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Abstract

The set of infinite jets is defined and given the structure of a Fréchet manifold.

1. Introduction

It is convenient in the formal theory of partial differential equations to be able to talk
about infinite jets, since these can be used to represent Taylor series of various objects. Not
surprisingly, the set of infinite jets is an infinite-dimensional manifold. The most natural
model space, as it turns out, is not a Banach space, but a Fréchet space. Therefore, we
begin our discussion with a quick review of Fréchet spaces. This is followed by a definition
of the manifold of infinite jets of a fibred manifold.

A good account of the differentiable structure of infinite jets is given in [Saunders 1989,
Chapter 7]. We therefore refrain from proving all of the facts we state here since the reader
can refer to Saunders. There are also many interesting things about the bundle of infinite
jets that we do not mention, and again [Saunders 1989] is a reference for some of these.

2. Fréchet spaces

While Banach spaces form the starting point for infinite-dimensional analysis, often the
norm structure of a Banach space is insufficient to describe a desired topology on a vector
space. The notion of a Fréchet space is a relatively simple extension of that of a Banach
space. We refer to [Rudin 1991] for more details on functional analysis, and for proofs of
the theorems we state here.

2.1. Seminorms, multinorms, and Fréchet spaces. The starting point is the notion
of a seminorm.

1 Definition: (Seminorm) A seminorm of a R-vector space V is a map λ : V → R≥0

with the following properties:
(i) λ(av) = |a|λ(v) for a ∈ R and v ∈ V (homogeneity);
(ii) λ(v1 + v2) ≤ λ(v1) + λ(v2) (triangle inequality).

A seminormed vector space is a pair (V, λ) where λ is a seminorm on V. •
The only property of a norm missing is the requirement that only the zero vector have

zero norm; for a seminorm nonzero vectors may have zero norm.
Rather than a normed vector space where one norm does the job of defining a topology,

we consider a vector space with a collection of seminorms.
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2 Definition: (Multinormed space) A multinorm on a R-vector space V is a family
{λa}a∈A of seminorms on V with the property that, if λa(v) = 0 for each a ∈ A, then v = 0V.
A multinormed vector space is a pair (V, {λa}a∈A) where {λa}a∈A is a multinorm on
V. •

A multinormed vector space comes with a natural topology which generalises the norm
topology of a normed vector space. Recall that a basis for a topological space (X,O) is a
collection B ⊂ O of open sets such that if O ∈ O then O = ∪i∈IBi for Bi ∈ B, i ∈ I. Also,
a subbasis for (X,O) is a collection S ⊂ O of open sets such that the collection

{S1 ∩ · · · ∩ Sk | S1, . . . , Sk ∈ S }

of finite intersections of sets from S forms a basis for (X,O). For a multinormed vector
space (V, {λa}a∈A) define

Ba(v, r) =
{
v′ ∈ V

∣∣ λa(v′ − v) < r
}
.

for a ∈ A, v ∈ V, and r ∈ R>0.

3 Definition: (Multinorm topology) Let (V, {λa}a∈A) be a multinormed vec-
tor space. The multinorm topology is the finest topology which has
{Ba(v, r) | v ∈ V, r > 0, a ∈ A} as a subbasis. •

4 Definition: (Complete multinormed vector space) Let (V, {λa}a∈A) be a multinormed
vector space. A sequence {vj}j∈N is a Cauchy sequence if, for every neighbourhood U of
0V (neighbourhoods being understood to be with respect to the multinorm topology), there
exists N ∈ N such that vj − vk ∈ U . A multinormed vector space (V, {λa}a∈A) is complete
if every Cauchy sequence converges. •

Finally we may say what we mean by a Fréchet space.

5 Definition: (Fréchet space) A Fréchet space is a complete multinormed vector space
(V, {λa}a∈A) for which the set A is countable. •

The following result explains the importance of countability of the collection of semi-
norms for a Fréchet space.

6 Theorem: (Fréchet spaces are metrisable) If (V, {λj}j∈N) is a multinormed vector space
with countably many seminorms, then the map d : V × V → R≥0 defined by

d(v1, v2) =
∑
j=1

1
2j

λj(v1 − v2)
1 + λj(v1 − v2)

is a metric on V, and the metric topology of d agrees with the multinorm topology.

2.2. Fréchet spaces arising as inverse limits of Banach spaces. In this section we
detail a very particular sort of Fréchet space; it is this construction which we shall encounter
below in our definition of the differentiable structure on the set of infinite jets.

It is convenient for the first part of the discussion to have at hand the general notion of
a topological vector space.
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7 Definition: (Topological vector space) A R-topological vector space is a pair (V,O)
with V a R-vector space and O a topology on V with the property that the maps

R× V 3 (a, v) 7→ av ∈ V

V × V 3 (v1, v2) 7→ v1 + v2 ∈ V

are continuous. •
The key idea is that of an inverse limit of topological vector spaces.

8 Definition: Let {Vj}j∈N be a sequence of topological vector spaces with a collection
fj+1,j : Vj+1 → Vj , j ∈ N, of continuous linear maps. An inverse limit for this sequence
is

(i) a topological vector space V∞ and
(ii) a sequence of continuous linear maps {f∞,j : V∞ → Vj}j∈N

with the properties that
(iii) f∞,j = fj+1,j ◦f∞,j+1 for each j ∈ N and
(iv) if U is a topological vector space with gj : U → Vj , j ∈ N, continuous maps satisfying

gj = fj+1,j ◦gj+1, then there exists a unique continuous linear map g : U → V∞
satisfying gj = f∞,j ◦g for each j ∈ N. •

The following diagram illustrates the relationships between the maps in the definition:
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It turns out that the inverse limit V∞, if it exists, is unique.
Now let us consider a specific instance of an inverse limit of Banach spaces.

9 Example: (Inverse limit of Banach spaces) Let {Vj , ‖·‖j}j∈N be a sequence of Banach
spaces such that we have a sequence πj+1,j : Vj+1 → Vj of continuous epimorphisms. In
this case the inverse limit of the sequence {Vj}j∈N exists and can moreover be explicitly
described. We take V∞ to be the set of maps f : N → ∪j∈NVj such that

1. f(j) ∈ Vj and

2. πj+1,j(f(j + 1)) = f(j).
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There is then a natural projection π∞,j : V∞ → Vj defined by π∞,j(f) = f(j). The topology
on V∞ can be described as follows. On V∞ define a family {λj}j∈N of seminorms by
λj(f) = ‖π∞,j(f)‖j . This is easily seen to be a multinorm, and can moreover be check to
be a complete multinorm since the norms ‖·‖j , j ∈ N, are complete. This gives V∞ the
structure of a Fréchet space. It is now just tedium to check that V∞ equipped with the
Fréchet space topology is an inverse limit of {Vj}j∈N. •

2.3. Differentiability of maps between Fréchet spaces. Since we wish to use Fréchet
spaces as model spaces for manifolds, we need to be sure we understand how smoothness of
maps between Fréchet spaces is defined and characterised. In differential geometry, as one
makes the transition from finite to infinite dimensions, the simplest extension is to Banach
manifolds, where most of the important concepts from finite dimensions carry over. How-
ever, for manifolds modelled on Fréchet spaces, one needs to exercise some caution, since,
for example, one loses the Inverse Function Theorem in its most general form. However,
for our discussion here, many of these difficulties will not materialise.

We begin with the definition of what it means for a map between Fréchet spaces to be
differentiable of arbitrary order.

10 Definition: (Differentiability of maps between Fréchet spaces) Let (U, {µj}j∈N) and
(V, {λj}j∈N) be Fréchet spaces, let U ⊂ U be an open set, and let f : U → V.

(i) The map f is of class C1 if, for each x ∈ U and u ∈ U, the limit

Df(x;u) , lim
t→0

1
t (f(x+ tu)− f(x))

exists, and if the resulting map U× U 3 (x, u) 7→ Df(x;u) ∈ V is continuous.
We define higher-order differentiability inductively. We thus suppose that the map f being
of class Cr implies the existence of a map

U⊕
( r∏

j=1

U
)
3 (x, u1, . . . , ur) 7→ Drf(x;u1, . . . , ur) ∈ V

which is continuous.
(ii) The map f is of class Cr+1 if it is class Cr and if the map (x, u1, . . . , ur) 7→

Drf(x;u1, . . . , ur) is of class C1. We then define

Dr+1f(x;u0, u1, . . . , ur) = lim
t→0

1
t (D

rf(x+ tu0;u1, . . . , ur)−Drf(x;u1, . . . , ur)).

(iii) The map f is of class C∞, or is infinitely differentiable , if it is of class Cr for
each r ∈ N. •

Here is perhaps not the place to give a complete exposition of differential calculus on
Fréchet spaces. However, it is certainly worth pointing out the most significant difference
between the Fréchet differential calculus and the Banach differential calculus. In Banach
differential calculus, the set L(U;V) of continuous linear maps between Banach spaces is
itself a Banach space. However, the set of continuous linear maps between Fréchet spaces
may not be a Fréchet space itself. Therefore, there are some problems to be encountered
in requiring that the map x 7→ Df(x) be continuous. Thus in the Fréchet definition of
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derivative we do not ask that this map be continuous. It is here where problems with the
Inverse Function Theorem arise. Indeed, it was the management of these technical issues
that led to the Nash–Moser Inverse Function Theorem, which Nash used to prove his famous
embedding theorem for Riemannian manifolds; [Nash 1956]. Moser [1966] generalised Nash’s
ideas; an excellent account of the resulting general theory can be found in the paper of
Hamilton [1982].

But onto more mundane matters. We wish to characterise differentiable maps between
Fréchet spaces in the particular case when the Fréchet space structure is the inverse limit
of a sequence of Banach spaces as in Example 9.

11 Proposition: (Differentiability for inverse limits) Let {Vj , ‖·‖j}j∈N be a sequence of
Banach spaces with continuous epimorphisms πj+1,j : Vj+1 → Vj, j ∈ N. Let V∞ be the
inverse limit of {Vj}j∈N as defined in Example 9. If U ⊂ V∞ is an open set then f : U →
V∞ is of class C1 if and only if the maps π∞,j ◦f , j ∈ N, are of class C1.

3. Spaces of infinite jets

The set of infinite sets is often defined as the projective or inverse limit of the system
formed by the collection of finite jets. This characterisation of infinite jets is not of much
value unless it is accompanied by a description of what the infinite jets are as a set. Thus
we bypass the limit characterisation and simply define the infinite jets directly.

3.1. The differentiable structure of the bundle of infinite jets. First let us define
what we mean by an infinite jet. The reader will wish to understand this definition in the
context of Example 9 perhaps.

12 Definition: (Bundle of infinite jets) Let π : Y → X be a fibred manifold and let x ∈ X.
An infinite jet at x is a map p∞ : N0 → ∪k∈N0Jkπx with the following properties:

(i) p∞(k) ∈ Jkπx for each k ∈ N0;
(ii) πk

l (p∞(k)) = p∞(l) for all k, l ∈ N0 such that l ≤ k.
The set of infinite sets at x we denote by J∞πx and we denote J∞π = ∪x∈XJ∞πx. The
latter set we call the bundle of infinite jets of π : Y → X. •

We define projections π∞ : J∞π → X and π∞k : J∞π → Jkπ by asking that π∞(p∞) = x
if p∞ ∈ J∞πx and that π∞k (p∞) = p∞(k) for k ∈ N0.

Let us now give J∞π a differentiable structure. As we shall see, the natural model vector
space for charts for J∞π is Rn⊕

(∏
k∈N0

Lk
sym(Rn; Rm;

)
) where n = dim(X), n+m = dim(Y),

and where Lk
sym(Rn; Rm) denotes the symmetric k-multilinear maps from

∏k
j=1 Rn to Rm.

We need to equip this infinite-dimensional R-vector with a topology, and we shall do this
by providing

∏
k∈N0

Lk
sym(Rn; Rm;) with the structure of a Fréchet space. We first note that

for fixed k ∈ N0 we have a norm on Lk
sym(Rn; Rm) defined by

‖A‖′k = sup {‖A(v, . . . ,v)‖ | v ∈ Rn, ‖v‖ = 1} ,

where ‖·‖ denotes the Euclidean norm. We next put a norm on
∏k

j=0 L
j
sym(Rn; Rm) by

‖A0 + · · ·+ Ak‖k = max{‖A0‖′0 , . . . , ‖Ak‖′k}.



6 A. D. Lewis

Now define a projection Πk :
∏

k∈N0
Lk

sym(Rn; Rm) →
∏k

j=0 L
j
sym(Rn; Rm) by

Πk(A) = (A(0), . . . ,A(k))

(here we recall that an element of
∏

k∈N0
Lk

sym(Rn; Rm) is, by definition, a map A from N0 to
∪k∈N0L

k
sym(Rn; Rm) with the property that A(k) ∈ Lk

sym(Rn; Rm)). We now define a count-
able family of seminorms, i.e., a countable multinorm, {λk}k∈N0 on

∏
k∈N0

Lk
sym(Rn; Rm)

by
λk(A) = ‖Πk(A)‖k .

This indeed defines a multinorm since if A 6= 0 then Πk(A) 6= 0 for some k ∈ N0, and so it
follows that λk(A) 6= 0. This defines a Fréchet space structure on

∏
k∈N0

Lk
sym(Rn; Rm).

We observe that this Fréchet space structure is of the form given in Example 9. Indeed,
if we define Vk =

∏k
j=0 L

j
sym(Rn; Rm) then we have a sequence {Vk, ‖·‖k}k∈N of Banach

spaces and we also have natural epimorphisms from Vk+1 to Vk for k ∈ N0. It is then easy
to see that

∏
k∈N0

Lk
sym(Rn; Rm), equipped with the Fréchet space structure above, is the

inverse limit of this sequence.
We then have an induced Fréchet space structure on Rn⊕

(∏
k∈N0

Lk
sym(Rn; Rm)

)
defined

by adding to the family {λk}k∈N0 of seminorms the seminorm λ′ defined by λ′(x⊕A) = ‖x‖.
With the topology of the model space defined, let us see how to construct charts for

J∞π which take values in this model space. Let (V, ψ) be an adapted chart for Y with
(U, φ) the induced chart for X. Let x ∈ U and let p∞ ∈ J∞πx. Define x ⊕ pk ∈ Rn ⊕(∏

k∈N0
Lk

sym(Rn; Rm)
)

by asking that (x,pk(0), . . . ,pk(k)) ∈ Rn ⊕
(∏k

j=0

)
be the local

representative of π∞k (p∞) in the natural chart for Jkπ. Now we define a chart (j∞U, j∞ψ)
by j∞U = ∪x∈UJ∞πx and

j∞ψ(p∞) = x⊕ p∞ ∈ Rn ⊕
(∏

k∈N0
Lk

sym(Rn; Rm)
)
,

with p∞(k) = pk(k), using the definition above for pk(k). Condition (ii) in Definition 12
ensures that Πk(j∞ψ(p∞)) = jkψ(π∞k (p∞)), and so j∞ψ is an injection.

To show that this defines a differentiable structure on J∞π we need to verify the
that overlap maps between charts are diffeomorphisms. This, however, can be checked
with the aid of Proposition 11 using the fact that the Fréchet space structure on
Rn ⊕

(∏
k∈N0

Lk
sym(Rn; Rm)

)
is the inverse limit of a sequence of Banach spaces.

One can then verify that the projections π∞ and π∞k , k ∈ N0, are surjective submersions.

3.2. The relationship between infinite jets and sections. For finite-order jet bundles,
one has the intuitive idea that, if ξ is a section of π : Y → X, then jkξ provides the kth-order
approximation to ξ. Näıvely, one would then anticipate that j∞ξ should, in some sense,
agree with ξ. Of course, life is not so pleasant in general.

Of course, it is the case that given a smooth local section (ξ,U) of π : Y → X one can
define a local section (j∞ξ,U) of π∞ : J∞π → X by j∞ξ(x)(k) = jkξ(x). The converse
question can also be answered with the aid of the following result of Borel.

13 Theorem: (Borel’s Theorem) If A ∈
∏

k∈N0
Lk

sym(Rn; Rm) then there exists a smooth
function f : U → Rm from a neighbourhood U of 0 ∈ Rn such that 1

k!D
kf(0) =

A(k), i.e., A defines the Taylor series of f .
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Note that the theorem does not include any hypotheses about the convergence of the
series ∞∑

k=0

A(k)(x, . . . ,x).

Indeed, this series can be expected to diverge, in general. Thus the theorem tells us that for
smooth functions, the possible behaviour of their Taylor series can be as bad as is possible.
However, it also gives the following result.

14 Corollary: (Infinite jets are jets of sections) If π : Y → X is a fibred manifold and if
p∞ ∈ J∞π∞, then there exists a local section (ξ,U) such that p∞ = j∞ξ(x).
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