We compute

cb = 0

cAb =
6cθ + 4ℓcx
(4M +m)ℓ

cA2b = 0

cA3b =
18g(mℓcx + 2(M +m)cθ)

(4M +m)2ℓ2
.
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If cAb = 0 then one can verify that cA3b ̸= 0, so the system has relative degree 4. In
this case, the spectrum of the zero dynamics is empty, and all dynamics on the sliding
subspace SP are determined by the roots of the degree 3 monic polynomial P . Thus the
more interesting case is the generic one, where cAb ̸= 0. Here one determines that

Z(A,b,c) = spanR((cθ,−cx, 0, 0), (0, 0, cθ,−cx)).

Using the two vectors in the above expression as a basis for Z(A,b,c) we ascertain that
using (4.1) we have the matrix for (A+ b ◦ f)|Z(A,b,c) given by[

0 1
3gcx

3cθ+2ℓcx
0

]
.

Since this matrix always has a positive real eigenvalue, this means that the only choice of
output involving only configurations of the system, and that will stabilise the state along
with the output, is the special one that renders cAb = 0.

6.2. Stabilisation using linearisation. In this section we illustrate an implementation of
the ideas behind Theorem 5.3 when applied to the inverted pendulum example. Thus we
work with the linearisation of the system, doing pole placement on the sliding subspace
via Theorem 3.1. To implement the linear controller for the nonlinear system, we use the
near identity diffeomorphism of the first part of Lemma 5.2 corresponding to the coordinate
chart for T (R×S1) chosen above (thus we implement the linear controller for the nonlinear
system in the “obvious” way). To make the resulting simulations interesting, we choose
the sliding subspace for the linearisation by first selecting poles using LQR. These poles
turn out to have the form {−λ1,−λ2,−σ ± iω} for λ1, λ2, σ, ω > 0 and λ1 > λ2. The
sliding subspace for the linearised system is then chosen to be the eigenspace for the closed-
loop system corresponding to the eigenvalues {−λ2,−σ ± iω}. This allows us to make a
meaningful comparison with the LQR controller for the system. In Figures 8 and 9 we show
the resulting simulations for two different initial conditions and for the parameters M = 2,
m = 1, ℓ = 1

2 , and g = 9.81. The sliding mode controller uses the local control law of
Section 3.2 with K = 50. This value of K was chosen so that the maximum value of the
sliding mode control law and the LQR control were roughly the same for the set of initial
conditions simulated, cf. Figure 9. Note that there is not a radical difference in performance
of the two systems. The sliding mode controller works better for the initial condition closer
to the equilibrium point. This is not surprising since it uses a larger maximum control effort
than the LQR controller is allowed.

7. Summary

In this paper we have provided a viewpoint for sliding mode control that emphasises
structural aspects of the method different from those commonly emphasised. We saw in
Section 2 that this leads to a simplification of the notion of what is accomplished by the
equivalent control. Also, we saw in Section 2.4 that our way of looking at sliding mode
control allowed a simple characterisation of all sliding mode controllers for a simple ex-
ample. In Section 3 we considered the linear case, providing a characterisation of known
results in our geometric setting. The matter of locally extending the linearisation methods
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Figure 8. Sliding mode control (left) versus LQR (right). The top
plot is x, the middle plot is θ, and the bottom plot is u. The
initial state is (x, θ, ẋ, θ̇) = (0,− 1

2 , 0, 0).

to a neighbourhood of a linearly controllable equilibrium were systematically explored in
Section 5. In future work, we will further illustrate the utility of our geometric approach
by investigating approaches to extend local sliding submanifolds obtained by linearisation
as in Section 5 to more global sliding submanifolds. We will also look at systems for which
it is not possible to design a sliding submanifold using the linearisation as a starting point.
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