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Abstract

The continuity, in a suitable topology, of algebraic and geometric operations on real
analytic manifolds and vector bundles is proved. This is carried out using recently
arrived at seminorms for the real analytic topology. A new characterisation of the
topology of the space of real analytic mappings between manifolds is also developed. To
characterise these topologies, geometric decompositions of various jet bundles are given
by use of connections. These decompositions are then used to characterise many of the
standard operations from differential geometry: algebraic operations, tensor evaluation,
various lifts of tensor fields, compositions of mappings, etc. Apart from the main results,
numerous techniques are developed that will facilitate the performing of analysis on real
analytic manifolds.
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1. Introduction

Almost all operations/operators in differential geometry are formed by combining a few
essential operations such as composition, prolongation, tensor evaluation, and/or some sort
of lifting process. Typically, these operations are tacitly regarded as being continuous in
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some sense. In smooth differential geometry, “in some sense” usually means with respect to
the smooth compact-open topology (the topology of uniform convergence of derivatives on
compact sets) or, if one is interested in differential topology, a topology like the Whitney
topology. An accounting of these sorts of topologies can be found in [Hirsch 1976, Michor
1980]. It is pretty easy to convince oneself of the continuity of standard operations in
the smooth compact-open topology; one only needs to put suitable bounds on finitely many
derivatives on compact sets. Thus there is some justification in not working this out carefully
in the smooth case. However, if one is interested in continuity in the real analytic category,
it is not very easy to convince oneself about the continuity of geometric operations. Indeed,
the more one thinks about this, the harder the problem becomes.

A barrier right at the start is that the appropriate topology for real analytic functions
(functions, for simplicity) is not so easily envisaged. While a suitable real analytic topology
has been around since at least the work of Martineau [1966]—who provided two descriptions
of such a topology, and showed that they agree—there has not been a “user-friendly”
description of the real analytic topology, i.e., a description using seminorms, until quite
recently. Some useful initial formulae are provided by Mujica [1984], and seminorms are
provided in the lecture notes of [Domański 2012]. However, as far as we are aware, it is only
in the technical note of Vogt [2013] that we see a proof of the suitability of these seminorms.
These were adapted to the geometric setting for sections of a real analytic vector bundle by
Jafarpour and Lewis [2014]. Part of this development was a decomposition of jet bundles
using connections. The initial developments of that monograph are the starting point for
our approach here.

Another complicating facet of the real analytic theory arises when one considers lifts
from the base space to the total space of a real analytic vector bundle πE : E → M, e.g., verti-
cal lift of a section of E or horizontal lift of a vector field on M. The first of these operations
requires no additional structure, but the second requires a connection. However, both
require connections to study their real analytic continuity, because one needs to provide
bounds for the jets on the codomain (i.e., on E) in terms of jets on the domain (i.e., on M).
To provide seminorms, one also needs Riemannian and vector bundle metrics, and all of
this data has to fit together nicely to provide the bounds required. For instance, one has
a natural Riemannian metric on the manifold E arising from (1) a Riemannian metric on
M, (2) a fibre metric on E, (3) an affine connection on M, and (4) a linear connection in
E. This structure makes use of the resulting structure of πE : E → M being a Riemannian
submersion, and using formulae of O’Neill [1968]. The determination of a systematic means
to provide jet bundle estimates in this setting occupies us for a significant portion of the
paper.

In order to illustrate the nature of the difficulties one encounters, let us consider a
specific and illustrative instance of the sort of argument that one must piece together to
prove continuity in the real analytic case. Suppose that we have a real analytic vector
bundle πE : E → M with ∇πE a real analytic linear connection in E. Let X be a real analytic
vector field on M which we horizontally lift to a real analytic vector field Xh on E. To assess
the continuity of the map X 7→ Xh in the real analytic topology, one needs to compute jets
of Xh and relate these to jets of X. Thus one needs to differentiate Xh arbitrarily many
times. This differentiation must be done on E, as this is the base on which Xh is defined.
Trying this directly in local coordinates is, in principle, possible, but it is pretty unlikely
that one will be able to produce the refined estimates required in this way. Thus, in our
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approach, one needs an affine connection on E (thinking of E as just a manifold now). One
can now see that there will be a complicated intermingling of the linear connection ∇πE ,
an affine connection ∇M on M (to compute jets of X), and a fabricated affine connection
∇E on E. This is only the beginning of the difficulties one faces. One also needs, not only
formulae for the derivatives of Xh, but also recursive formulae relating how a derivative of
Xh of order, say, k is related to the derivatives of X of orders 0, 1, . . . , k. This recursive
formulae is essential for being able to obtain growth estimates for the derivatives needed to
relate the seminorms applied to Xh to those applied to X. Moreover, since the mapping
X 7→ Xh is injective, one might hope that the mapping is not just continuous, but is an
homeomorphism onto its image. To prove this, one now needs to get estimates for the jets of
X from formulae involving the jets of Xh. Thus one needs estimates that go “both ways.”
It is also worth mentioning that the estimates one needs from these recursive formulae
are quite unforgiving, and so their form has to be very precisely managed. This requires
extensive bookkeeping. This bookkeeping occupies us for a substantial portion of the paper.
This is contrasted with the smooth case, where very coarse bounds suffice; we shall say a
few words about this contrast at illustrative places in the paper.

Another difficulty is that the use of connections to compute derivatives for jets forces
one to address the matter of whether the seminorms used for jets, and derived from the
use of connections, are actually not dependent on the chosen connection. Thus one must
compare iterated covariant derivatives with respect to different connections and show that
these are related to one another in such a way that the resulting real analytic topology is
well defined. This, in itself, is a substantial undertaking. It is done in an ad hoc way by
Jafarpour and Lewis [2014, Lemma 2.5]; here we do this in a systematic and geometric way
that offers many benefits towards the objectives of this paper, apart from rendering more
attractive the computations of Jafarpour and Lewis.

We mention that the idea of obtaining recursive formulae for derivatives is given in a
local setting by Thilliez [1997] during the course of the proof of his Proposition 2.5, and
can be applied to the mapping Cω(N) ∋ f 7→ Φ∗f ∈ Cω(M) of pull-back by a real analytic
mapping Φ ∈ Cω(M;N). We are able to extend the ideas in Thilliez’ computations to
general classes of geometric operations. For example, as we mention above, a local working
out of the estimates for the horizontal lift operation seems like it will be very difficult.
However, once one does get these things to work out, it is relatively straightforward to
prove the main results of the paper, which are the continuity of the fundamental geometric
operations mentioned in the first paragraph.

One of the features of the paper is that almost all constructions are done intrinsically.
While this may seem to unnecessarily complicate things, this is not, in fact, so. Even were
one to work locally, there would still arise two difficult problems that we overcome in our
approach, but that still must be overcome in a local approach: (1) the difficulty of lifts as
described in detail above; (2) the verification that the topologies do not depend on various
choices made (charts in the local calculations, and metrics and connections in the intrinsic
calculations). Thus, while the intrinsic calculations are sometimes complicated, they are
only a little more complicated than the necessarily already complicated local calculations.
And we believe that the intrinsic approach is ultimately easier to use, once one understands
how to use it. An objective of this paper is to do a lot of the tedious hard work required to
produce methods and results that are themselves more or less straightforward.

As a side-benefit to our approach, we also are able to easily provide proofs in the finitely
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differentiable and smooth cases. We point out the relevant places where modifications can
be made to the real analytic proofs to give the results in the finitely differentiable and
smooth cases.

1.1. Organisation of paper. In Section 2 we review the definition of the real analytic
topology and the geometric seminorms for this topology as constructed in [Jafarpour and
Lewis 2014].

Section 3 is the first of three sections, forming the bulk of the paper in terms of words
used, where we provide a host of geometric constructions whose bearing on the main goal
of the paper will be difficult to glean on a first reading. Some sketchy motivation for the
constructions of Sections 3, 4, and 5 is outlined above in our discussion of the difficulties
one will encounter trying to prove continuity of the horizontal lift mapping X 7→ Xh. In
Section 3 we perform constructions with functions, vector fields, and tensors on the total
space of a vector bundle. These form the basis for derivative computations done in Section 4.
Particularly, in Section 4.1 we give πE : E → M the structure of a Riemannian submersion,
following O’Neill [1968]. This allows us to relate, in a natural way, constructions on E with
those on M. In Section 5 we provide the crucial recursive formulae that relate derivatives
on E with those on M. We do this for a few of the standard geometric lifts one has for a
vector bundle with a linear connection. Some of these we do because they are intrinsically
interesting. Some we do because they are required for our general approach, even if one is
not interested in them per se.

In Section 6 we give fibre norms for various jet bundles that are used to define seminorms
corresponding to the geometric constructions of interest. In Section 7 we put all of our
work from Sections 3–6 to use to prove Lemma 7.8, the technical lemma which makes
everything work. The lemma gives a very precise estimate for the fibre norms of derivatives
of coefficients that arise in the recursive constructions of Section 5. There is no wiggle room
in the form of the required estimate, and this is one of the reasons why the computations
of Sections 3–5 are so laboriously carried out; these computations need to be understood
at a high resolution. Once we have these estimates, however, in Section 8 we show that
the fibre-norms for jet bundles obtained in Section 6 behave in the proper way as to make
the topologies we construct independent of our choices of connections and metrics. This is
stated as Lemma 8.7. The actual proving of the independence of the topologies is carried out
by proving in Theorem 8.10 that the topologies are each the same as a topology described
using local forms of the seminorms. This device of using a local description carries two
benefits.

1. It provide the local description of the seminorms. While our approach is intrinsic as
much as this is possible, sometimes in practice one must work locally, and having the
explicit local formulae for the fibre norms is beneficial.

2. While we have tried to make our treatment intrinsic, there is a crucial point where a
local estimate for the growth of derivatives becomes unavoidable, resting as it does on
the Cauchy estimates for holomorphic functions. In our proof of Theorem 8.10 is where
this seemingly unavoidable local estimate is not avoided.

In Section 9 we prove continuity of some representative and some important geometric
constructions. There is a long list of these constructions and we only give representatives;
we hope that the tools we develop in the paper, and put to use in Section 9, will make
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it easy for researchers down the road to prove some important results in the real analytic
setting where continuity is crucial.

1.2. Notation and background. We shall quickly review the notation we use.

Basic terminology and notation. When A is a subset of a set X, we write A ⊆ X. If we
wish to exclude the possibility that A = X, we write A ⊂ X. For a family of sets (Xi)i∈I ,
we denote by

∏
i∈I Xi the product of these sets. By prj :

∏
i∈I Xi → Xj we denote the

projection onto the jth factor. The identity map on a set X is denoted by idX .
By Z we denote the set of integers. We use the notation Z>0 and Z≥0 to denote the

subsets of positive and nonnegative integers. By R we denote the sets of real numbers. By
R>0 we denote the subset of positive real numbers.

Algebra and linear algebra. By Sk we denote the permutation group of {1, . . . , k}. For
k, l ∈ Z≥0, we denote by Sk,l the subset of Sk+l consisting of permutations σ satisfying

σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l).

We also denote by Sk|l the subgroup of Sk+l having the form(
1 · · · k k + 1 · · · k + l

σ1(1) · · · σ1(k) k + σ2(1) · · · k + σ2(l)

)
for σ1 ∈ Sk and σ2 ∈ Sl. We note that Sk|l\Sk+l ≃ Sk,l, so that (1) if σ ∈ Sk+l, then

σ = σ1 ◦ σ2 for σ1 ∈ Sk|l and σ2 ∈ Sk,l and (2) card(Sk,l) =
(k+l)!
k!l! .

We denote by Rn the n-fold Cartesian product of R. A point in Rn will typically be
denoted in a bold font, e.g., x = (x1, . . . , xn). We denote the standard basis for Rn by
(e1, . . . , en).

For R-vector spaces U and V, we denote by HomR(U;V) the set of R-linear mappings
from U to V. We denote EndR(V) = HomR(V;V). We denote by V∗ = HomR(V;R) the
algebraic dual. If v ∈ V and α ∈ V∗, we will denote the evaluation of α on v at various
points by α(v), α · v, or ⟨α; v⟩, whichever seems most pleasing to us at the moment. If
A ∈ HomR(U;V), we denote by A∗ ∈ HomR(V

∗;U∗) the dual of A. If S ⊆ V, then we
denote by

ann(S) = {α ∈ V∗ | α(v) = 0, v ∈ S}

the annihilator subspace.
For a R-vector space V, Tk(V) is the k-fold tensor product of V with itself. For r, s ∈

Z>0, we denote
Trs(V) = V ⊗ · · · ⊗ V︸ ︷︷ ︸

r times

⊗V∗ ⊗ · · · ⊗ V∗︸ ︷︷ ︸
s times

.

By Sk(V) we denote the k-fold symmetric tensor product of V with itself, and we think of
this as a subset of Tk(V). For A ∈ Sk(V) and B ∈ Sl(V), we define the symmetric tensor
product of A and B to be

A⊙B =
∑
σ∈Sk,l

σ(A⊗B).
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We define Symk : T
k(V) → Sk(V) by

Symk(v1 ⊗ · · · ⊗ vk) =
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k).

We note that we have the alternative formula

A⊙B =
(k + l)!

k!l!
Symk+l(A⊗B) (1.1)

for the product of A ∈ Sk(V) and B ∈ Sl(V). We recall that

dimR(S
k(V)) =

(
dimR(V) + k − 1

k

)
, (1.2)

when V is finite-dimensional.
For a R-vector space V, let us denote

T≤m(V) =
m⊕
j=0

Tj(V), S≤m(V) =
m⊕
j=0

Sj(V),

and define

Sym≤m : T≤m(V) → S≤m(V)

(A0, A1, . . . , Am) 7→ (A0, Sym1(A1), . . . ,Symm(Am)).

For R-inner product spaces (U,GU) and (V,GV), we denote the transpose of L ∈
HomR(U;V) as the linear map LT ∈ HomR(V;U) defined by

GV(L(u), v) = GU(u, L
T (v)), u ∈ U, v ∈ V.

Topology. We shall not use any particular notation for the Euclidean norm for Rn, and so
will just denote this norm by

∥x∥ =

 n∑
j=1

|xj |2
1/2

.

It is sometimes convenient to use other norms for Rn, particularly the 1- and ∞-norms
defined, as usual, by

∥x∥1 =
n∑
j=1

|xj |, ∥x∥∞ = sup{|xj | | j ∈ {1, . . . , n}}.

The following relationships between these norms are useful:

∥x∥ ≤ ∥x∥1 ≤
√
n∥x∥, ∥x∥∞ ≤ ∥x∥ ≤

√
n∥x∥∞,

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞.
(1.3)

If we are using a norm whose definition is evident from context, we will simply denote it
by ∥·∥, accepting that context will ensure that there is no confusion.



8 A. D. Lewis

For x ∈ Rn and r ∈ R>0, we denote by

B(r,x) = {y ∈ Rn | ∥y − x∥ < r}

and
B(r,x) = {y ∈ Rn | ∥y − x∥ ≤ r}

the open and closed balls of radius r centred at x. As with the notation for norms, we
shall often use the preceding notation for balls in settings different from Rn, and accept the
abuse of notation.

Differential calculus. If U ⊆ Rn is open and if Φ : U → Rm is differentiable at x ∈ U, we
denote its derivative by DΦ(x). Higher-order derivatives, when they exist, are denoted by
DkΦ(x), k being the order of differentiation. We recall that, if Φ : U → Rm is of class Ck,
k ∈ Z>0, then DkΦ(x) is symmetric. We shall sometimes find it convenient to use multi-
index notation for derivatives. A multi-index with length n is an element of Zn≥0, i.e., an
n-tuple I = (i1, . . . , in) of nonnegative integers. If Φ : U → Rm is a smooth function, then
we denote

DIΦ(x) = Di1
1 · · ·Din

n Φ(x).

We will use the symbol |I| = i1 + · · · + in to denote the order of the derivative. Another
piece of multi-index notation we shall use is

aI = ai11 · · · ainn ,

for a ∈ Rn and I ∈ Zn≥0. Also, we denote I! = i1! · · · in!.

Differential geometry. We shall adopt the notation and conventions of smooth differential
geometry of [Abraham, Marsden, and Ratiu 1988]. We shall also make use of real analytic
differential geometry. There are no useful textbook references dedicated to real analytic
differential geometry, but the book of [Cieliebak and Eliashberg 2012] contains much of what
we shall need. Throughout the paper, unless otherwise stated, manifolds are connected,
second countable, Hausdorff manifolds. The assumption of connectedness can be dispensed
with but is convenient as it allows one to not have to worry about manifolds with components
of different dimensions and vector bundles with fibres of different dimensions.

We shall work with regularity classes r ∈ {∞, ω}, “∞” meaning smooth, “ω” meaning
real analytic. Sometimes we do not require infinite differentiability, but will hypothesise it
anyway. Other times we will precisely specify the regularity needed; but we will be a little
sloppy with this as (1) it is not crucial to the purposes of this paper and (2) it is typically
easy to know when infinite differentiability is hypothesised but not required.

The tangent bundle of a manifold M is denoted by πTM : TM → M and the cotangent
bundle by πT∗M : T∗M → M.

We denote by Cr(M;N) the set of mappings from a manifold M to a manifold N of class
Cr. When N = R, we denote by Cr(M) = Cr(M;R) the set of scalar-valued functions of class
Cr. For Φ ∈ C1(M;N), TΦ: TM → TN denotes the derivative of Φ, and TxΦ = TΦ|TxM.
For f ∈ Cr(M), we denote by df ∈ Γr−1(T∗M) the differential of f , defined by

Txf(vx) = (f(x), ⟨df(x); vx⟩, vx ∈ TxM.



Geometric analysis on real analytic manifolds 9

We denote by T ∗
xΦ the dual of TxΦ. For a vector field X and a differentiable function f ,

LXf denotes the Lie derivative of f with respect to X. We might also write Xf = LXf .
For differentiable vector fields X and Y , we denote by [X,Y ] the Lie bracket of these vector
fields. For X ∈ Γr(TM), the flow of X is denoted by ΦXt , meaning that, for x ∈ M, we have

d

dt
ΦXt (x) = X ◦ ΦXt (x), ΦX0 (x) = x.

The Lie derivative for vector fields extends to a derivation of the tensor algebra for a
manifold. Specifically, for X ∈ Γ∞(TM), we denote

LXf = ⟨df ;X⟩, LXY = [X,Y ], f ∈ C∞(M), X ∈ Γ∞(TM).

For α ∈ Γ∞(T∗M), we can then define its Lie derivative with respect to X by

⟨LXα;Y ⟩ = LX⟨α;Y ⟩ − ⟨α;LXY ⟩, Y ∈ Γ∞(TM).

The Lie derivative of a tensor field A ∈ Γ∞(Trs(TM)) is then defined by

LXA(α
1, . . . , αr, X1, . . . , Xs) = LX(A(α

1, . . . , αr, X1, . . . , Xs))

−
r∑
j=1

A(α1, . . . ,LXα
j , . . . , αr, X1, . . . , Xs)−

s∑
j=1

A(α1, . . . , αr, X1, . . . ,LXXj , . . . , Xs).

(1.4)

Of course, these constructions make sense for tensor fields and vector fields that are less
regular than smooth.

Let πE : E → M be a vector bundle of class Cr. We shall sometimes denote the fibre over
x ∈ M by Ex, noting that this has the structure of a R-vector space. If A ⊆ M, we denote
E|A = π−1

E (A). By Γr(E) we denote the set of sections of E of class Cr. This space has the
structure of a R-vector space with the vector space operations

(ξ + η)(x) = ξ(x) + η(x), (aξ)(x) = a(ξ(x)), x ∈ M,

and of a Cr(M)-module with the additional operation of multiplication

(fξ)(x) = f(x)ξ(x), x ∈ M,

for f ∈ Cr(M), ξ, η ∈ Γr(E), and a ∈ R. By G rE we denote the sheaf of Cr-sections of E.
Thus

G rE (U) = Γr(E|U)

when U ⊆ M is open. By RkM we denote the trivial bundle RkM = M×Rk with vector bundle
projection being projection onto the first factor. The dual bundle E∗ of a vector bundle
E is the set of vector bundle mappings from E to RM over idM. We note that there is a
natural identification of Γr(RM) with Cr(M). Given a Cr-vector bundle πE : E → M and a
mapping Φ ∈ Cr(N;M), we denote by Φ∗πE : Φ

∗E → N the pull-back bundle. For Cr-vector
bundles πE : E → M and πF : F → M over the same base, we denote by VBr(E;F) the set of
Cr-vector bundle mappings from E to F over idM.
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Riemannian geometry and connections. We shall make use of basic constructions from
Riemannian geometry. We also work a great deal with connections, both affine connections
and linear connections in vector bundles. We refer to [Kobayashi and Nomizu 1963] as a
standard reference, and [Kolář, Michor, and Slovák 1993] is also a useful reference.

First suppose that r ∈ {∞, ω}. A Cr-fibre metric on a Cr-vector bundle πE : E → M
is GπE ∈ Γr(S2(E∗)) such that GπE(x) is an inner product on Ex for each x ∈ M. The
associated norm on fibres we denote by ∥·∥G. In case E is the tangent bundle of M, then a
fibre metric is a Riemannian metric, and we will use the notation GM in this case.

A linear connection in a vector bundle πE : E → M will be denoted by ∇πE . In case E
is the tangent bundle of M, then a linear connection is called an affine connection, and we
will denote it by ∇M. A linear connection in a vector bundle πE : E → M induces a splitting
of the short exact sequence

0 // ker(TπE) // TE
TπE // TM // 0

For e ∈ E, we thus have a splitting of the tangent space TeE ≃ TπE(e)M⊕ EπE(e). The first
component in this splitting we call horizontal and denote by HeE, and the second we call
vertical and denote by VeE. By hor and ver we denote the projections onto the horizontal
and vertical subspaces, respectively.

We note that covariant differentiation with respect to a vector field X of sections of E,
along with Lie differentiation of functions, gives rise to covariant differentiation of tensors,
just as we saw above for LX . A little more generally, if we have vector bundles πE : E → M
and πF : F → E, and linear connections ∇πE and ∇πF , then we have a connection in E ⊗ F
denoted by ∇πE⊗πF and defined by

∇πE⊗πF(ξ ⊗ η) = (∇πEξ)⊗ η + ξ ⊗ (∇πFη).

Jet bundles. We shall make extensive use of jet bundles of various sorts. We can recom-
mend [Saunders 1989] and [Kolář, Michor, and Slovák 1993, §12] as useful references.

Let M be a Cr-manifold and let m ∈ Z≥0. For x ∈ M and a ∈ R, by Jm(x,a)(M;R) we
denote the m-jets of functions at x taking value a at x. For a Cr-function f defined in a
neighbourhood of x, we denote by jmf(x) ∈ Jm(x,f(x))M the m-ket of f . Of particular interest

is the set T∗m
x M = Jm(x,0)(M;R) of jets of functions taking the value 0 at x. This has the

structure of a R-algebra with the algebra structure defined by the three operations

jmf(x) + jmg(x) = jm(f + g)(x),

(jmf(x))(jmg(x)) = jm(fg)(x),

a(jmf(x)) = jm(af)(x),

for functions f and g and for a ∈ R. We denote

T∗mM =
◦⋃

x∈M
T∗m
x M.

For m, l ∈ Z≥0 with m ≥ l, we have projections ρml : T∗mM → T∗lM. Note that T∗0M ≃ M
and that T∗1M ≃ T∗M. We abbreviate ρm ≜ ρm0 : T∗mM → M which has the structure of a
vector bundle.
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Let πE : E → M be a Cr-vector bundle. For x ∈ M and m ∈ Z≥0, J
m
x E denotes the

set of m-jets of sections of E at x. For a Cr-section ξ defined in some neighbourhood of

x, jmξ(x) ∈ Jmx E denotes the m-jet of ξ. We denote by JmE =
◦
∪x∈M Jmx E the bundle of

m-jets. For m, l ∈ Z≥0 with m ≥ l, we denote by πml : JmE → JlE the projection. Note that
J0E ≃ E. We abbreviate πm ≜ πE ◦ πm0 : JmE → M, and note that JmE has the structure of
a vector bundle over M, with addition and scalar multiplication defined by

jmξ(x) + jmη(x) = jm(ξ + η)(x), a(jmξ(x)) = jm(aξ)(x)

for sections ξ and η and for a ∈ R. One can show that

JmE ≃ (RM ⊕ T∗mM)⊗ E. (1.5)

2. The topology for sections of a real analytic vector bundle

In this section we shall provide a quick overview of the usual topology for real analytic
sections of a real analytic vector bundle, and will give three descriptions of this topology,
two due to Martineau [1966] and one via seminorms given by Jafarpour and Lewis [2014],
based on the note of Vogt [2013].

2.1. Martineau’s descriptions of the real analytic topology. We shall give a brief char-
acterisation of two topologies for the space Γω(E) of real analytic sections of a real analytic
vector bundle πE : E → M. The original work of Martineau [1966] describes these topologies
for the space of real analytic functions, but it is evident that the same considerations apply
to sections of a general vector bundle. Each description offers benefits in terms of providing
immediately some useful properties of the topology, although showing that they agree is
something of an undertaking, and we shall make some comments in this direction.

Both characterisations rely on the fact that a real analytic vector bundle πE : E → M can
be complexified to an holomorphic vector bundle πE : E → M, following Whitney and Bruhat
[1959]. We denote by Γhol(E) the space of holomorphic sections of this vector bundle, which
we equip with its usual compact-open topology, i.e., the topology of uniform convergence
on compact sets. This renders Γhol(E) a Fréchet space. For a subset A ⊆ M, we denote
by G hol

A,E
the space of germs of holomorphic sections of E about A. The space G hol

A,E
has the

direct limit topology over the directed set of neighbourhoods of A.
In the first description of the topology of Γω(E), we note that, if ξ ∈ Γω(E), then there

is some neighbourhood U of M in M to which ξ admits a unique holomorphic extension
ξ ∈ Γhol(E|U). Thus we have a mapping

Γω(E) ∋ ξ 7→ ξ ∈ G hol
M,E

.

This map is easily seen to be an isomorphism of vector spaces, and so equips Γω(E) with the
direct limit topology for the space of germs of sections of E about M ⊆ M. This immediately
shows that Γω(E) is ultrabornological [Jarchow 1981, Corollaries 13.1.4 and 13.1.5].

The other description of a locally convex topology first fixes a compact subset K ⊆ M.
We note, then, that K possesses a countable collection of neighbourhoods in M that are
cofinal in the directed set of all neighbourhoods. Thus the direct limit topology of G hol

K,E
is

that of a countable direct limit of Fréchet spaces. Indeed, by working instead with bounded
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sections, one ensures that one has a countable direct limit of Banach spaces. One can
additionally and importantly show that the linking maps for the direct limit are compact,
indeed nuclear. Thus the topology of G hol

K,E
inherits many nice properties: it is a webbed,

nuclear, Suslin space by [Jarchow 1981, Corollary 5.3.3], [Kriegl and Michor 1997, Theo-
rem 8.4] and [Schwartz 1974, Example II.2(E)], respectively. We next note that we have
a natural mapping ξ 7→ [ξ]K from Γω(E) to G hol

K,E
by taking the germ about K of an holo-

morphic extension. Now, since M is second countable, it possesses a countable compact
exhaustion (Kj)j∈Z>0 , and one can then reasonably easily see that Γω(E) is the inverse
limit (as a vector space) of the inverse system G hol

Kj ,E
, j ∈ Z>0, (with linking maps given

by restriction). We can then give Γω(E) the inverse limit topology. The resulting topology
is webbed, nuclear, and Suslin by [Jarchow 1981, Corollary 5.3.3], [Jarchow 1981, Corol-
lary 21.2.3], and [Bogachev 2007, Lemma 6.6.5(ii) and (iii)]. It is not, however, metrisable
as follows from [Vogt 2010, Theorem 10].

One of the contributions of Martineau [1966] is to show that the two preceding topolo-
gies for Γω(E) agree. Martineau’s original proof was by showing that ∪j∈Z>0(G

hol
Kj ,E

)∗ is a

dense subspace of the dual of Γω(E) equipped with the direct limit topology, using earlier
results in [Martineau 1963] on analytic functionals. A modern approach, using homological
methods, equates an inverse limit being ultrabornological with the vanishing of Proj1, where
Proj is a functor on inverse systems devised by Palamodov [1968]. In all cases, showing
equality of the two topologies is not straightforward.

The inverse limit description of the topology for Γω(E) is the one that is most closely
connected with our approach here, since the seminorms we give are essentially for G hol

K,E
for

a compact subset K ⊆ M ⊆ M. It is to the description of these seminorms that we now
turn.

2.2. Decompositions for jet bundles. A prominent rôle in our characterisation of the
topology for real analytic sections is played by jets and a decomposition of jets using con-
nections. The reason for this is that the seminorms we define are given in terms of infinite
jets of real analytic sections.

Let πE : E → M be a smooth vector bundle. We suppose that we have a linear connection
∇πE on the vector bundle E and an affine connection ∇M on M. We then have induced
connections, that we also denote by ∇πE and ∇M, in various tensor bundles of E and TM,
respectively. The connections∇πE and∇M extend naturally to connections in various tensor
products of TM and E, all of these being denoted by ∇M,πE . Note that

∇M,πE,mξ ≜ ∇M,πE · · · (∇M,πE︸ ︷︷ ︸
m−1 times

(∇πEξ)) ∈ Γ∞(Tm(T∗M)⊗ E). (2.1)

Now, given ξ ∈ Γ∞(E) and m ∈ Z≥0, we define

Dm
∇M,∇πE (ξ) = Symm⊗ idE(∇M,πE,mξ) ∈ Γ∞(Sm(T∗M)⊗ E),

We take the convention that D0
∇M,∇πE

(ξ) = ξ.

The following lemma is then key for our presentation, and is proved in [Jafarpour and
Lewis 2014, Lemma 2.1] by means of induction and a diagram chase.
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2.1 Lemma: (Decomposition of jet bundles) The map

Sm∇M,∇πE : J
mE →

m⊕
j=0

(Sj(T∗M)⊗ E)

jmξ(x) 7→ (ξ(x), D1
∇M,∇πE (ξ)(x), . . . , D

m
∇M,∇πE (ξ)(x))

is an isomorphism of vector bundles, and, for each m ∈ Z>0, the diagram

Jm+1E
Sm+1

∇M,∇πE//

πm+1
m

��

⊕m+1
j=0 (Sj(T∗M)⊗ E)

prm+1
m

��
JmE

Sm
∇M,∇πE

// ⊕m
j=0(S

j(T∗M)⊗ E)

commutes, where prm+1
m is the obvious projection, stripping off the last component of the

direct sum.

There are a couple of special cases of interest.

1. Jets of functions fit into the framework of the lemma by using the trivial line bundle
RM = M×R. The identification of a function with a section of this bundle is specified by
f 7→ ξf , with ξf (x) = (x, f(x)). In this case, the bundle has a canonical flat connection
defined by ∇πEf = df . Therefore, the decomposition of Lemma 2.1 is determined by
an affine connection ∇M on M, and so we have a mapping

Sm∇M : Jm(M;R) →
m⊕
j=0

Sj(T∗M)

f(x) 7→ (f(x),df(x), . . . ,Symm ◦∇M,m−1df(x)).

(2.2)

This can be restricted to T∗mM to give the mapping

Sm∇M : T∗mM →
m⊕
j=1

Sj(T∗M)

f(x) 7→ (df(x), . . . ,Symm ◦∇M,m−1df(x)),

(2.3)

adopting a mild abuse of notation. We recall that T∗m
x M is anR-algebra, and the induced

R-algebra structure on ⊕m
j=1S

j(T∗
xM) is that of polynomial functions that vanish at 0

and with degree at most m.

2. Another special case is that of jets of vector fields. In this case, the vector bundle is
πTM : TM → M. We can make use of an affine connection∇M onM to provide everything
we need to define the mapping

Sm∇M : JmTM →
m⊕
j=0

(Sj(T∗M)⊗ TM)

X(x) 7→ (X(x),∇MX(x), . . . ,Symm ◦∇M,mX(x)).

(2.4)

Of course, this applies equally well to jets of one-forms on M, or any other sections of
tensor bundles associated with the tangent bundle.

This case of vector fields is the setting of Jafarpour and Lewis [2014] in their study of
flows of time-varying vector fields.
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2.3. Fibre norms for jet bundles of vector bundles. Our discussion begins with general
constructions for the fibres of jet bundles. Thus we let r ∈ {∞, ω} and let πE : E → M
be a Cr-vector bundle. We shall suppose that we have a Cr-affine connection ∇M on M
and a Cr-vector bundle connection ∇πE in E, as in Section 2.2. This allows us to give the
decomposition of JmE as in Lemma 2.1. By additionally supposing that we have a Cr-
Riemannian metric GM on M and a Cr-fibre metric GπE on E, we shall give a Cr-fibre norm
on JmE. Note that the existence of the metrics and connections is ensured by [Jafarpour
and Lewis 2014, Lemma 2.4].

The first step in making the construction is the following result concerning inner prod-
ucts on tensor products.

2.2 Lemma: (Inner products on tensor products) Let U and V be finite-dimensional
R-vector spaces and let G and H be inner products on U and V, respectively. Then the
element G ⊗H of T2(U∗ ⊗ V∗) defined by

G ⊗H(u1 ⊗ v1, u2 ⊗ v2) = G(u1, u2)H(v1, v2)

is an inner product on U⊗ V.

Proof: Let (e1, . . . , em) and (f1, . . . , fn) be orthonormal bases for U and V, respectively.
Then

{ea ⊗ fj | a ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} (2.5)

is a basis for U⊗ V. Note that

G ⊗H(ea ⊗ fj , eb ⊗ fk) = G(ea, eb)H(fj , fk) = δabδjk,

which shows that G ⊗H is indeed an inner product, as (2.5) is an orthonormal basis. ■

With GπE a fibre metric on E and with GM be a Riemannian metric on M as above, let
us denote by G−1

M the associated fibre metric on T∗M defined by

G−1
M (αx, βx) = GM(G♯M(αx),G

♯
M(βx)).

In like manner, one has a fibre metric G−1
πE

on E∗. Then, by induction using the preceding
lemma, we have a fibre metric in all tensor spaces associated with TM and E and their
tensor products. We shall denote by GM,πE any of these various fibre metrics. In particular,
we have a fibre metric GM,πE on Tj(T∗M)⊗E induced by G−1

M and GπE . By restriction, this
gives a fibre metric on Sj(T∗M) ⊗ E. We can thus define a fibre metric GM,πE,m on JmE
given by

GM,πE,m(jmξ(x), jmη(x)) =

m∑
j=0

GM,πE

(
1

j!
Dj

∇M,∇πE
(ξ)(x),

1

j!
Dj

∇M,∇πE
(η)(x)

)
. (2.6)

Associated to this inner product on fibres is the norm on fibres, which we denote by
∥·∥GM,πE,m

. We shall use these fibre norms continually in our descriptions of our various
topologies for real analytic vector bundles, cf. Section 6. The appearance of the factorials
in the fibre metric (2.6) appears superfluous at this point. However, it is essential in order
for the real analytic topology defined by our seminorms to be independent of the choices of
∇M, ∇πE , GM, and GπE , cf. Theorem 8.10.
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The preceding constructions can be applied particularly to the tangent bundle of the
total space of a vector bundle πE : E → M. Indeed, given a Riemannian metric on M, a
fibre metric on E, an affine connection on M, and a vector bundle connection in E, the
constructions of Section 4.1 give a Riemannian metric on E, and this, along with its Levi-
Civita connection, gives the data required to define fibre norms for the jet bundles JmTE.
A substantial amount of the work in the paper will be to consider lifts to E of objects on M.
The continuity of operations like this requires us to relate the jet bundle decompositions of
JmTE with those of JmE and JmTM.

2.4. Seminorms for the real analytic topology. In this section we provide explicit semi-
norms for Martineau’s topologies for Γω(E). Throughout this section, we will work with a
vector bundle πE : E → M and the data ∇M, ∇πE , GM, and GπE that define the fibre metrics
for jet bundles as per Section 2.3. To define seminorms for Γω(E), let c0(Z≥0;R>0) denote
the space of sequences in R>0, indexed by Z≥0, and converging to zero. We shall denote a
typical element of c0(Z≥0;R>0) by a = (aj)j∈Z≥0

. Now, for K ⊆ M and a ∈ c0(Z≥0;R>0),
we define a seminorm pωK,a for Γω(E) by

pωK,a(ξ) = sup{a0a1 · · · am∥jmξ(x)∥GM,πE,m
| x ∈ K, m ∈ Z≥0}.

The family of seminorms pωK,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0), defines a locally convex
topology on Γω(E) that we call the Cω-topology . As we have mentioned above, this
topology is webbed, ultrabornological, nuclear, and Suslin, but is not metrisable.

While we are in the process of defining seminorms, let us also define seminorms for
the set Γ∞(E) of smooth sections. While we are primarily interested in the difficult real
analytic case in this paper, it is useful and illustrative to, at times, make comparisons
with the smooth case. In any case, the topology we consider for Γ∞(E) is that of uniform
convergence of derivatives on compact sets. A moment’s thought will convince one that the
appropriate seminorms are

p∞K,m(ξ) = sup{∥jmξ(x)∥GM,πE,m
| x ∈ K}

for K ⊆ M compact and for m ∈ Z≥0. These seminorms define a Polish topology for
Γ∞(E) called the C∞-topology . We note that, for the smooth topology, the seminorms
are defined for fixed order jets. As we shall indicate as we go along, it is this fact that leads
to simplifications of the results in the paper when applied to the smooth case.

The following lemma, providing bounds for real analytic sections, is a global version of
a well-known classical result [e.g., Krantz and Parks 2002, Proposition 2.2.10]. We refer
to [Jafarpour and Lewis 2014, Lemma 2.6] for a proof.

2.3 Lemma: (Characterisation of real analytic sections) Let πE : E → M be a real
analytic vector bundle. For ξ ∈ Γ∞(E), the following statements are equivalent:

(i) ξ ∈ Γω(E);

(ii) for K ⊆ M compact, there exists C, r ∈ R>0 such that

p∞K,m(ξ) ≤ Cr−m, m ∈ Z≥0.
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3. Tensors on the total space of a vector bundle

Many of the geometric constructions we undertake in the paper, and estimates associated
with these geometric constructions, involves tensors of various sorts defined on the total
space of a vector bundle. In this section we present the classes of such tensors as arise
in our presentation. We also define a number of algebraic operations on these tensors.
Many of the constructions we see here will seem, on an initial reading, disconnected from
the objectives of the paper. However, the constructions are essential in Section 4. This is
not very encouraging, however, since the constructions and results of Section 4 themselves
appear non sequitur to the objectives of the paper. It is only in the later sections of the
paper that the relevance of all of these constructions will become apparent. For this reason,
perhaps a good strategy would be to skip over this section and the next in a first reading,
coming back to them when they are subsequently needed.

There is nothing particularly real analytic with the material in this section, so the
smooth and real analytic cases are considered side-by-side.

3.1. Functions on vector bundles. Among the geometric constructions we will consider
are those associated to a particular set of functions on a vector bundle.

3.1 Definition: (Fibre-linear functions) Let r ∈ {∞, ω} and let πE : E → M be a vector
bundle of class Cr. A function F ∈ Cr(E) is fibre-linear if, for each x ∈ M, F |Ex is a
linear function. We denote by Linr(E) the set of Cr-fibre-linear functions on E. •

Let us give some elementary properties of the sets of fibre-linear functions.

3.2 Lemma: (Properties of fibre-linear functions) Let r ∈ {∞, ω} and let πE : E → M
be a vector bundle of class Cr. Then the following statements hold:

(i) Linr(E) is a submodule of the Cr(M)-module Cr(E);

(ii) for F ∈ Linr(E), there exists λF ∈ Γr(E∗) such that

F (e) = ⟨λF ◦ πE(e); e⟩, e ∈ E,

and, moreover, the map F 7→ λF is an isomorphism of Cr(M)-modules;

Proof: (i) Let F ∈ Linr(E) and f ∈ Cr(M). Then

f · F (e) = (f ◦ πE(e))F (e),

and so f · F is fibre-linear since a scalar multiple of a linear function is a linear function.
Also, since the pointwise sum of linear functions is a linear function, we conclude that
Linr(E) is indeed a submodule of Cr(E).

(ii) This merely follows by definition of the dual bundle E∗. ■

In a rather related manner, we can consider other classes of functions on vector bundles.

3.3 Definition: (Lifts and evaluations of one-forms and functions) Let r ∈ {∞, ω}
and let πE : E → M be a Cr-vector bundle.

(i) For λ ∈ Γr(E∗), the vertical evaluation of λ is λe ∈ Linr(E) defined by λe(ex) =
⟨λ(x); ex⟩.

(ii) For f ∈ Cr(M), the horizontal lift of f is the function fh ∈ Cr(E) defined by
fh = π∗Ef . •
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3.2. Vector fields on vector bundles. Next we turn to vector fields on the total space of a
vector bundle. As with our consideration of functions in the preceding section, we restrict
attention to vector fields that interact nicely with the vector bundle structure.

We begin with the notion of the vertical lift of a section.

3.4 Definition: (Vertical lift of a section) Let r ∈ {∞, ω} and let πE : E → M be a
vector bundle of class Cr.

(i) For ex, e
′
x ∈ Ex, we define the vertical lift of e′x to ex to be

vlft(ex, e
′
x) =

d

dt

∣∣∣∣
t=0

(ex + te′x).

(ii) Given a section ξ ∈ Γr(E), we define the vertical lift of ξ to E to be the vector field

ξv(ex) = vlft(ex, ξ(x)). •

Next we consider another sort of lift, this one requiring a connection ∇πE in the vector
bundle πE : E → B. We let VE = ker(TπE) be the vertical subbundle. As mentioned
in Section 1.2, the connection ∇πE defines a complement HE to VE called the horizontal
subbundle. We let ver, hor : TE → TE be the projections onto VE and HE.

3.5 Definition: (Horizontal lift of a vector field) Let r ∈ {∞, ω}, let πE : E → M be a
vector bundle of class Cr, and let ∇πE be a Cr-connection in E.

(i) For ex ∈ Ex and vx ∈ TxM, the horizontal lift of vx to ex is the unique vector
hlft(ex, vx) ∈ HexE satisfying

TexπE(hlft(ex, vx)) = vx.

(ii) For X ∈ Γr(TM) on M, we denote by Xh the horizontal lift of X to E, this being
the vector field Xh ∈ Γr(TE) satisfying

Xh(ex) = hlft(ex, X(x)). •

Next we provide formulae for differentiating various sorts of functions with respect to
various sorts of vector fields.

3.6 Lemma: (Differentiation of functions on vector bundles) Let r ∈ {∞, ω} and
let πE : E → M a vector bundle of class Cr. Let f ∈ Cr(M), λ ∈ Γr(E∗), X ∈ Γr(TM), and
ξ ∈ Γr(E),

Then the following statements hold:

(i) LXhfh = (LXf)h;

(ii) Lξvfh = 0;

(iii) Lξvλe = ⟨λ; ξ⟩h;
Additionally, let ∇πE be a Cr-linear connection in πE : E → M. Then

(iv) LXhλe = (∇πE
X λ)

e.
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Proof: (i) We compute

LXhfh(e) = ⟨d(π∗Ef)(e);Xh(e)⟩ = ⟨df ◦ πE(e);TeπE(X
h(e))⟩

= ⟨df ◦ πE(e);X ◦ πE(e)⟩ = (LXf)
h(e).

(ii) Since fh is constant on fibres of πE and ξv is tangent to fibres, we have

fh(e+ tξ ◦ πE(e)) = f(e).

Differentiating with respect to t at t = 0 gives the result.
(iii) Here we compute

Lξvλ
e(e) =

d

dt

∣∣∣∣
t=0

⟨λ(e+ tξ ◦ πE(e)); e+ tξ ◦ πE(e)⟩

= ⟨λ ◦ πE(e); ξ ◦ πE(e)⟩ = ⟨λ; ξ⟩h,

so completing the proof.
(iv) Let e ∈ E and let t 7→ γ(t) be the integral curve for X satisfying γ(0) = πE(e) and

let t 7→ γh(t) be the integral curve for Xh satisfying γh(0) = e. Then t 7→ γh(t) is the
parallel translation of e along γ, and as such we have ∇πE

γ′(t)γ
h(t) = 0. Then

LXhλe(e) =
d

dt

∣∣∣∣
t=0

⟨λ ◦ γ(t); γh(t)⟩ = ⟨∇πE
X λ ◦ πE(e); e⟩,

as claimed. ■

In Section 4 we shall have a great deal more to say about differentiation of objects on
the total space of a vector bundle when one has more structure present than we use in the
preceding result.

3.3. Linear mappings on vector bundles. Now we turn to an examination of linear maps
associated to a vector bundle πE : E → M. We shall consider vector bundle mappings of two
sorts: (1) with values in the trivial line bundle RM; (2) with values in E. The first sort of
mappings are, of course, simply sections of the dual bundle, or linear functions of the sort
studied in Section 3.1. Our interest here is in lifting such objects to the total space.

First we work with one-forms. If we have a connection ∇πE in a vector bundle πE : E →
M, then this gives us a splitting TE = HE ⊕ VE, and hence a splitting T∗E = H∗E ⊕ V∗E
with

H∗E = ann(VE), V∗E = ann(HE).

Note that H∗
eE = image(T ∗

e πE).

3.7 Definition: (Lifts of one-forms and dual sections) Let r ∈ {∞, ω} and let πE : E →
M be a Cr-vector bundle.

(i) For αx ∈ T∗
xM and ex ∈ Ex, the horizontal lift of αx to ex is hlft(ex, αx) = T ∗

exπE(αx).

(ii) The horizontal lift of α ∈ Γr(T∗M) is αh = π∗Eα ∈ Γr(T∗E).

Additionally, let ∇πE be a connection in E.
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(iii) For λx ∈ E∗
x and ex ∈ E∗

x, then the vertical lift of λx is the unique vector vlft(ex, λx) ∈
V∗
exE satisfying

⟨vlft(ex, λx); vlft(ex, ux)⟩ = ⟨λx;ux⟩

for every ux ∈ Ex.

(iv) The vertical lift of λ ∈ Γr(E∗) is the one-form λv ∈ Γr(T∗E) satisfying

λv(ex) = vlft(ex, λ(x)). •

We also have natural ways of lifting homomorphisms of vector bundles.

3.8 Definition: (Vertical evaluation and vertical lift of an homomorphism) Let
r ∈ {∞, ω}, and let πE : E → M and πF : F → M be Cr-vector bundles. For L ∈ Γr(F⊗ E∗),

(i) the vertical evaluation of L is the section Le ∈ Γr(π∗EF) defined by

Le(ex) = (ex, L(ex)).

If, additionally, ∇πE is a connection in E,

(ii) the vertical lift of L is the vector bundle homomorphism Lv ∈ Γr(π∗EF⊗T∗E) defined
by

Lv(Z) = (e, L ◦ ver(Z))

for Z ∈ TeE, noting that ver(Z) ∈ VeE ≃ EπE(e). •
We shall be especially interested in two cases of the vector bundle F.

1. F = RM: In this case, F ⊗ E∗ ≃ E∗, π∗EF ≃ RE, and π
∗
EF ⊗ T∗E ≃ T∗E. One can easily

see that, if λ ∈ Γr(E∗), then the vertical evaluation as per Definition 3.8 agrees with
that of Definition 3.3, and the vertical lift as per Definition 3.8 agrees with that of
Definition 3.7.

2. F = E: In this case, F⊗ E∗ ≃ T1
1(E), i.e., the set of endomorphisms of E. We also have

π∗EF ≃ VE [Kolář, Michor, and Slovák 1993, §6.11]. Thus, for L ∈ Γr(T1
1(E)), L

e is a
VE-valued vector field. Also, Lv is a VE-valued endomorphism of TE.

Let us perform some analysis of the vertical evaluation and vertical lift of an homomor-
phism. First of all, for e1, e2 ∈ Ex,

Le(e1 + e2) = (e1, L(e1)) + (e2, L(e2)) = Le(e1) + Le(e2),

where addition is with respect to the vector bundle structure

E
Le
//

πE
��

π∗EF

π∗
EπF
��

M
Z
// F

where Z is the zero section. Thus Le is a “linear” section over E. We define the vector
bundle mapping

PE,F : π
∗
EF⊗ V∗E → π∗EF

Le 7→ Le(e)
(3.1)
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over idE, noting that e ∈ EπE(e) ≃ VeE. Then, given A ∈ Γr(π∗EF⊗V∗E), PE,F ◦A is a section
of π∗EE. Moreover, PE,F ◦ Lv = Le for L ∈ Γr(F⊗ E∗).

We shall make use of these observations in Section 5.
Let us recast the preceding observations in a slightly different way. To start, note that,

given λ ∈ Γr(E∗) and η ∈ Γr(F), we have η ⊗ λ ∈ Γr(F ⊗ E∗). The tensor product on the
left can be thought of as being of Cr(M)-modules.1 Moreover, such sections of the bundle
of endomorphisms locally generate the sections of the homomorphism bundle. Note that

(η ⊗ λ)e = ξv ⊗ λe,

as is directly verified. In this case, since Cr(M) is a subring of Cr(E) (by pull-back), we can
regard the tensor product as being of Cr(E)-modules. Therefore,

Le ∈ Γr(Γr(π∗EF)⊗ Linr(E)).

Since Linr(E) ⊆ Cr(E), the tensor product is mere multiplication in this case.
A similar sort of analysis can be made for the vertical lift of an homomorphism. In this

case, given λ ∈ Γr(E∗) and η ∈ Γr(F), we have ξ ⊗ λ ∈ Γr(F ⊗ E∗), as in the preceding
paragraph. In this case, the vertical lift satisfies

(ξ ⊗ λ)v = ξv ⊗ λv.

3.4. Tensors fields on vector bundles. Next we discuss the extension of our lifts of func-
tions, sections, and vector fields to higher-order tensors. The extension is to tensor powers
of the pull-back π∗ET

∗M of the cotangent bundle to the total space of the vector bundle.
Other sorts of lifts are possible, especially in the presence of a connection in the vector bun-
dle. We restrict ourselves to the tensor powers of the pull-back of T∗M since our interest is
in jet bundles, and these tensor powers represent derivatives with respect to the base.

We make the following definitions.

3.9 Definition: (Lifts of tensors) Let r ∈ {∞, ω}, and let πE : E → M and πF : F → M be
a Cr-vector bundles. Let k ∈ Z>0.

(i) For A ∈ Γr(Tk(T∗M)), the horizontal lift of A is Ah ∈ Γr(Tk(T∗E)) defined by

Ah(Z1, . . . , Zk) = A(TeπE(Z1), . . . , TeπE(Zk))

for Z1, . . . , Zk ∈ TeE.
2

1This corresponds to the well-known isomorphism

Γr(E)⊗Cr(M) Γ
r(F) ≃ Γr(E⊗ F)

of Cr(M)-modules. While this isomorphism is well-known, it is commonly not correctly proved, as proofs
are given that admit a direct translation to the holomorphic setting, where the assertion is generally false.
A correct proof in the smooth case is given by Conlon [2001, Theorem 7.5.5]. His proof makes use (without
saying this explicitly) of the Serre–Swan Theorem. Since the Serre–Swan Theorem is valid for vector bundles
over smooth, real analytic, and Stein manifolds (see [Lewis 2023, Theorem 20]), Conlon’s proof applies in
these cases.

2Of course, this is nothing but the usual definition of pull-back, which we repeat for the sake of symmetry.
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(ii) For A ∈ Γr(Tk(T∗M)⊗ E), the vertical lift of A is Av ∈ Γr(Tk(T∗E)⊗ TE) defined
by

Av(Z1, . . . , Zk) = vlft(e,A(TeπE(Z1), . . . , TeπE(Zk))),

for Z1, . . . , Zk ∈ TeE.

(iii) For A ∈ Γr(Tk(T∗M)⊗ F⊗ E∗), the vertical evaluation of A is Ae ∈ Γr(Tk(T∗E)⊗
π∗EF) defined by

Ae(Z1, . . . , Zk) = (e,A(TeπE(Z1), . . . , TeπE(Zk))(e)),

for Z1, . . . , Zk ∈ TeE.

Additionally, let ∇πE be a connection in E.

(iv) For A ∈ Γr(Tk(T∗M) ⊗ TM), the horizontal lift of A is Ah ∈ Γr(Tk(T∗E) ⊗ TE)
defined by

Ah(Z1, . . . , Zk) = hlft(e,A(TeπE(Z1), . . . , TeπE(Zk)))

for Z1, . . . , Zk ∈ TeE.

(v) For A ∈ Γr(Tk(T∗M)⊗E∗), the vertical lift of A is Av ∈ Γr(Tk(T∗E)⊗T∗E) defined
by

Av(Z1, . . . , Zk) = vlft(e,A(TeπE(Z1), . . . , TeπE(Zk)))

for Z1, . . . , Zk ∈ TeE.

(vi) For A ∈ Γr(Tk(T∗M)⊗F⊗E∗), the vertical lift of A is Av ∈ Γr(Tk(T∗E)⊗π∗EF⊗T∗E)
defined by

Av(Z1, . . . , Zk)(Z) = (e,A(TeπE(Z1), . . . , TeπE(Zk))(ver(Z))),

for Z1, . . . , Zk, Z ∈ TeE. •

3.5. Tensor contractions. In our differentiation results of Section 4, we shall make use of
certain generalisations of the contraction operator on tensors. What we have is a sort of
“contraction and insertion” operation. We describe this here in the setting of linear algebra,
since this is where it most naturally resides. The constructions can, of course, be extended
to vector bundles by performing the vector space constructions on fibres.

Let V be a finite-dimensional R-vector space, let k ∈ Z>0 and l ∈ Z≥0, and let α ∈
Tk(V∗) and β ∈ Tl(V∗) ⊗ V. For j ∈ {1, . . . , k}, define the jth insertion of β in α by
Insj(α, β) ∈ Tk+l−1(V∗) by

Insj(α, β)(v1, . . . , vk+l−1) = α(v1, . . . , vj−1, β(vj , vk+1, . . . , vk+l−1), vj+1, . . . , vk).

To be clear, when l = 0 we have

Insj(α, v)(v1, . . . , vk−1) = α(v1, . . . , vj−1, v, vj , . . . , vk−1).

We will also find it helpful to consider tensor contraction when one of the arguments (the
second is the one we care about) is fixed. Thus let β ∈ Tl(V∗) ⊗ V and define Insj,β(α) =
Insj(α, β).
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We shall also need notation for a specific sort of swapping of arguments of a tensor. Let
α ∈ Tk(V) and let j1, j2 ∈ {1, . . . , k}. We define

pushj1,j2α(v1, . . . , vk) =

{
α(v1, . . . , vj1−1, vj1+1, . . . , vj2 , vj1 , vj2+1, . . . , vk), j1 ≤ j2,

α(v1, . . . , vj2−1, vj1 , vj2 , . . . , vj1−1, vj1+1, . . . , vk), j1 > j2.

The idea is that pushj1,j2 drops vj1 into the j2-slot, and shifts the arguments to make
room for this. The “insertion” and “push” mappings can be generalised in the obvious
way to give Insj(A, β) and pushj1,j2(A) for A ∈ Tk(V∗) ⊗ U and β ∈ (Tl(V∗) ⊗ V) ⊗ U

(resp. A ∈ U⊗Tk(V∗) and β ∈ U⊗ (Tl(V∗)⊗V)), just by acting on the first (resp. second)
component of the tensor product.

The final tensor construction we make is that of a linear tensor derivation. Given
A ∈ EndR(V), we define a derivation DA of the tensor algebra ⊕r,s∈Z≥0

Trs(V) by DA(a) =

0 for a ∈ T0
0(V) ≃ R, and DA(v) = A(v) for v ∈ T1

0(V) ≃ V. It then follows that
DA(α) = −A∗(α) for α ∈ V∗. More generally, we have the following result which expresses
a well-known formula [e.g., Nelson 1967, §3.4] in terms of our insertion operation.

3.10 Lemma: (Insertion and tensor derivation I) Let V be a finite-dimensional R-
vector space, let A ∈ EndR(V), let r, s ∈ Z>0, and let T ∈ Trs(V). Then

DA(T ) =
r∑
j=1

Insj(T,A
∗)−

s∑
j=1

Insr+j(T,A).

Proof:

DA(T )(β
1, . . . , βr, u1, . . . , us)

=

r∑
j=1

v1 ⊗ · · · ⊗A(vj)⊗ . . . vr ⊗ α1 ⊗ · · · ⊗ αs(β1, . . . , βr, u1, . . . , us)

−
s∑
j=1

v1 ⊗ · · · ⊗ vr ⊗ α1 ⊗ · · · ⊗A∗(αj)⊗ · · · ⊗ αs(β1, . . . , βr, u1, . . . , us)

=

r∑
j=1

β1(v1) · · ·βj(A(vj)) · · ·βr(vr)α1(u1) · · ·αs(us)

−
s∑
j=1

β1(v1) · · ·βr(vr)α1(u1) · · ·A∗(αj)(uj) · · ·αs(us)

=

r∑
j=1

β1(v1) · · ·A∗(βj)(vj) · · ·βr(vr)α1(u1) · · ·αs(us)

−
s∑
j=1

β1(v1) · · ·βr(vr)α1(u1) · · ·αj(A(uj)) · · ·αs(us)

=
r∑
j=1

T (β1, . . . , A∗(βj), . . . , βr, u1, . . . , us)

−
s∑
j=1

T (β1, . . . , βr, u1, . . . , A(uj), . . . , us).
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■

We shall make a minor extension of the preceding notion of a derivation associated
to an endomorphism. Let k, r, s ∈ Z>0. Here we let T ∈ Trs(V) and S ∈ T1

k(V). For
v1, . . . , vk−1 ∈ V, we define S(v1,...,vk−1) ∈ EndR(V) by

S(v1,...,vk−1)(v) = S(v, v1, . . . , vk−1).

Denote S∗ ∈ T1
k−1(V)⊗ V∗ by

⟨S∗(β, v1, . . . , vk−1); v⟩ = ⟨β;S(v, v1, . . . , vk−1)⟩

so that
S∗(β, v1, . . . , vk−1) = S∗

(v1,...,vk−1)
(β).

We then define DS(T ) ∈ Trs+k−1(V) by

DS(T )(β
1, . . . , βr, u1, . . . , us+k−1) = DS(us+1...,us+k−1)

(T )(β1, . . . , βr, u1, . . . , us). (3.2)

The following elementary lemma gives a simpler formula for the previous constructions.

3.11 Lemma: (Insertion and tensor derivation II) Let V be a finite-dimensional R-
vector space, let k ∈ Z>0, let S ∈ T1

k(V), let r, s ∈ Z>0, and let T ∈ Trs(V). Then

DS(T ) =
r∑
j=1

Insj(T, S
∗)−

s∑
j=1

Insr+j(T, S).

Proof: We have

DS(T )(β
1, . . . ,βr, u1, . . . , uk+s−1)

=

r∑
j=1

Insj(T, S
∗
(us+1,...,us+k−1)

)(β1, . . . , βr, u1, . . . , us)

−
s∑
j=1

Insr+j(T, S(us+1,...,us+k−1))(β
1, . . . , βr, u1, . . . , us)

=
r∑
j=1

T (β1, . . . , S∗
(us+1,...,us+k−1)

(βj), . . . , β
r, u1, . . . , us)

−
s∑
j=1

T (β1, . . . , βr, u1, . . . , S(us+1,...,us+k−1)(uj), . . . , us)

=

r∑
j=1

Insj(T, S
∗)(β1, . . . , βr, u1, . . . , us+k−1)

−
r∑
j=1

Insr+j(T, S)(β
1, . . . , βr, u1, . . . , us+k−1),

as claimed. ■
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Let us summarise this in the cases of interest. The cases of interest will be two in
number. The first is when S ∈ T1

2(V) and T = T0 ⊗ v for T0 ∈ Tk(V∗) and v ∈ V. In this
case the preceding lemma gives

DS(T )(v1, . . . ,vk+1, β)

= Insk+1(T0 ⊗ v, S∗)(v1, . . . , vk+1, β)−
k∑
j=1

Insj(T0 ⊗ v, S)(v1, . . . , vk+1, β)

= T0(v1, . . . , vk)⟨β;Svk+1
(v)⟩ − ⟨β; v⟩

k∑
j=1

Insj(T0, S)(v1, . . . , vk+1)

= T0(v1, . . . , vk)⟨β;S(v, vk+1)⟩ − ⟨β; v⟩
k∑
j=1

Insj(T0, S)(v1, . . . , vk+1).

(3.3)
The second case we will consider is when S ∈ T1

2(V) and T = T0 ⊗ α for T0 ∈ Tk(V∗) and
α ∈ V∗. In this case we have

DS(T )(v1, . . . ,vk+2)

= − Insk+1(T0 ⊗ α, S)(v1, . . . , vk+2)−
k∑
j=1

Insj(T0 ⊗ α, S)(v1, . . . , vk+2)

= − T0(v1, . . . , vk)α(S(vk+1, vk+2))− ⟨α; vk+2⟩
k∑
j=1

Insj(T0, S)(v1, . . . , vk+1).

(3.4)

4. Differentiation of tensors on the total space of a vector bundle

In this section we establish some technical results for differentiation via connections
of various objects—functions, vector fields, tensors—on vector bundles. These results will
allow us to intrinsically perform the many calculations required to determine the recursive
relations given in Section 5 between jets on M and jets on E for a vector bundle πE : E → M.
As with the constructions of the preceding section, the results in this section might seem non
sequitur to the objectives of the paper. And, as with the results of the preceding section,
perhaps a good strategy is to hurdle over this section until the results are subsequently
needed.

As with the material in Section 3, there is nothing in this section that really separates
the real analytic case from the smooth case, so the presentation treats both cases on an
equal footing. What is true, however, is that the complications of the computations in this
section are most useful in the real analytic setting of the paper. If one only wants to prove
the continuity results in Section 9 in the smooth case, then simpler computations would
suffice.

4.1. Vector bundles as Riemannian submersions. In this section we let πE : E → M be a
vector bundle with πTE : TE → E its tangent bundle. We shall construct on E a Riemannian
metric in a more or less natural way, using a Riemannian metric on M, an affine connection
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on M, a fibre metric on E, and a vector bundle connection in E. For the initial part of the
construction, we do not require the affine connection on M to be the Levi-Civita connection,
but we will only work with the case when it is, since there are useful formulae one can prove
in this case. Let us indicate how one builds the Riemannian metric on E.

Let r ∈ {∞, ω}. We let πE : E → M be a vector bundle of class Cr and suppose that ∇πE

is a vector bundle connection on E, GM is a Riemannian metric on M, and GπE is a fibre
metric for E with all data of class Cr. The total space E can be equipped with a Riemannian
metric via a natural adaptation of the Sasaki metric for tangent bundles [Sasaki 1958]. To
define the inner product, we use the splitting determined by the connection to give the
inner product on TeE by

GE(w1, w2) = GM(hor(w1),hor(w2)) +GπE(ver(w1), ver(w2)). (4.1)

This then turns E into a Riemannian manifold. We denote by∇E the Levi-Civita connection
associated with GE. Since the connection giving the splitting is of class Cr if ∇πE is of class
Cr, the Riemannian metric GE and its Levi-Civita connection are of class Cr if GM and GπE
are of class Cr.

When we are working in this setting of Riemannian metrics and Levi-Civita connections
on the total space of a vector bundle πE : E → M, we shall denote by GM the Riemannian
metric on M and by ∇M its Levi-Civita connection.

We note that the choice of metric GE ensures that πE : E → M is a Riemannian submer-
sion if we equip M with its Riemannian metric GM used to build GE. Moreover, the fibres of
πE are totally geodesic submanifolds. There are a few constructions involving Riemannian
submersions that will be helpful for us, and we review these here. Let us introduce some
notation apropos to this. We do this in a general setting. Thus let (F,GF) and (M,GM)
be Riemannian manifolds. Let π : F → M be a Riemannian submersion , i.e., for each
y ∈ F,

GM(Tyπ(u), Tyπ(v)) = GF(u, v)

for every u, v ∈ TyF that are orthogonal to ker(Tyπ). We let VF = ker(Tπ) be the vertical
subbundle with HF its GF-orthogonal complement, which we call the horizontal subbundle.
We let ver, hor : TF → TF be the projections onto VF and HF, just as we have done for
vector bundles. For a vector field X on M, we denote by Xh the horizontal lift of X to F.
This is the unique HF-valued vector field satisfying Tyπ(X

h(y)) = X ◦ π(y) for each y ∈ F.
Given a submanifold of S of a Riemannian manifold (M,GM), S inherits the Riemannian

metric GS obtained by pulling back GM by the inclusion ιS : S → M. The submanifold S is
totally geodesic if every geodesic for (S,GS) is also a geodesic for (M,GM).

Following [O’Neill 1968], for a Cr-Riemannian submersion π : F → N, there are two
associated tensors that characterise the submersion. Specifically, we define

Aπ, Tπ ∈ Γr(T2(T∗F)⊗ TF)

by

Aπ(ξ, η) = ver(∇F
hor(ξ) hor(η)) + hor(∇F

hor(ξ) ver(η)), (4.2)

Tπ(ξ, η) = hor(∇F
ver(ξ) ver(η)) + ver(∇F

ver(ξ) hor(η))
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for ξ, η ∈ Γ1(TF). One can easily verify that Aπ and Tπ are indeed tensors as claimed.
Since the fibres of π are submanifolds, we can define the vertical covariant derivative
as the projection of the covariant derivative onto sections:

∇ver
U V = ver(∇F

UV )

for vertical vector fields U and V .
With all this background, we have the following result with tells us how to covariantly

differentiate vector fields on the total space of a vector bundle.

4.1 Lemma: (Covariant derivatives for Riemannian submersions) Let r ∈ {∞, ω}.
Let (F,GF) and (M,GM) be Cr-Riemannian manifolds with ∇F and ∇M the Levi-Civita
connections. Let π : F → M be a Riemannian submersion. Let X,Y ∈ Γr(TM) and let
U, V ∈ Γr(TF) be vertical vector fields. Then the following statements hold:

(i) hor(∇F
XhY

h) = (∇M
XY )h;

(ii) Aπ(X
h, Y h) = −1

2 ver([X
h, Y h]);

(iii) ∇F
UV = ∇ver

U V + Tπ(U, V );

(iv) ∇F
VX

h = hor(∇F
VX

h) + Tπ(V,X
h);

(v) ∇F
XhV = ver(∇F

XhV ) +Aπ(X
h, V );

(vi) ∇F
XhY

h = (∇M
XY )h +Aπ(X

h, Y h).

(vii) GF(∇F
VX

h, Y h) = −1
2GF(ver([X

h, Y h]), V ) = GF(∇F
V Y

h, Xh).

Additionally, if the fibres of π are totally geodesic submanifolds of F, then the following
statements hold:

(viii) Tπ = 0;

(ix) ∇ver|Fx is the Levi-Civita connection for the submanifold Riemannian metric on Fx;

(x) ver(∇F
XhV ) = ver([Xh, V ]);

(xi) ∇F
VX

h is horizontal and ∇F
VX

h = Aπ(X
h, V ).

Finally, if F = E is the total space of a vector bundle and if GE is the Riemannian metric
on E defined above, then the following additional statements hold for sections ξ, η ∈ Γr(E):

(xii) ∇E
ξvη

v = 0;

(xiii) ver(∇E
Xhξ

v) = (∇π
Xξ)

v.

Proof: We use the Koszul formula for the Levi-Civita connection:

2GF(∇F
ξη, ζ) = Lξ(GF(η, ζ)) +Lη(GF(ξ, ζ))−Lζ(G(ξ, η))

+GF([ξ, η], ζ)−GF([ξ, ζ], η)−GF([η, ζ], ξ) (4.3)

for vector fields ξ, η, and ζ on F [Kobayashi and Nomizu 1963, Page 160]. We shall also
use the formulae

Lζ(GF(ξ, η)) = GF(∇F
ζ ξ, η) +GF(ξ,∇F

ζη) (4.4)

(saying that the Levi-Civita connection is a metric connection) and

∇F
ξη −∇F

ηξ = [ξ, η] (4.5)
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(saying that the Levi-Civita connection is torsion-free). Both of these formulae are deter-
minable from the Koszul formula.

Let us make some preliminary computations. First, since Xh and Y h are π-related to X
and Y , we have that [Xh, Y h] is π-related to [X,Y ] [Abraham, Marsden, and Ratiu 1988,
Proposition 4.2.25]. Thus

hor([Xh, Y h]) = [X,Y ]h. (4.6)

In like manner, since V is π-related to the zero vector field and Xh is π-related to X, [V,Xh]
is π-related to the zero vector field. That is,

hor([V,Xh]) = 0. (4.7)

Next, if f is a function on M, then

LXh(π∗f) = ⟨d(π∗f);Xh⟩ = ⟨π∗df ;Xh⟩,

from which we deduce

LXh(π∗f)(y) = ⟨df ◦ π(y);X ◦ π(y)⟩, y ∈ F. (4.8)

We trivially have
LV (π

∗f) = 0.

(i) One can use (4.3) with ξ = Xh, η = Y h, and ζ = Zh, and the formulae (4.6) and (4.8)
to give

GF(∇F
XhY

h, Zh) = π∗GM(∇M
XY, Z).

This shows that
hor(∇F

XhY
h) = (∇M

XY )h. (4.9)

(ii) Now we use (4.3) with ξ = Xh, η = Y h, and ζ = V . We immediately have that the
first three terms on the right in (4.3) are zero. By (4.7), the last two terms on the right
in (4.3) are zero. Thus we have

2GF(∇F
XhY

h, V ) = GF([X,Y ]h, V ),

and so

Aπ(X
h, Y h) = ver(∇F

XhY
h) =

1

2
ver([X,Y ]h).

(iii) We have

∇F
UV = ver(∇F

UV ) + hor(∇F
UV ) = ∇ver

U V + Tπ(U, V ),

as claimed.
(iv) We have

∇F
VX

h = hor(∇F
VX

h) + ver(∇F
VX

h) = hor(∇F
VX

h) + Tπ(V,X
h),

as claimed.
(v) We have

∇F
XhV = ver(∇F

XhV ) + hor(∇F
XhV ) = ver(∇F

XhV ) +Aπ(X
h, V ),
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as claimed.
(vi) We have

∇F
XhY

h = hor(∇F
XhY

h) + ver(∇F
XhY

h) = (∇M
XY )h +Aπ(X

h, Y h),

using part (i).
(vii) This is a direct computation using (4.5), (4.7), (4.4), and part (i):

GF(∇F
VX

h, Y h) = GF(∇F
XhV, Y

h) +GF([V,X
h], Y h)

= −GF(∇F
XhY

h, V ) (4.10)

= − 1

2
GF([X

h, Y h], V ) = −1

2
GF(ver([X

h, Y h]), V ).

(viii) and (ix) These are properties of totally geodesic submanifolds, so we first prove
the result for the following situation.

1 Sublemma: Let (M,GM) be a Riemannian manifold and let S ⊆ M be a submanifold.
We let GS = ι∗SG be the induced Riemannian metric on S. We let ∇M and ∇S be the
Levi-Civita connections. Then S is totally geodesic if and only if ∇M

XY is tangent to S
whenever X,Y ∈ Γ1(TM) are tangent to S.

Proof: We let NS ⊆ TM|S be the normal bundle. We define the second fundamental form
for S to be the section ΠS of T2(TS)⊗ NS defined by

ΠS(X,Y ) = prNS(∇M
XY )

for vector fields X and Y on M that are tangent to S, where prNS : TM|S → NS is the
orthogonal projection onto NS.

We claim that ΠS is symmetric. Indeed, by (4.5) we have

ΠS(X,Y )−ΠS(Y,X) = prNS([X,Y ]) = 0

since [X,Y ] is tangent to S if X and Y are tangent to S.
Next we claim that prTS(∇M

XY ) = ∇S
XY for vector fields X and Y that are tangent to

S, where prTS : TM|S → TS is the orthogonal projection. To prove this, we show that

(X,Y ) 7→ prTS(∇M
XY ),

when restricted to S, satisfies the defining conditions (4.4) and (4.5) for the Levi-Civita
connection for GS. Indeed, because [X,Y ] is tangent to S whenever X and Y are tangent
to S, we determine that, when restricted to S,

prTS(∇M
XY −∇M

Y X) = prTS([X,Y ]) = [X,Y ]

for all vector fields X and Y tangent to S. This shows that (X,Y ) 7→ prTS(∇M
XY ) satis-

fies (4.5). Also, when we restrict to S, we have

LZ(GS(X,Y )) = LZ(GM(X,Y )) = GM(∇M
ZX,Y ) +GM(X,∇S

ZY )

= GS(prTS(∇M
ZX), Y ) +GS(X,prTS(∇M

Z Y ))
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for all vector fields X, Y , and Z that are tangent to S. This shows that (X,Y ) 7→
prTS(∇M

XY ) satisfies (4.4).
Now we can prove the sublemma. First suppose that S is totally geodesic. Let vx ∈ TS

and let t 7→ γ(t) be a geodesic for ∇S satisfying γ′(0) = vx. Then γ is also a geodesic for
∇M. Thus

0 = ∇M
γ′(t)γ

′(t) = ∇S
γ′(t)γ

′(t)

= prTS(∇M
γ′(t)γ

′(t))

= prTS(∇M
γ′(t)γ

′(t)) + prNS(∇M
γ′(t)γ

′(t)),

from which we conclude, evaluating at t = 0, that ΠS(vx, vx) = 0. Since ΠS is symmetric,
ΠS = 0. Thus

∇S
XY = prTS(∇M

XY ) = ∇M
XY

for vector fields X and Y on M tangent to S. The converse, that S is totally geodesic if
∇M
XY = ∇S

XY for all vector fields X and Y on M tangent to S, is clear. ▼

Given the sublemma, let x ∈ M and let S = π−1(x) be the fibre. As we showed in the
proof of the sublemma, if U and V are vertical vector fields (in particular, they are tangent
to S), then

∇F
UV = ver(∇F

UV ) + Tπ(U, V ) = ∇S
UV.

Matching vertical and horizontal parts on S gives

∇ver
U V = ∇S

UV, Tπ(U, V ) = 0,

as claimed.
(xi) It follows immediately from parts (iv) and (viii) that ∇F

VX
h is horizontal. We also

have
∇F
VX

h = hor(∇F
VX

h) = hor(∇F
XhV ) + hor([V,Xh])

by (4.5). By part (v), the first term on the far right is Aπ(X
h, V ) and, by (4.7), the second

term in the far right is zero.
(x) By (4.5), we have

ver(∇F
XhV ) = ver(∇F

VX
h) + ver([Xh, V ]).

By part (xi) the first term on the right is zero.
(xii) We note here that the fibres of πE : E → M are vector spaces and the restriction

of GE to Ex is just the constant Riemannian metric GπE(x). Thus covariant derivatives on
fibres are just ordinary derivatives. Now, since vertical lifts restricted to fibres are constant,
their ordinary derivatives are zero, and this gives the assertion.

(xiii) Here, by part (x), we have

ver(∇E
Xhξ

v) = ver([Xh, ξv]).

By (4.7), [Xh, ξv] is vertical. By [Abraham, Marsden, and Ratiu 1988, Proposition 4.2.34],
we have

[ξv, Xh] =
1

2

d2

dt2

∣∣∣∣
t=0

ΦX
h

−t ◦ Φξ
v

−t ◦ Φ
Xh

t ◦ Φξ
v

t (e).
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Using the fact that Φξ
v

t (e) = e+ tξ ◦ πE(e) and that ΦX
h

t (e) is the parallel transport t 7→ τγt
along integral curve γ for X through πE(e), we directly calculate

ΦX
h

−t ◦ Φξ
v

−t ◦ Φ
Xh

t ◦ Φξ
v

t (e) = e− t(τγt (ξ ◦ γ(t))− ξ ◦ γ(0)),

and from this, using the relationship between parallel transport [Kobayashi and Nomizu
1963, page 114] and covariant derivative, we have [ξv, Xh] = −(∇πE

X ξ)
v. ■

4.2. Derivatives of tensor contractions. In Section 3.5 we constructed a tensor contrac-
tion/insertion operator. Let us consider the derivative of this operation.

4.2 Lemma: (Covariant differential of insertion I) Let r ∈ {∞, ω}. Let πE : E → M
a vector bundle of class Cr, let ∇πE be a Cr-vector bundle connection in E, let k, l ∈ Z>0,
let A ∈ Γr(Tk(E∗)), and let S ∈ Γr(Tl(E∗)⊗ E). For j ∈ {1, . . . , k} we have

∇πE(Insj(A,S)) = Insj(∇πEA,S) + Insj(A,∇πES).

Proof: We let ξa ∈ Γr(E), a ∈ {1, . . . , k + l − 1}, and X ∈ Γr(TM). We calculate

LX(Insj(A,S)(ξ1, . . . , ξk+l−1)) = (∇πE
X Insj(A,S))(ξ1, . . . , ξk+l−1)

+
k+l−1∑
a=1

Insj(A,S)(ξ1, . . . ,∇πE
X ξa, . . . , ξk+l−1)

= (∇πE
X Insj(A,S))(ξ1, . . . , ξk+l−1)

+

j−1∑
a=1

A(ξ1, . . . ,∇πE
X ξa, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk)

+A(ξ1, . . . , ξj−1, S(∇πE
X ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk)

+
k∑

a=j+1

A(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . ,∇πE
X ξa, . . . , ξk)

+
k+l−1∑
a=k+1

A(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . ,∇πE
X ξa, . . . , ξk+l−1), ξj+1, . . . , ξk).

We also calculate

LX(Insj(A,S)(ξ1, . . . , ξk+l−1))

= LX(A(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk))

= (∇πE
X A)(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk)

+

j−1∑
a=1

A(ξ1, . . . ,∇πE
X ξa, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk)

+A(ξ1, . . . , ξj−1, (∇πE
X S)(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk)

+A(ξ1, . . . , ξj−1, S(∇πE
X ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk)

+

k∑
a=j+1

A(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . ,∇πE
X ξa, . . . , ξk)
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+

k+l−1∑
a=k+1

A(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . ,∇πE
X ξa, . . . , ξk+l−1), ξj+1, . . . , ξk).

Comparing the right-hand sides of the preceding calculations gives

(∇πEInsj(A,S))(ξ1, . . . , ξk+l−1, X)

= (∇πEA)(ξ1, . . . , ξj−1, S(ξj , ξk+1, . . . , ξk+l−1), ξj+1, . . . , ξk, ξk+l−1, X)

+A(ξ1, . . . , ξj−1, (∇πES)(ξj , ξk+1, . . . , ξk+l−1, X), ξj+1, . . . , ξk)

= Insj(∇πEA,S)(ξ1, . . . , ξk+l−1, X) + Insj(A,∇πES)(ξ1, . . . , ξk+l−1, X),

and this gives the result. ■

Using this result, we can easily compute the derivative for tensor insertion with one of
the arguments fixed.

4.3 Lemma: (Covariant differential of tensor insertion II) Let r ∈ {∞, ω}. Let
πE : E → M a vector bundle of class Cr, let ∇πE be a Cr-vector bundle connection in E, let
l ∈ Z>0, and let S ∈ Γr(Tl(E∗)⊗ E). Then, for k ∈ Z>0 and j ∈ {1, . . . , k},

(∇πEInsS,j)(A) = Insj(A,∇πES).

Proof: We have
∇πE(InsS,j(A)) = (∇πEInsS,j)(A) + InsS,j(∇πEA)

and
∇πE(Insj(A,S)) = Insj(∇πEA,S) + Insj(A,∇πES).

Comparing the equations, noting that InsS,j(∇πEA) = Insj(∇πEA,S), the result follows. ■

Related to tensor contraction is the evaluation of a vector bundle mapping. We shall
consider the derivative of this evaluation. In stating the result, we use a bit of tensor
notation that we now introduce. Let V be a finite-dimensional R-vector space and let
A ∈ T1

k+1(V
∗) and B ∈ T1

l (V). We then denote by A(B) ∈ Tk+l(V∗) the tensor defined by

A(B)(v1, . . . , vk, vk+1, . . . , vk+l) = A(v1, . . . , vk, B(vk+1, . . . , vk+l)) (4.11)

Thus A(B) is shorthand for Insk+1(A,B). With this notation, we have the following result.

4.4 Lemma: (Leibniz Rule for tensor evaluation) Let πE : E → M and πF : F → M be
smooth vector bundles and let ∇πE and ∇πF be smooth vector bundle connections in E and
F, respectively. Let ∇M be an affine connection on M. Let L ∈ Γ∞(F⊗ E∗). Then

Dk
∇M,∇πF (L ◦ ξ) =

k∑
l=0

(
k

l

)
Symk

(
Dl

∇M,∇πF⊗πE
(L)(Dk−l

∇M,∇πE
(ξ))

)
,

for ξ ∈ Γ∞(E).
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Proof: First we claim that

∇M,πF,k(L ◦ ξ)(X1, . . . , Xk)

=

k∑
l=0

∑
σ∈Sl,k−l

(∇M,πF⊗πE,lL(Xσ(1), . . . , Xσ(l)))(∇M,πE,k−lξ(Xσ(l+1), . . . , Xσ(k))), (4.12)

for ξ ∈ Γk(E). This clearly holds for k = 1. So suppose it true for k ≥ 1 and compute

∇πF(∇M,πF,k(L ◦ ξ)(X1, . . . , Xk))(Xk+1)

= ∇M,πF,k+1(L ◦ ξ)(X1, . . . , Xk, Xk+1) +

k∑
j=1

∇M,πF,k(L ◦ ξ)(X1, . . . ,∇M
Xk+1

Xj , . . . , Xk)

= ∇M,πF,k+1(L ◦ ξ)(X1, . . . , Xk, Xk+1)

+

m∑
j=1

j−1∑
l=0

∑
σ∈Sl,k−l

(∇M,πF⊗πE,lL(Xσ(1), . . . , Xσ(l)))

(∇M,πE,k−lξ(Xσ(l+1), . . . ,∇M
Xk+1

Xj , . . . , Xσ(k)))

+

k∑
j=1

k∑
l=j

∑
σ∈Sl,k−l

(∇M,πF⊗πE,lL(Xσ(1), . . . ,∇M
Xk+1

Xj , . . . , Xσ(l)))

(∇M,πE,k−lξ(Xσ(l+1), . . . , Xσ(k))),

using the induction hypothesis. We also compute

∇πF(∇M,πF,k(L ◦ ξ)(X1, . . . , Xk))(Xk+1)

=

k∑
l=0

∑
σ∈Sl,k−l

(∇M,πF⊗πE,l+1L)(Xσ(1), . . . , Xσ(l), Xk+1)

(∇M,πE,k−lξ(Xσ(l+1), . . . , Xσ(k)))

+

k∑
l=0

∑
σ∈Sl,k−l

l∑
j=1

(∇πF⊗πE,lL(Xσ(l), . . . ,∇M
Xk+1

Xσ(j), . . . , Xσ(l))

(∇M,πE,k−lξ(Xσ(l+1), . . . , Xσ(k)))

+

k∑
l=0

∑
σ∈Sl,k−l

(∇M,πF⊗πE,lL(Xσ(1), . . . , Xσ(l)))

(∇M,πE,k−l+1ξ(Xσ(l+1), . . . , Xσ(k), Xk+1))

+

k∑
l=0

∑
σ∈Sl,k−l

k∑
j=l+1

(∇M,πF⊗πE,lL(Xσ(1), . . . , Xσ(l)))
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(∇M,πE,k−l+1ξ(Xσ(l+1), . . . ,∇M
Xk+1

Xσ(j), . . . , Xσ(k))).

Comparing the preceding two equations gives

∇M,πF,k+1(L ◦ ξ)(X1, . . . , Xk, Xk+1)

=

k∑
l=0

∑
σ∈Sl,k−l

(∇M,πF⊗πE,l+1L)(Xσ(1), . . . , Xσ(l), Xk+1)

(∇M,πE,k−lξ(Xσ(l+1), . . . , Xσ(k)))

+

k∑
l=0

∑
σ∈Sl,k−l

(∇M,πF⊗πE,lL(Xσ(1), . . . , Xσ(l)))

(∇M,πE,k−l+1ξ(Xσ(l+1), . . . , Xσ(k), Xk+1))

=

k+1∑
l=0

∑
σ∈Sl,k+1−l

(∇M,πF⊗πE,lL(Xσ(1), . . . , Xσ(l)))

(∇M,πE,k+1−lξ(Xσ(l+1), . . . , Xσ(k+1))),

giving (4.12).
For A ∈ Tk(V∗) and σ ∈ Sk, we use the notation

σ(A)(v1, . . . , vk) = A(vσ(1), . . . , vσ(k)).

For σ ∈ Sk, write σ = σ1 ◦ σ2 for σ1 ∈ Sk,l and σ2 ∈ Sk|l. Now we compute

Dk
∇M,∇πF (L ◦ ξ) =

1

k!

∑
σ∈Sk

σ(∇πF,k(L ◦ ξ))

=
1

k!

k∑
l=0

∑
σ∈Sk

∑
σ′∈Sl,k−l

σ′ ◦ σ(∇πF⊗πE,lL(∇πE,k−lξ))

=
1

k!

k∑
l=0

∑
σ′∈Sl,k−l

∑
σ1∈Sl,k−l

∑
σ2∈Sl|k−l

σ′ ◦ σ1 ◦ σ2(∇πF⊗πE,lL(∇πE,k−lξ))

=

k∑
l=0

∑
σ′∈Sl,k−l

∑
σ1∈Sl,k−l

l!(k − l)!

k!
σ′ ◦ σ1(D

l
∇M,∇πF⊗πE

L(Dk−l
∇M,∇πE

(ξ)))

=

k∑
l=0

∑
σ′∈Sl,k−l

l!(k − l)!

k!
σ′ ◦

( ∑
σ∈Sk

k!

l!(k − l)!
Symk(D

l
∇M,∇πF⊗πE

L(Dk−l
∇M,∇πE

(ξ)))

)

=

k∑
l=0

k!

l!(k − l)!

(
Symk(D

l
∇M,∇πF⊗πE

L(Dk−l
∇M,∇πE

(ξ)))
)
,

making reference to (1.1) in the penultimate step, and noting that card(Sl,k−l) =
k!

l!(k−l)! .
This is the desired result. ■
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4.3. Derivatives of tensors on the total space of a vector bundle. In Definition 3.9 we
gave definitions for a variety of lifts of tensor fields. Here we give formulae for differentiating
these. We shall make ongoing and detailed use of the formulae we develop in this section,
and decent notation is an integral part of arriving at useable expressions.

Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. We consider a Cr-affine
connection ∇M on M and a Cr-vector bundle connection ∇πE in E. The connection ∇M

induces a covariant derivative for tensor fields A ∈ Γr(Tkl (TM)) on M, k, l ∈ Z≥0. This
covariant derivative we denote by ∇M, dropping the particular k and l. Similarly, the
connection ∇πE induces a covariant derivative for sections B ∈ Γ∞(Tkl (E)) of the tensor
bundles associated with E, k, l ∈ Z≥0. This covariant derivative we denote by ∇πE , again
dropping the particular k and l. We have already made use of these conventions, e.g., in
Lemmata 4.2 and 4.3. We will also consider differentiation of sections of Tk1l1 (TM)⊗Tk2l2 (E).

Here we denote the covariant derivative by ∇M,πE . If we have another Cr-vector bundle
πF : F → M with a Cr-affine connection ∇πF , then ∇πE and ∇πF induce a covariant derivative
in Tk1l1 (E)⊗ Tk2l2 (F), and we denote this covariant derivative by ∇πF⊗πE .

Another construction we need in this section concerns pull-back bundles. Let r ∈
{∞, ω}, let M and N be Cr-manifolds, let πF : F → M be a Cr-vector bundle, and let
Φ ∈ Cr(N;M). We then have the pull-back bundle Φ∗πF : Φ

∗F → N, which is a vector bundle
over N. Given a section η of F, we have a section Φ∗η of Φ∗F defined by Φ∗η(y) = (y, η◦Φ(y)).
Given a Cr-vector bundle connection ∇πF in F, we can define a Cr-connection Φ∗∇πF in
Φ∗F by requiring that

Φ∗∇πF
Z Φ∗η(y) = Φ∗(∇πF

TyΦ(Z)η)

for a C∞-section η and for Z ∈ TyN. Given an affine connection ∇N on N, we then have
an affine connection on Tk(T∗N)⊗Φ∗F induced by tensor product by ∇N and Φ∗∇πF . This
connection we denote by ∇N,Φ∗πF , consistent with our notation above. If we additionally
have an injection ψ : Φ∗F → TN, then we have

∇N
Z(ψ ◦ Φ∗η) = ψ ◦ (Φ∗∇πF

Z Φ∗η) +Bψ(Φ
∗η, Z)

for some tensor Bψ ∈ T1
2(TE).

A special case of the preceding paragraph is when Φ = πE for a vector bundle πE : E → M
and F = E. In this case, π∗Eξ = ξv and π∗EF ≃ VE and so we indeed have a natural inclusion
of π∗EF in TE. Moreover, by Lemma 4.1(xiii),

π∗E∇
πE
Z π

∗
Eξ = (∇πE

TπE(Z)
ξ)v,

and so
∇E
Zπ

∗
Eξ = π∗E∇

πE
Z π

∗
Eξ +AπE(Z, ξ

v). (4.13)

With the preceding, we can give formulae for differentiating tensors on vector bundles,
rather mirroring what we did in Lemma 3.6 for functions.

4.5 Lemma: (Differentiation of lifted tensors on vector bundles) Let r ∈ {∞, ω}.
Let πE : E → M and πF : F → M be vector bundles of class Cr. Let GM be a Cr-Riemannian
metric on M, let ∇M be the Levi-Civita connection, let GπE be a Cr-fibre metric on E, and
let ∇πE be a GπE-vector bundle connection of class Cr in E. Let ∇πF be a Cr-vector bundle
connection in F. Let GE be the associated Cr-Riemannian metric on E from (4.1). Define

BπE = push1,2Ins1(Ins2(AπE , hor), hor) + Ins2(AπE , ver) + push1,2Ins2(AπE , ver),
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where AπE is defined as in (4.2).
Then we have the following statements, recalling from (3.2) the derivation DBπE

:

(i) for k ∈ Z>0 and A ∈ Γr(Tk(T∗M)), we have

∇E(Ah) = (∇MA)h +DBπE
(Ah);

(ii) for A ∈ Γr(Tk(T∗M)⊗ E), we have

∇E(Av) = (∇M,πEA)v +DBπE
(Av);

(iii) for A ∈ Γr(Tk(T∗M)⊗ TM), we have

∇E(Ah) = (∇MA)h +DBπE
(Ah);

(iv) for A ∈ Γr(Tk(T∗M)⊗ F⊗ E∗), we have

∇E,πF(Av) = (∇M,πE⊗πFA)v +DBπE
(Av);

(v) for A ∈ Γr(Tk(T∗M)⊗ T1
1(E)), we have

∇E(Av) = (∇M,πEA)v +DBπE
(Av);

(vi) for A ∈ Γr(Tk(T∗M)⊗ F⊗ E∗), we have

∇E,πF(Ae) = (∇M,πE⊗πFA)e +DBπE
(Ae) +Av.

(vii) for A ∈ Γr(Tk(T∗M)⊗ T1
1(E)), we have

∇E(Ae) = (∇M,πEA)e +DBπE
(Ae) +Av.

Proof: Before we begin the proof proper, let us justify a “without loss of generality” ar-
gument that we will make for the last four parts of the proof. The arguments all have to
do with assuming that it is sufficient, when working with differential operators on spaces
of tensor products, to work with pure tensor products. Let us be a little specific about
this. Let πE : E → M, πF : F → M, and πG : G → M be Cr-vector bundles. Suppose that
∆1,∆2 : J

m(E⊗ F) → G are linear differential operators of order m. We wish to give condi-
tions under which ∆1 = ∆2. Of course, this is equivalent to giving conditions under which,
for a differential operator ∆: Jm(E⊗ F) → G, ∆ = 0. To do so, we claim that, without loss
of generality, we can simply prove that ∆(jm(ξ ⊗ η)) = 0 for all ξ ∈ Γr(E) and η ∈ Γr(E).

To prove this sufficiency, we state and prove a couple of sublemmata. The second is
the one of interest to us, and the first is used to prove the second. Simpler versions of the
first lemma are called Hadamard’s Lemma, but we could not find a reference to the form
we require.
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1 Sublemma: Let r ∈ {∞, ω}. Let U ⊆ Rn be a neighbourhood of 0, let S ⊆ Rn be the
subspace

S = {(x1, . . . , xn) ∈ Rn | x1 = · · · = xs = 0},

let k ∈ Z≥0, and let f ∈ Cr(B(ϵ,0)) satisfy Djf(x) = 0 for all j ∈ {0, 1, . . . , k} and
x ∈ S ∩ U. Let prS : R

n → S be the natural projection onto the first s-components. Then
there exists a neighbourhood V ⊆ U of 0, gI ∈ Cr(V), I ∈ Zs>0, |I| = k + 1, such that

f(x) =
n∑

I∈Zs
>0

|I|=k+1

gI(x) prS(x)
I , x ∈ V.

Proof: We prove the sublemma by induction on k. For k = 0, the hypothesis is that f
vanishes on S ∩ U. Let W ⊆ S be a neighbourhood of 0 and let ϵ ∈ R>0 be such that
B(ϵ,y) ⊆ U for all x ∈ W, possibly after shrinking W. Let

V =
⋃
x∈W

B(ϵ,x).

Let x = (x1,x2) ∈ V (with x1 ∈ S) and define

γx : [0, 1] → R
t 7→ f(x1, tx2).

We calculate

f(x) = f(x1,x2) = f(x1,x2)− f(x1,0)

= γx(1)− γx(0) =

∫ 1

0
γ′x(t) dt

=

∫ 1

0

s∑
j=1

xj
∂f

∂xj
((x1, tx2)) dt =

s∑
j=1

xjgj(x),

where

gj(x) =

∫ 1

0

∂f

∂xj
(x1, tx2) dt, j ∈ {1, . . . , s}.

It remains to show that the functions g1, . . . , gs are of class Cr. By standard theorems on
interchanging derivatives and integrals [Jost 2005, Theorem 16.11], we can conclude that
g1, . . . , gm are smooth when f is smooth. If the data are holomorphic, swapping integrals
and derivatives allows us to conclude that g1, . . . , gs are holomorphic when f is holomorphic,
by verifying the Cauchy–Riemann equations. In the real analytic case, we can complexify
to a complex neighbourhood of 0, and so conclude real analyticity by holomorphicity of the
complexification.

As a standin for a full proof by induction, let us see how the case k = 1 follows from
the case k = 0. The general inductive argument is the same, only with more notation.

We note that, for x ∈ V, we have

∂f

∂xk
(x) =

{
gk(x) +

∑s
j=1 x

j ∂gj
∂xk

(x), k ∈ {1, . . . , s},∑s
j=1 x

j ∂gj
∂xk

(x), k ∈ {s+ 1, . . . , n}.
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Thus Df(x) = 0 for x ∈ S ∩ V if and only if g1(x) = · · · = gs(x) = 0. Thus one can apply
the arguments from the first part of the proof to write

gk(x) =
s∑
j=1

xjgkj(x)

on a neighbourhood of 0. Thus

f(x) =
s∑

j,k=1

xkxjgkj(x),

giving the desired form of f in this case. ▼

2 Sublemma: Let r ∈ {∞, ω}, let πE : E → M be a Cr-vector bundle, and let S ⊆ M be a
closed Cr-submanifold. Let k ∈ Z≥0. Let V be a neighbourhood of S and let ξS ∈ Γr(E|V).
Then there exists ξ ∈ Γr(E) such that jkξ(x) = jkξS(x).

Proof: Let Z k
S be the sheaf of Cr-sections of E such that whose k-jet vanishes on S. We

have the exact sequence

0 // Z k
S

// G rE
Ψ // G rE /Z

k
S

// 0

Note that the stalk of the quotient sheaf at x ∈ S consists of germs of sections whose k-jets
agree on S.

Now, if x ̸∈ S, then there is a neighbourhood U of x such that V ∩ S = ∅, and so
Z k

S (U) = G
r
E (U). That Z

k
S is locally finitely generated at x then follows since G rE is locally

finitely generated. If x ∈ S, choose a submanifold chart (U, ϕ) for S about x so that

S ∩ U = {y ∈ U | ϕ(y) = (0, . . . , 0, xs+1, . . . , xn)}.

Then the k-jet of a function f on U vanishes on S if and only if it is a Cr(U)-linear
combination of polynomial functions in x1, . . . , xs of degree k+1; this follows by the previous
sublemma. Thus, if ξ1, . . . , ξm is a local basis of sections of E about x, then the (finite)
set of products of these sections with the polynomial functions in x1, . . . , xs of degree at
least k + 1 generates Γr(E|U) as a Cr(U)-module. This shows that Z k

S is locally finitely
generated about x. This shows that Z k

S is coherent in the case r = ω.
Cartan’s Theorem B [Cartan 1957, Proposition 6] shows, in the case r = ω, that Ψ is

surjective on global sections. The case of r = ∞ follows in a similar way, using the fact
that positive cohomology groups for sheave of modules of smooth functions vanish ([Wells
Jr. 2008, Proposition 3.11], along with [Wells Jr. 2008, Examples 3.4(d, e)] and [Wells Jr.
2008, Proposition 3.5]). This implies that there exists ξ ∈ Γr(E) such that, for each x ∈ S,
[ξ]x = [ξS]x. This, however, means precisely that jkξ(x) = jkξS(x) for each x ∈ S. ▼

Now suppose that we have proved that ∆(jm(ξ⊗η)) = 0 for all ξ ∈ Γr(E) and η ∈ Γr(E).
Let x ∈ X and let α ∈ T∗m

x M. Let u ∈ Ex and v ∈ Fx. By the previous sublemma, there
exists f ∈ Cr(M) such that jmf(x) = α. Then, keeping in mind the identification (1.5),

∆(α⊗ (u⊗ v)) = ∆(jm(f(ξ ⊗ η))) = ∆(jm((fξ)⊗ η)) = 0.
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Since every element of Jmx E is a finite linear combination of terms of the form α⊗ (u⊗v) for
α ∈ T∗m

x M, u ∈ Ex, and v ∈ Fx, we conclude that ∆(jmA)(x) = 0 for every A ∈ Γr(E⊗ F).
Now we proceed with the proof.
(i) We have

LZk+1
(Ah(Z1, . . . , Zk)) = (∇E

Zk+1
Ah)(Z1, . . . , Zk) +

k∑
j=1

Ah(Z1, . . . ,∇E
Zk+1

Zj , . . . , Zk).

We consider four cases.

1. Zj = Xh
j , j ∈ {1, . . . , k + 1}: Here we have

LXh
k+1

(Ah(Xh
1 , . . . , X

h
k )) = (LXk+1

(A(X1, . . . , Xk)))
h

(by Lemma 3.6(i)) and

Ah(Xh
1 , . . . ,∇E

Xh
k+1

Xh
j , . . . , X

h
k ) = (A(X1, . . . ,∇M

Xk+1
Xj , . . . , Xk))

h

(by Lemma 4.1(i)). Thus we conclude that

∇EAh(Xh
1 , . . . , X

h
k+1) = ((∇MA)(X1, . . . , Xk+1))

h.

2. Zj = Xh
j , j ∈ {1, . . . , k}, Zk+1 = ξvk+1: Here we calculate

Lξvk+1
(Ah(Xh

1 , . . . , X
h
k )) = Lξvk+1

(A(X1, . . . , Xk))
h = 0

(using the definition of Ah and Lemma 3.6(ii)) and

Ah(Xh
1 , . . . ,∇E

ξvk+1
Xh
j , . . . , X

h
k ) = Ah(Xh

1 , . . . , AπE(X
h
j , ξ

v
k+1), . . . , X

h
k )

(using Lemma 4.1(xi)). Thus we conclude that

∇EAh(Xh
1 , . . . , X

h
k , ξ

v
k+1) = −

k∑
j=1

Ah(Xh
1 , . . . , AπE(X

h
j , ξ

v
k+1), . . . , X

h
k ).

3. Zj = ξvj for some j ∈ {1, . . . , k}, Zk+1 = Xh
k+1: We calculate

LXh
k+1

(Ah(Z1, . . . , ξ
v
j , Zk)) = 0

(by definition of Ah) and

Ah(Z1, . . . ,∇E
Xh

k+1
ξvj , . . . , Zk) = Ah(Z1, . . . , AπE(X

h
k+1, ξ

v
j ), . . . , Zk)

(by Lemma 4.1(v)). Thus

∇EAh(Z1, . . . , ξ
v
j , . . . , Zk, X

h
k+1) = −Ah(Z1, . . . , AπE(X

h
k+1, ξ

v
j ), . . . , Zk).
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4. Zj = ξvj for some j ∈ {1, . . . , k}, Zk+1 = ξvk+1: We have

Lξvk+1
(Ah(Z1, . . . , ξ

v
j , . . . , Zk)) = 0

(by definition of Ah) and

Ah(Z1, . . . ,∇E
ξvk+1

ξvj , . . . , Zk) = 0

(by Lemma 4.1(iii)). Thus

∇EAh(Z1, . . . , ξ
v
j , . . . , Zk, ξ

v
k+1) = 0.

Putting this all together, and keeping in mind that AπE is vertical when both arguments
are vertical, we have

∇EAh(Z1, . . . , Zk+1) = (∇MA)h(Z1, . . . , Zk+1)

−
k∑
j=1

Ah(Z1, . . . , AπE(hor(Zj), ver(Zk+1)), . . . , Zk)

−
k∑
j=1

Ah(Z1, . . . , AπE(hor(Zk+1), ver(Zj)), . . . , Zk).

Now we note that

BπE(Zj , Zk+1) = AπE(hor(Zk+1),hor(Zj)) +AπE(Zj , ver(Zk+1)) +AπE(Zk+1, ver(Zj))

= AπE(hor(Zj), ver(Zk+1)) +AπE(hor(Zk+1), ver(Zj)) + something vertical,

using Lemma 4.1(ii) and the definition of AπE . Thus

∇EAh = (∇MA)h −
k∑
j=1

Insj(A
h, BπE),

which gives this part of the lemma by Lemma 3.11.
(ii) First we compute, for Z ∈ Γr(TE),

∇E
Zξ

v = ∇E
hor(Z)ξ

v +∇E
ver(Z)ξ

v = (∇M,πE
TπE(Z)

ξ)v +AπE(TπE(Z), ξ
v)

= (∇M,πE
TπE(Z)

ξ)v +AπE(Z, ξ
v)

using Lemma 4.1(iii), (v), and (xiii), and the definition of AπE . If we note that

BπE(ξ
v, Z) = AπE(hor(Z), hor(ξ

v)) +AπE(ξ
v, ver(Z)) +AπE(Z, ver(ξ

v)) = AπE(Z, ξ
v)

(using the definition of AπE), we have

∇E
Zξ

v = (∇M,πE
TπE(Z)

ξ)v +BπE(ξ
v, Z).
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Now, it suffices to prove this part of the lemma for A = Ah
0 ⊗ ξv for A0 ∈ Γr(Tk(T∗M))

and ξ ∈ Γr(E). For Z ∈ Γr(TE), we have

∇E
Z(A

h
0 ⊗ ξv) = (∇E

ZA
h
0)⊗ ξv + (Ah

0)⊗∇E
Zξ

v

= (∇M
TπE(Z)

A0)
h ⊗ ξv −

k∑
j=1

Insj(A
h
0 , BπE,Z)⊗ ξv

+Ah
0 ⊗ (∇πE

TπE(Z)
ξ)v +Ah

0 ⊗BπE(ξ
v, Z).

We have

(∇M
TπE(Z)

A0)
h ⊗ ξv +Ah

0 ⊗ (∇πE
TπE(Z)

ξ)v = ((∇M
TπE(Z)

A0)⊗ ξ)v + (Ah
0 ⊗ (∇πE

TπE(Z)
ξ))v

= (∇M,πE
TπE(Z)

(A0 ⊗ ξ))v.

Thus, by (3.3) and the first part of the lemma, we have

Ah
0 ⊗BπE(ξ

v, Z)−
k∑
j=1

Insj(A
h
0 , BπE,Z)⊗ ξv = DBπE,Z

(Ah
0 ⊗ ξv).

Assembling the preceding three computations gives this part of the lemma.
(iii) First note that

∇E
ZX

h = ∇E
hor(Z)X

h +∇E
ver(Z)X

h = (∇M
TπE(Z)

X)h +AπE(hor(Z), X
h) +AπE(X

h, ver(Z))

using Lemma 4.1(xi). Now we have

BπE(X
h, Z) = AπE(hor(Z), X

h) +AπE(X
h, ver(Z)) +AπE(Z, ver(X

h))

= AπE(hor(Z), X
h) +AπE(X

h, ver(Z)).

Thus we have
∇E
ZX

h = (∇M
TπE(Z)

X)h +BπE(X
h, Z).

Now it suffices to prove this part of the lemma for A = Ah
0 ⊗Xh for A0 ∈ Γr(Tk(T∗M))

and X ∈ Γr(TM). In this case we calculate, for Z ∈ Γr(TE),

∇E
Z(A

h
0 ⊗Xh) = (∇E

ZA
h
0)⊗Xh +Ah

0 ⊗∇E
ZX

h

= (∇M
TπE(Z)

A0)
h ⊗Xh −

k∑
j=1

Insj(A
h
0 , BπE,Z)⊗Xh

+Ah
0 ⊗ (∇M

TπE(Z)
X)h +Ah

0 ⊗BπE(X
h, ver(Z)).

We have

(∇M
TπE(Z)

A0)
h ⊗Xh +Ah

0 ⊗ (∇M
TπE(Z)

X)h = (∇M
TπE(Z)

(A0 ⊗X))h.

We also have, by (3.3) and the first part of the lemma,

Ah
0 ⊗BπE(X

h, ver(Z))−
k∑
j=1

Insj(A
h
0 , BπE,Z)⊗Xh = D(BπE

)Z (A
h
0 ⊗Xh).
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Putting the above computations together gives this part of the lemma.
(iv) First we need to compute ∇Eλv. We do this by using the formula

LZ1⟨λv;Z2⟩ = ⟨∇E
Z1
λv;Z2⟩+ ⟨λv;∇E

Z1
Z2⟩

in four cases.

1. Z1 = Xh
1 and Z2 = Xh

2 : Here we have

LXh
1
⟨λv;Xh

2 ⟩ = 0

and
⟨λv;∇E

Xh
1
Xh

2 ⟩ = ⟨λv;AπE(X
h
1 , X

h
2 )⟩

(by Lemma 4.1(vi)) giving

⟨∇E
Xh

1
λv;Xh

2 ⟩ = −⟨λv;AπE(X
h
1 , X

h
2 )⟩ = ⟨λv;AπE(X

h
2 , X

h
1 )⟩

(by Lemma 4.1(ii)). Thus we have

⟨∇E
Xh

1
λv;Xh

2 ⟩ = ⟨A∗
πE
(λv, Xh

1 );X
h
2 ⟩.

2. Z1 = Xh and Z2 = ξv: We compute

LXh⟨λv; ξv⟩ = (LX⟨λ; ξ⟩)h

(by Lemma 3.6(i)) and

⟨λv;∇E
Xhξ

v⟩ = ⟨λv; (∇πE
X ξ)

v⟩ = ⟨λ;∇πE
X ξ⟩

h

(by Lemma 4.1(xiii)). Thus

⟨∇E
Xhλ

v; ξv⟩ = (LX⟨λ; ξ⟩)h − ⟨λ;∇πE
X ξ⟩

h

or
⟨∇E

Xhλ
v; ξv⟩ = ⟨(∇πE

X λ)
v; ξv⟩.

3. Z1 = ξv and Z2 = Xh: In this case we compute

Lξv⟨λv;Xh⟩ = 0

and
⟨λv;∇E

ξvX
h⟩ = 0

(by Lemma 4.1(xi)) giving
⟨∇E

ξvλ
v;Xh⟩ = 0.

4. Z1 = ξv1 and Z2 = ξv2 : We have

Lξv1 ⟨λ
v; ξv2⟩ = Lξv1 ⟨λ; ξ2⟩

h = 0

(by Lemma 3.6(ii)) and
⟨λv;∇E

ξv1
ξv2⟩ = 0

(using Lemma 4.1(xii)). This gives

⟨∇E
ξv1
λv; ξv2⟩ = 0.
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Putting the above together,

∇E
Zλ

v = (∇πE
TπE(Z)

λ)v + hor(A∗
πE
(λv,hor(Z))).

Now we note that

⟨B∗
πE
(λv, Z1);Z2⟩ = ⟨λv;BπE(Z2, Z1)⟩

= ⟨λv;AπE(hor(Z1), hor(Z2))⟩+ ⟨λv;AπE(Z1, ver(Z2))⟩
+ ⟨λv;AπE(Z2, ver(Z1))⟩

= − ⟨λv;AπE(hor(Z2),hor(Z1))⟩
= − ⟨A∗

πE
(λv,hor(Z1)); hor(Z2)⟩,

using Lemma 4.1(xi). Thus

∇E
Zλ

v = (∇πE
TπE(Z)

λ)v −B∗
πE
(λv, Z).

Now, it suffices to prove this part of the lemma for A = A0⊗λ⊗η for A0 ∈ Γr(Tk(T∗M)),
λ ∈ Γr(E∗), and η ∈ Γr(F). Here we calculate, for Z ∈ Γr(TE),

∇E,πF
Z (Ah

0 ⊗ λv ⊗ π∗Eη) = (∇E
ZA

h
0)⊗ λv ⊗ π∗Eη +Ah

0 ⊗∇E
Zλ

v ⊗ η +Ah
0 ⊗ λv + π∗E∇

πF
Z π

∗
Eη

= (∇M
TπE(Z)

A0)
h ⊗ λv ⊗ π∗Eη −

k∑
j=1

Insj(A
h
0 , BπE,Z)⊗ λv ⊗ π∗Eη

+Ah
0 ⊗ (∇πE

TπE(Z)
λ)v ⊗ η −Ah

0 ⊗B∗
πE
(λv, Z) +Ah

0 ⊗ λv ⊗ π∗E(∇
πF
TπE(Z)

η).

We have

(∇M
TπE(Z)

A0)
h ⊗ λv +Ah

0 ⊗ (∇πE
TπE(Z)

λ)v +Ah
0 ⊗ λv ⊗ π∗E(∇

πF
TπE(Z)

η)

= (∇M
TπE(Z)

A0 ⊗ λ⊗ η)v + (A0 ⊗∇πE
TπE(Z)

λ⊗ η)v + (A0 ⊗ λv ⊗∇πF
TπE(Z)

η)v

= (∇πE⊗πF
TπE(Z)

(A0 ⊗ λ⊗ η))v

and, by (3.4) and the first part of the lemma,

−Ah
0 ⊗B∗

πE
(λv, Z)⊗ π∗Eη −

k∑
j=1

Insj(A
h
0 , BπE,Z)⊗ λv ⊗ π∗Eη = DBπE,Z

(Ah
0 ⊗ λv ⊗ π∗Eη).

Assembling the preceding computations gives this part of the lemma.
(v) This is a slight modification of the preceding part of the proof, taking the for-

mula (4.13) into account.
(vi) By Lemma 3.6(iii) and (iv) we have

∇E
Zλ

e = LZλ
e = (∇πE

TπE(Z)
λ)e + ⟨λv;Z⟩.

With the constructions following Definition 3.8 in mind, we work with A = Ah
0⊗λe⊗π∗Eη

for A0 ∈ Γr(Tk(T∗M)), λ ∈ Γr(E∗), and η ∈ Γr(F). If we keep in mind that λe is a function,
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then we can simply write A = A0 ⊗ (λeπ∗Eη). We now calculate

∇E,πF
Z (Ah

0⊗λe ⊗ π∗Eη) = (∇E
ZA

h
0)⊗ λe ⊗ π∗Eη +Ah

0 ⊗ (∇E
Zλ

e)⊗ π∗Eη +Ah
0 ⊗ λe ⊗ (π∗E∇

πF
Z π

∗
Eη)

= (∇M
TπE(Z)

A0)
h ⊗ λe ⊗ π∗Eη −

k∑
j=1

Insj(A
h
0 , BπE)⊗ λe ⊗ π∗Eη

+Ah
0 ⊗ (∇πE

TπE(Z)
λ)e ⊗ π∗Eη +Ah

0 ⊗ (λv(Z))⊗ π∗Eη

+Ah
0 ⊗ λe ⊗ π∗E(∇

πF
TπE(Z)

η) +Ah
0 ⊗ λe ⊗BπE(π

∗
Eη, Z).

We have

(∇M
TπE(Z)

A0)
h ⊗ λe ⊗ π∗Eη +Ah

0 ⊗ (∇πE
TπE(Z)

λ)e ⊗ π∗Eη +Ah
0 ⊗ λe ⊗ π∗E(∇

πF
TπE(Z)

η)

= (∇M
TπE(Z)

A0 ⊗ λ⊗ η)e + (A0 ⊗∇πE
TπE(Z)

λ⊗ η)e + (A0 ⊗ λ⊗∇πF
TπE(Z)

η)e

= (∇M,πE⊗πF
TπE(Z)

(A0 ⊗ λ⊗ η))e.

Next we note that

Ah
0 ⊗ λe ⊗BπE(π

∗
Eη, Z)−

k∑
j=1

Insj(A
h
0 , BπE)⊗ λe ⊗ π∗Eη = DBπE

,Z(A0 ⊗ (λeπ∗Eη)),

keeping in mind that λe is a function, so the tensor products with λe are just multiplication.
Again making reference to the constructions following Definition 3.8, we have

Ah
0 ⊗ λv ⊗ π∗Eη = (A0 ⊗ λ⊗ η)v,

and the lemma follows by combining the preceding three formulae.
(vii) This is a slight modification of the preceding part of the proof, taking the for-

mula (4.13) into account. ■

4.4. Prolongation. In our geometric setting, differentiation means “prolongation” by tak-
ing jets. In this section, we illustrate how our decompositions of Section 2.2 interact with
prolongation.

We let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle with JmE, m ∈ Z≥0, its
jet bundles. We suppose that we have a Cr-affine connection ∇M on M and a Cr-vector
bundle connection ∇πE in E. Because we have the decomposition

JmE ≃
m⊕
j=0

(Sj(T∗M)⊗ E)

by Lemma 2.1, it follows that the vector bundle JmE has a Cr-connection that we denote
by ∇πm . Explicitly,

∇πm
X jmξ = (Sm∇M,∇πE )

−1(∇πE
X ξ,∇

M,πE
X D1

∇M,∇πE (ξ), . . . ,∇
M,πE
X Dm

∇M,∇πE (ξ)).

Therefore, the construction of Lemma 2.1 can be applied to JmE, and all that remains to
sort out is notation.
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To this end, for k,m ∈ Z≥0, let us denote by ∇M,πm the connection in Tk(T∗M)⊕ JmE
induced, via tensor product, by the connections ∇M and ∇πm . Then, for ξ ∈ Γr(E), denote

∇M,πm,kjmξ = ∇M,πm · · · (∇M,πm︸ ︷︷ ︸
k−1 times

(∇πmjmξ)) ∈ Γr(Tk(T∗M)⊗ JmE).

We also denote

Dk
∇M,∇πm (jmξ) = Symk⊗ idJmE(∇M,πm,kjmξ) ∈ Γr(Sk(T∗M)⊗ JmE).

This can be refined further by explicitly decomposing JmE, so let us provide the notation
for making this refinement. For m, k ∈ Z≥0 and for A ∈ Γr(Tm(T∗M)⊗ E), we denote

∇M,πE,kA = ∇M,πE · · · ∇M,πE︸ ︷︷ ︸
k times

A ∈ Γr(Tm+k(T∗M)⊗ E)

and

Dk,m
∇M,∇πE

(A) = Symk⊗ idTm(T∗M)⊗E(∇M,πE,kA) ∈ Γr(Sk(T∗M)⊗ Tm(T∗M)⊗ E).

Note that, if A ∈ Γr(Sm(T∗M)⊗ E), then

Dk,m
∇M,∇πE

(A) ∈ Γr(Sk(T∗M)⊗ Sm(T∗M)⊗ E).

An immediate consequence of Lemma 2.1 is then the following result.

4.6 Lemma: (Decompositions of jet bundles of jet bundles) The maps

Sk∇M,∇πm : JkJmE →
k⊕
j=0

(Sj(T∗M)⊗ JmE)

jkjmξ(x) 7→ (jmξ(x), D
1
∇M,∇πm (jmξ)(x), . . . , D

k
∇M,∇πm (jmξ)(x))

and

Sk,m∇M,∇πE
: JkJmE →

k⊕
j=0

(
Sj(T∗M)⊗

(
m⊕
l=0

Sl(T∗M)⊗ E

))
defined by

jkjmξ(x) 7→ ((ξ(x), D1
∇M,∇πE (ξ)(x), . . . , D

m
∇M,∇πE (ξ)(x)),

(D1,0
∇M,∇πE

ξ(x), D1,1
∇M,∇πE

◦D1
∇M,∇πE (ξ)(x), . . . , D

1,m
∇M,∇πE

◦Dm
∇M,∇πE (ξ)(x)), . . . ,

(Dk,0
∇M,∇πE

ξ(x), Dk,1
∇M,∇πE

◦D1
∇M,∇πE (ξ)(x), . . . , D

k,m
∇M,∇πE

◦Dm
∇M,∇πE (ξ)(x)))

are isomorphisms of vector bundles, and, for each k ∈ Z>0, the diagrams

Jk+1JmE
Sk+1

∇M,∇πm//

(πm)k+1
k

��

⊕k+1
j=0(S

j(T∗M)⊗ JmE)

prk+1
k

��

JkJmE
Sk
∇M,∇πm

//
⊕k

j=0(S
j(T∗M)⊗ JmE)
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and

Jk+1JmE
Sk+1,m

∇M,∇πE//

(πm)k+1
k

��

⊕k+1
j=0

(
Sj(T∗M)⊗

(⊕m
l=0 S

l(T∗M)⊗ E
))

prk+1
k

��

JkJmE
Sk,m

∇M,∇πE

//
⊕k

j=0

(
Sj(T∗M)⊗

(⊕m
l=0 S

l(T∗M)⊗ E
))

commute, where prk+1
k are the obvious projections, stripping off the last component of the

direct sum.

Now we recall [Saunders 1989, Definition 6.2.25] the inclusion, for k,m ∈ Z≥0,

πk,m : Jk+mE → JkJmE

jm+kξ(x) 7→ jkjmξ(x).

Let us understand this mapping using our decompositions of jet bundles. Note that, for a
R-vector space V and for r, s ∈ Z≥0, we have an inclusion,

∆r,s : S
r+s(V∗) → Sr(V∗)⊗ Ss(V∗). (4.14)

Let us give an explicit formula for these inclusions.

4.7 Lemma: (Inclusions for symmetric tensors) For a finite-dimensional R-vector
space V and for r, s ∈ Z≥0,

∆r,s = (Symr ⊗Syms) ◦ ιr,s,

where
ιr,s : S

r+s(V∗) → Tr+s(V∗) = Tr(V∗)⊗ Ts(V∗)

is the inclusion.

Proof: We note that Symr+s ◦∆r,s = idSr+s(V∗), simply since ∆r,s is the inclusion and Symr+s

is orthogonal projection onto Sr+s(V∗) ⊆ Tr+s(V∗); see Sublemma 1 from the proof of
Lemma 7.5. Thus it will suffice to show that

Symr+s ◦(Symr ⊗Syms) ◦ ιr,s = idSr+s(V∗) .

For A ∈ Sr+s(V∗) we have

Symr ⊗Syms(A)(v1, . . . , vs) =
1

r!s!

∑
σ1∈Sr

∑
σ2∈Ss

A(vσ1(1), . . . , vσ1(r), vr+σ2(1), . . . , vr+σ2(s))

= A(v1, . . . , vr, vr+1, . . . , vr+s),

since A is symmetric, and so symmetric on the first r and last s entries. Since Symr+s(A) =
A, our claim follows, and so does the lemma. ■
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Now, given a Cr-vector bundle πE : E → M, the preceding mapping then induces by
tensor product mappings

∆r,s ⊗ idE : S
r+s(T∗M)⊗ E → Sr(T∗M)⊗ Ss(T∗M)⊗ E,

and so the mapping

∆̂k,mπE :
k+m⊕
r=0

Sr(T∗M)⊗ E →
k⊕
j=0

Sj(T∗M)⊗

(
m⊕
l=0

Sl(T∗M)⊗ E

)
.

Explicitly,

∆̂k,mπE(A0, . . . , Ak+m)

= ((∆0,0(A0),∆0,1(A1), . . . ,∆0,m(Am)), (∆1,1(A1),∆1,2(A2), . . . ,∆1,m(Am+1)),

. . . , (∆k,0(Ak),∆k,1(Ak+1), . . . ,∆k,m(Ak+m))), (4.15)

where Ar ∈ Sr(T∗E)⊗ E, r ∈ {0, 1, . . . , k +m}, and where we abbreviate ∆j,l ⊗ idE by ∆j,l

in an attempt to achieve concision.
We now have the following result.

4.8 Lemma: (Decomposition of prolongation of jet bundles) For r ∈ {∞, ω} and a
Cr-vector bundle πE : E → M and for k,m ∈ Z≥0, the following diagram commutes

Jk+mE
πk,m //

Sk+m

∇M,∇πE
��

JkJmE

Sk,m

∇M,∇πE��⊕k+m
r=0 Sr(T∗M)⊗ E

∆̂k,mπE

//
⊕k

j=0 S
j(T∗M)⊗

(⊕m
l=0 S

l(T∗M)⊗ E
)

Proof: We note that, by definition of the symbols involved,

∇M,πm,k(∇M,π,mξ) = ∇M,π,m+kξ, k,m ∈ Z≥0, ξ ∈ Γr(E).

By Lemma 4.7, we have

Dk+m
∇M,∇πE

ξ = Symk+m⊗ idE(∇M,πE,k+mξ)

= ∆k,m ⊗ idE(∇M,πE,k+mξ)

= ∆k,m ⊗ idE(∇M,πm,k(∇M,πE,mξ))

= Symk⊗Symm⊗ idE(∇M,πm,k(∇M,πE,mξ))

= Dk,m
∇M,∇πE

(Dm
∇M,∇πE ξ).

Using this observation, and the definition of the mappings Sk+m∇M,∇πE
and Sk,m∇M,∇πE

, the lemma
follows by a straightforward computation involving mere notation. ■
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5. Isomorphisms defined by lifts and pull-backs

Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. In this section we carefully
study isomorphisms that arise from lifts of objects on M to objects on E, of the sorts
introduced in Sections 3.1, 3.2, and 3.3. In particular, we shall see that jets of geometric
objects can be decomposed (as in Section 2.2) before or after lifting. We wish here to relate
these two sorts of decompositions for all of the lifts we consider in this work. This makes use
of our constructions of Section 4 to give explicit decompositions for jets of certain sections
of certain jet bundles on the total space of a vector bundle. Indeed, it is the results in this
section that provide the motivation for the rather intricate constructions of Section 4. For
these constructions, we additionally suppose that we have a Riemannian metric GM on M
and a fibre metric GπE on E. We suppose that ∇M is the Levi-Civita connection for GM.
This data gives rise to a Riemannian metric GE on E with its Levi-Civita connection ∇E.
We break the discussion into eight cases, corresponding to the seven parts of Lemma 4.5,
along with a construction for pull-backs of functions. The constructions, statements, and
proofs are somewhat repetitive, so we do not give proofs that are essentially identical to
previous proofs. While the results are similar, they are not the same, so we must go through
all of the cases. There is probably a “meta” result here, but it would take a small journey
in itself to setup the framework for this. For our purposes, we stick to a treatment that is
concrete at the cost of being dull.

In this section, as in the previous two sections, we shall state results on an equal footing
for the smooth and real analytic cases. However, the detailed recursion formulae we give are
not really necessary if one wants to prove the continuity results of Section 9 in the smooth
case. Thus one should really regard the results of this section as being particular to the
real analytic setting.

In any event, throughout this section we let r ∈ {∞, ω}.

5.1. Isomorphisms for horizontal lifts of functions. Here we consider the horizontal lift
mapping

Cr(M) ∋ f 7→ π∗Ef ∈ Cr(E).

We wish to relate the decomposition associated with the jets of f to those associated with
the jets of π∗Ef . Associated with this, let us denote by P∗mE the subbundle of RE ⊕ T∗mE
defined by

P∗m
e E = {jm(π∗Ef)(e) | f ∈ Cm(M)}.

Following Lemma 2.1, our constructions have to do with iterated covariant differentials.
The basis of all of our formulae will be a formula for iterated covariant differentials of
horizontal lifts of functions on M. Thus we let f ∈ C∞(M) and consider

∇E,mπ∗Ef ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

π∗Ef, m ∈ Z>0.

We state the first two lemmata that we will use. We recall from Lemma 4.5 the definition
of BπE .
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5.1 Lemma: (Iterated covariant differentials of horizontal lifts of functions I)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector
bundle mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M); Tm(T∗E)), s ∈ {0, 1, . . . ,m},

such that

∇E,mπ∗Ef =
m∑
s=0

Ams (π
∗
E∇M,sf)

for all f ∈ Cm(M). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m satisfy the

recursion relations prescribed by

A0
0(β0) = β0, A

1
1(β1) = β1, A

1
0 = 0,

and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇EAm

s )(βs) +Am
s−1 ⊗ idT∗E(βs)−

s∑
j=1

Am
s ⊗ idT∗E(Insj(βs, BπE

)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇EAm

0 )(β0),

where βs ∈ Ts(π∗ET
∗M), s ∈ {0, 1, . . . ,m}.

Proof: The assertion clearly holds for the initial conditions of the recursion, simply because

π∗f = π∗f, d(π∗f) = π∗df + 0f.

So suppose it true for m ∈ Z>0. Thus

∇E,mπ∗Ef =
m∑
s=0

Ams (π
∗
E∇M,sf),

where the vector bundle mappings Aas , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the
recursion relations from the statement of the lemma. Then

∇E,m+1π∗Ef =

m∑
s=0

(∇EAms )(π
∗
E∇M,sf) +

m∑
s=0

Ams ⊗ idT∗E(∇Eπ∗E∇M,sf)

=
m∑
s=0

(∇EAms )(π
∗
E∇M,sf) +

m∑
s=0

Ams ⊗ idT∗E(π
∗
E∇M,s+1f)

−
m∑
s=0

s∑
j=1

Ams ⊗ idT∗E(Insj(π
∗
E∇M,sf,BπE))

= π∗E∇M,m+1f +
m∑
s=1

(
(∇EAms )(π

∗
E∇M,sf) +Ams−1 ⊗ idT∗E(π

∗
E∇M,sf)

−
s∑
j=1

Ams ⊗ idT∗E(Insj(π
∗
E∇M,sf,BπE))

+ (∇EAm0 )(π∗Ef)

by Lemma 4.5(i). From this, the lemma follows. ■

We shall also need to “invert” the relationship of the preceding lemma.
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5.2 Lemma: (Iterated covariant differentials of horizontal lifts of functions II)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector
bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗E); Tm(π∗ET

∗M)), s ∈ {0, 1, . . . ,m},

such that

π∗E∇M,mf =
m∑
s=0

Bm
s (∇E,sπ∗Ef)

for all f ∈ Cm(M). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by

B0
0(α0) = α0, B

1
1(α1) = α1, B

1
0 = 0,

and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +
m∑
j=1

Insj(B
m
0 (α0), BπE),

where αs ∈ Ts(T∗E), s ∈ {0, 1, . . . ,m}.

Proof: The assertion clearly holds for the initial conditions for the recursion since

π∗f = π∗f, π∗(df) = d(π∗f) + 0f.

So suppose it true for m ∈ Z>0. Thus

π∗E∇M,mf =
m∑
s=0

Bm
s (∇E,sπ∗Ef), (5.1)

where the vector bundle mappings Ba
s , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the

recursion relations from the statement of the lemma. Then, by Lemma 4.5(i), we can work
on the left-hand side of (5.1) to give

∇Eπ∗E∇M,mf = π∗E∇M,m+1f −
m∑
j=1

Insj(π
∗
E∇M,mf,BπE)

= π∗E∇M,m+1f −
m∑
s=0

m∑
j=1

Insj(B
m
s (∇E,sπ∗Ef), BπE).

Working on the right-hand side of (5.1) gives

∇Eπ∗E∇M,mf =
m∑
s=0

∇EBm
s (∇E,sπ∗Ef) +

m∑
s=0

Bm
s ⊗ idT∗E(∇E,s+1π∗Ef).
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Combining the preceding two equations gives

π∗E∇M,m+1f =

m∑
s=0

∇EBm
s (∇E,sπ∗Ef) +

m∑
s=0

Bm
s ⊗ idT∗E(∇E,s+1π∗Ef)

+

m∑
s=0

m∑
j=1

Insj(B
m
s (∇E,sπ∗Ef), BπE)

= ∇E,m+1π∗Ef +

m∑
s=1

(
∇EBm

s (∇E,sπ∗Ef) +Bm
s−1 ⊗ idT∗E(∇E,sπ∗Ef)

+
m∑
j=1

Insj(B
m
s (∇E,sπ∗Ef), BπE)

+∇EBm
0 (π∗Ef) +

m∑
j=1

Insj(B
m
0 (π∗Ef), BπE),

and the lemma follows from this. ■

Next we turn to symmetrised versions of the preceding lemmata. We show that the
preceding two lemmata induce corresponding mappings between symmetric tensors.

5.3 Lemma: (Iterated symmetrised covariant differentials of horizontal lifts of
functions I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M); Sm(T∗E)), s ∈ {0, 1, . . . ,m},

such that

Symm ◦∇E,mπ∗Ef =
m∑
s=0

Âms (Syms ◦π
∗
E∇M,sf)

for all f ∈ Cm(M).

Proof: We define Am : T≤m(π∗ET
∗M) → T≤m(T∗E) by

Am(π∗Ef, π
∗
E∇Mf, . . . , π∗E∇M,mf) =

(
A0

0(π
∗
Ef),

1∑
s=0

A1
s(π

∗
E∇M,sf), . . . ,

m∑
s=0

Ams (π
∗
E∇M,sf)

)
.

Let us organise the mappings we require into the following diagram:

T≤m(π∗ET
∗M)

Sym≤m//

Am

��

S≤m(π∗ET
∗M)

Sm
∇M //

Âm

��

π∗E(RM ⊕ T∗mM)

idR ⊕jmπE
��

T≤m(T∗E)
Sym≤m // S≤m(T∗E)

Sm
∇E // RE ⊕ T∗mE

(5.2)

Here Âm is defined so that the right square commutes. We shall show that the left square
also commutes. Indeed,

Âm ◦ Sym≤m(π
∗
Ef,π

∗
E∇Mf, . . . , π∗E∇M,mf)

= (Sm∇E)
−1 ◦ (idR ⊕jmπE) ◦ Sm∇M ◦ Sym≤m(π

∗
Ef, π

∗
E∇Mf, . . . , π∗E∇M,mf)

= Sym≤m(π
∗
Ef,∇Eπ∗Ef, . . . ,∇E,mπ∗Ef)

= Sym≤m ◦Am(π∗Ef, π
∗
E∇Mf, . . . , π∗E∇M,mf).
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Thus the diagram (5.2) commutes. Now we have

Âm ◦ Sym≤m(π
∗
Ef, π

∗
E∇Mf, . . . , π∗E∇M,mf)

=

(
Sym1 ◦A0

0(π
∗
Ef),

1∑
s=0

Sym2 ◦A1
s(π

∗
E∇M,sf), . . . ,

m∑
s=0

Symm ◦Ams (π
∗
E∇M,sf)

)
.

Thus, if we define
Âms (Syms ◦π

∗
E∇M,sf) = Symm ◦Ams (π

∗
E∇M,sf), (5.3)

then we have

Symm ◦∇E,mπ∗Ef =
m∑
s=0

Âms (Syms ◦π
∗
E∇M,sf),

as desired. ■

Next we consider the “inverse” of the preceding lemma.

5.4 Lemma: (Iterated symmetrised covariant differentials of horizontal lifts of
functions II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E); Sm(π∗ET

∗M)), s ∈ {0, 1, . . . ,m},

such that

Symm ◦π∗E∇M,mf =

m∑
s=0

B̂m
s (Syms ◦∇E,sπ∗Ef)

for all f ∈ Cm(M).

Proof: We define Bm : T≤m(T∗E) → T≤m(π∗ET
∗M) by requiring that

Bm(π∗Ef, . . . ,∇E,mπ∗Ef) =

(
B0

0(π
∗
Ef),

1∑
s=0

B1
s (∇E,sπ∗Ef), . . . ,

m∑
s=0

Bm
s (∇E,mπ∗Ef)

)
,

as in Lemma 5.2. Note that the mapping

idR ⊕jmπE : π∗E(RM ⊕ T∗mM) → P∗mE

is well-defined and a vector bundle isomorphism. Let us organise the mappings we require
into the following diagram:

T≤m(T∗E)
Sym≤m //

Bm

��

S≤m(T∗E)
Sm
∇E //

B̂m

��

P∗mEOO

idR ⊕jmπE

T≤m(π∗ET
∗M)

Sym≤m// S≤m(π∗ET
∗M)

Sm
∇M // π∗E(RM ⊕ T∗mM)

(5.4)
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Here B̂m is defined so that the right square commutes. We shall show that the left square
also commutes. Indeed,

B̂m ◦ Sym≤m(π
∗
Ef,∇Eπ∗Ef, . . . ,∇E,mπ∗Ef)

= (Sm∇M)
−1 ◦ (idR ⊕jmπE)−1 ◦ Sm∇E ◦ Sym≤m(π

∗
Ef,∇Eπ∗Ef, . . . ,∇E,mπ∗Ef)

= Sym≤m(π
∗
Ef, π

∗
E∇Mf, . . . , π∗E∇M,mf)

= Sym≤m ◦Bm(π∗Ef,∇Eπ∗Ef, . . . ,∇E,mπ∗Ef).

Thus the diagram (5.4) commutes. Thus, if we define B̂m
s so as to satisfy

B̂m
s (Syms ◦∇E,sπ∗Ef) = Symm ◦Bm

s (∇E,sπ∗Ef),

then we have

Symm ◦π∗E∇M,mf =

m∑
s=0

B̂m
s (Syms ◦∇E,sπ∗Ef),

as desired. ■

The following lemma provides two decompositions of P∗mE, one “downstairs” and one
“upstairs,” and the relationship between them. The assertion simply results from an exam-
ination of the preceding four lemmata.

5.5 Lemma: (Decomposition of jets of horizontal lifts of functions) Let r ∈ {∞, ω}
and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1 to define
the Riemannian metric GE on E. Then there exist Cr-vector bundle mappings

Am∇E ∈ VBr(P∗mE; S≤m(π∗ET
∗M)), Bm

∇E ∈ VBr(P∗mE; S≤m(T∗E)),

defined by

Am∇E(jm(π
∗
Ef)(e)) = Sym≤m(π

∗
Ef(e), π

∗
E∇Mf(e), . . . , π∗E∇M,mf(e)),

Bm
∇E(jm(π

∗
Ef)(e)) = Sym≤m(π

∗
Ef(e),∇Eπ∗Ef(e), . . . ,∇E,mπ∗Ef(e)).

Moreover, Am∇E is an isomorphism, Bm
∇E is injective, and

Bm
∇E ◦ (Am∇E)

−1 ◦ (Sym≤m(π
∗
Ef(e), π

∗
E∇Mf(e), . . . , π∗E∇M,mf(e))

=

(
A0

0(π
∗
Ef(e)),

1∑
s=0

Â1
s(Syms ◦π

∗
E∇M,sf(e)), . . . ,

m∑
s=0

Âms (Syms ◦π
∗
E∇M,sf(e))

)

and

Am∇E ◦ (Bm
∇E)

−1 ◦ Sym≤m(π
∗
Ef(e),∇Eπ∗Ef(e), . . . ,∇E,mπ∗Ef(e))

=

(
B0

0(π
∗
Ef(e)),

1∑
s=0

B̂1
s(Syms ◦∇E,sπ∗Ef(e)), . . . ,

m∑
s=0

B̂m
s (Syms ◦∇E,sπ∗Ef(e))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 5.3

and 5.4.
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5.2. Isomorphisms for vertical lifts of sections. Next we consider vertical lifts of sec-
tions, i.e., the mapping

Γr(E) ∋ ξ 7→ ξv ∈ Γr(TE).

We wish to relate the decomposition of the jets of ξ with those of ξv. Associated with this,
we denote

V∗m
e E = {jmξv(e) | ξ ∈ Γm(E)}.

By (1.5), we have
V∗m
e E ≃ P∗m

e E⊗ VeE.

As with the constructions of the preceding section, we wish to use Lemma 2.1 to provide a
decomposition of V∗mE, and to do so we need to understand the covariant derivatives

∇E,mξv ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

ξv, m ∈ Z≥0.

In our development, we shall use the notation used in the preceding section in a slightly
different, but similar, context. This seems reasonable since we have to do more or less
the same thing six times, and using six different pieces of notation will be excessively
burdensome.

The first result we give is the following.

5.6 Lemma: (Iterated covariant differentials of vertical lifts of sections I) Let
r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1
to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector bundle
mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ VE; Tm(T∗E)⊗ VE), s ∈ {0, 1, . . . ,m},

such that

∇E,mξv =
m∑
s=0

Ams ((∇M,πE,sξ)v)

for all ξ ∈ Γm(E). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m satisfy the

recursion relations prescribed by A0
0(β0) = β0 and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇EAms )(βs) +Ams−1 ⊗ idT∗E(βs)−

s∑
j=1

Ams ⊗ idT∗E(Insj(βs, BπE))

+Ams ⊗ idT∗E(Inss+1(βs, B
∗
πE
)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇EAm0 )(β0) +Am0 ⊗ idT∗E(Ins1(β0, B

∗
πE
)),

where βs ∈ Ts(π∗ET
∗M)⊗ VE, s ∈ {0, 1, . . . ,m+ 1}.

Proof: The assertion clearly holds for m = 0, so suppose it true for m ∈ Z>0. Thus

∇E,mξv =

m∑
s=0

Ams ((∇M,πE,sξ)v),
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where the vector bundle mappings Aas , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the
recursion relations from the statement of the lemma. Then

∇E,m+1ξv =

m∑
s=0

(∇EAm
s )((∇M,πE,sξ)v) +

m∑
s=0

Am
s ⊗ idT∗E(∇E(∇M,πE,sξ)v)

=

m∑
s=0

(∇EAm
s )((∇M,πE,sξ)v) +

m∑
s=0

Am
s ⊗ idT∗E((∇M,πE,s+1ξ)v)

−
m∑
s=1

s∑
j=1

Am
s ⊗ idT∗E(Insj((∇M,πE,sξ)v, BπE

))

+

m∑
s=1

Am
s ⊗ idT∗E(Inss+1((∇M,πE,sξ)v, B∗

πE
)) +Am

0 ⊗ idT∗E(Ins1(ξ
v, B∗

πE
))

= (∇M,πE,m+1ξ)v +

m∑
s=1

(
(∇EAm

s )((∇M,πE,sξ)v) +Am
s−1 ⊗ idT∗E((∇M,πE,sξ)v)

−
s∑

j=1

Am
s ⊗ idT∗E(Insj((∇M,πE,sξ)v, BπE

)) + Am
s ⊗ idT∗E(Inss+1((∇M,πE,sξ)v, B∗

πE
))


+ (∇EAm

0 )(ξv) +Am
0 ⊗ idT∗E(Ins1(ξ

v, B∗
πE
))

by Lemma 4.5(ii). From this, the lemma follows. ■

Now we “invert” the constructions from the preceding lemma.

5.7 Lemma: (Iterated covariant differentials of vertical lifts of sections II) Let
r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1
to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector bundle
mappings

(Bm
s , idE) ∈ VBr(Tm(T∗E)⊗ VE; Tm(π∗ET

∗M)⊗ VE), s ∈ {0, 1, . . . ,m},

such that

(∇M,πE,mξ)v =
m∑
s=0

Bm
s (∇E,sξv)

for all ξ ∈ Γm(E). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by B0
0(α0) = α0 and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE)

− Insm+1(B
m
s (αs), B

∗
πE
), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +

m∑
j=1

Insj(B
m
0 (α0), BπE)− Insm+1(B

m
0 (α0), B

∗
πE
),

where αs ∈ Ts(T∗E)⊗ VE, s ∈ {0, 1, . . . ,m+ 1}.
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Proof: The assertion clearly holds for m = 0, so suppose it true for m ∈ Z>0. Thus

(∇M,πE,mξ)v =
m∑
s=0

Bm
s (∇E,sξv), (5.5)

where the vector bundle mappings Ba
s , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the

recursion relations from the statement of the lemma. Then, by Lemma 4.5(ii), we can work
on the left-hand side of (5.5) to give

∇E(∇M,πE,mξ)v = (∇M,πE,m+1ξ)v −
m∑
j=1

Insj((∇M,πE,mξ)v, BπE
) + Insm+1((∇M,πE,mξ)v, B∗

πE
)

= (∇M,πE,m+1ξ)v −
m∑
s=0

m∑
j=1

Insj(B
m
s (∇E,sξv), BπE

) +

m∑
s=0

Insm+1(B
m
s (∇E,sξv), B∗

πE
).

Working on the right-hand side of (5.5) gives

∇E(∇M,πE,mξ)v =
m∑
s=0

∇EBm
s (∇E,sξv) +

m∑
s=0

Bm
s ⊗ idT∗E(∇E,s+1ξv).

Combining the preceding two equations gives

∇M,πE,m+1ξv =
m∑
s=0

∇EBm
s (∇E,sξv) +

m∑
s=0

Bm
s ⊗ idT∗E(∇E,s+1ξv)

+
m∑
s=0

m∑
j=1

Insj(B
m
s (∇E,sξv), BπE)− Insm+1((∇M,πE,mξ)v, B∗

πE
)

= ∇E,m+1ξv +
m∑
s=1

(
∇EBm

s (∇E,sξv) +Bm
s−1 ⊗ idT∗E(∇E,sξv)

+

m∑
j=1

Insj(B
m
s (∇E,sξv), BπE)− Insm+1(B

m
s (∇E,sξv), B∗

πE
)


+∇EBm

0 (ξv) +

m∑
j=1

Insj(B
m
0 (ξv), BπE)− Insm+1(B

m
0 (ξv), B∗

πE
),

and the lemma follows from this. ■

Next we turn to symmetrised versions of the preceding lemmata. We show that the
preceding two lemmata induce corresponding mappings between symmetric tensors.

5.8 Lemma: (Iterated symmetrised covariant differentials of vertical lifts of sec-
tions I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed
in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-
vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M)⊗ VE; Sm(T∗E)⊗ VE), s ∈ {0, 1, . . . ,m},
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such that

(Symm⊗ idVE) ◦ ∇E,mξv =

m∑
s=0

Âms ((Syms⊗ idVE) ◦ (∇M,πE,sξ)v)

for all ξ ∈ Γm(E).

Proof: The proof follows very similarly to that of Lemma 5.3, but taking the tensor product
of everything with VE. We shall present the complete construction here, but will not repeat
it for similar proofs that follow.

We define Am : T≤m(π∗ET
∗M)⊗ VE → T≤m(T∗E)⊗ VE by

Am(ξv, (∇πEξ)v, . . . , (∇M,πE,mξ)v)

=

(
A0

0(ξ
v),

1∑
s=0

A1
s((∇M,πE,sξ)v), . . . ,

m∑
s=0

Ams ((∇M,πE,sξ)v)

)

Let us organise the mappings we require into the following diagram:

T≤m(π∗
ET

∗M)⊗ VE
Sym≤m ⊗ idVE //

Am

��

S≤m(π∗
ET

∗M)⊗ VE
Sm
∇M,∇πE

⊗idVE
//

Âm

��

π∗
E(RM ⊕ T∗mM)⊗ VE

(idR ⊕jmπE)⊗idVE

��
T≤m(T∗E)⊗ VE

Sym≤m ⊗ idVE // S≤m(T∗E)⊗ VE
Sm
∇E⊗idVE // (RM ⊕ T∗mE)⊗ VE

(5.6)

Here Âm is defined so that the right square commutes. We shall show that the left square
also commutes. Indeed,

Âm ◦ Sym≤m⊗ idVE(ξ
v, (∇πEξ)v, . . . , (∇M,πE,mξ)v)

= (Sm∇E ⊗ idVE)
−1 ◦ ((idR ⊗jmπE)⊗ idVE) ◦ (Sm∇M,∇πE ⊗ idVE)

◦ (Sym≤m⊗ idVE)(ξ
v, (∇πEξ)v, . . . , (∇M,πE,mξ)v)

= Sym≤m⊗ idVE(ξ
v,∇Eξv, . . . ,∇E,mξv)

= (Sym≤m⊗ idVE) ◦Am(ξv, (∇πEξ)v, . . . , (∇M,πE,mξ)v).

Thus the diagram (5.6) commutes. Thus, if we define

Âms ((Syms⊗ idVE) ◦ (∇M,πE,sξ)v) = (Symm⊗ idVE) ◦Ams ((∇M,πE,sξ)v),

then we have

(Symm⊗ idVE) ◦ ∇E,mξv =
m∑
s=0

Âms ((Syms⊗ idVE) ◦ (∇M,πE,sξ)v),

as desired. ■

The preceding lemma gives rise to an “inverse,” which we state in the following lemma.
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5.9 Lemma: (Iterated symmetrised covariant differentials of vertical lifts of sec-
tions II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed
in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-
vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E)⊗ VE; Sm(π∗ET

∗M)⊗ VE), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗idVE) ◦ (∇M,πE,mξ)v =
m∑
s=0

B̂m
s ((Syms⊗ idVE) ◦ ∇E,sξv)

for all ξ ∈ Γm(E).

Proof: This follows along the lines of Lemma 5.4 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with VE. ■

We can put together the previous four lemmata into the following decomposition result,
which is to be regarded as the main result of this section.

5.10 Lemma: (Decomposition of jets of vertical lifts of sections) Let r ∈ {∞, ω}
and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1 to define
the Riemannian metric GE on E. Then there exist Cr-vector bundle mappings

Am∇E ∈ VBr(P∗mE⊗ VE; S≤m(π∗ET
∗M)⊗ VE), Bm

∇E ∈ VBr(P∗mE⊗ VE; S≤m(T∗E)⊗ VE),

defined by

Am∇E(jm(ξ
v)(e)) = Sym≤m⊗ idVE(ξ

v(e), (∇πEξ)v(e), . . . , (∇M,πE,mξ)v(e)),

Bm
∇E(jm(ξ

v)(e)) = Sym≤m⊗ idVE(ξ
v(e),∇Eξv(e), . . . ,∇E,mξv(e)).

Moreover, Am∇E is an isomorphism, Bm
∇E is injective, and

Bm
∇E ◦ (Am

∇E)
−1 ◦ (Sym≤m ⊗ idVE)(ξ

v(e), (∇πEξ)v(e), . . . , (∇M,πE,mξ)v(e))

=

(
ξv(e),

1∑
s=0

Â1
s((Syms ⊗ idVE) ◦ (∇M,πE,sξ)v(e)), . . . ,

m∑
s=0

Âm
s ((Syms ⊗ idVE) ◦ (∇M,πE,sξ)v(e))

)

and

Am
∇E ◦ (Bm

∇E)
−1 ◦ (Sym≤m ⊗ idVE)(ξ

v(e),∇Eξv(e), . . . ,∇E,mξv(e))

=

(
ξv(e),

1∑
s=0

B̂1
s((Syms ⊗ idVE) ◦ ∇E,sξv(e)), . . . ,

m∑
s=0

B̂m
s ((Syms ⊗ idVE) ◦ ∇E,sξv(e))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 5.8

and 5.9.
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5.3. Isomorphisms for horizontal lifts of vector fields. Next we consider horizontal lifts
of vector fields via the mapping

Γr(TM) ∋ X 7→ Xh ∈ Γr(TE).

We wish to relate the decomposition of the jets of X with the jets of Xh. Associated with
this, we denote

H∗m
e E = {jmXh(e) | X ∈ Γm(TM)}.

By (1.5), we have
H∗m
e E ≃ P∗m

e E⊗ HeE.

As with the constructions of the preceding sections, we wish to use Lemma 2.1 to provide
a decomposition of H∗mE, and to do so we need to understand the covariant derivatives

∇E,mXh ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

Xh, m ∈ Z≥0.

In this section we omit proofs, since proofs follow along entirely similar lines to those of the
preceding section.

The first result we give is the following.

5.11 Lemma: (Iterated covariant differentials of horizontal lifts of vector fields I)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector
bundle mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ HE; Tm(T∗E)⊗ HE), s ∈ {0, 1, . . . ,m},

such that

∇E,mXh =
m∑
s=0

Ams ((∇M,sX)h)

for all X ∈ Γm(TM). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m satisfy the

recursion relations prescribed by A0
0(β0) = β0 and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇EAms )(βs) +Ams−1 ⊗ idT∗E(βs)−

s∑
j=1

Ams ⊗ idT∗E(Insj(βs, BπE))

+Ams ⊗ idT∗E(Inss+1(βs, B
∗
πE
)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇EAm0 )(β0) +Am0 ⊗ idT∗E(Ins1(β0, B

∗
πE
)),

where βs ∈ Ts(π∗ET
∗M)⊗ HE, s ∈ {0, 1, . . . ,m+ 1}.

Proof: This follows in the same manner as Lemma 5.6, making use of Lemma 4.5(iii). ■

The following lemma “inverts” the relations from the preceding one.
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5.12 Lemma: (Iterated covariant differentials of horizontal lifts of vector fields II)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector
bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗E)⊗ HE; Tm(π∗ET

∗M)⊗ HE), s ∈ {0, 1, . . . ,m},

such that

(∇M,mX)h =
m∑
s=0

Bm
s (∇E,sXh)

for all X ∈ Γm(TM). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by B0
0(α0) = α0 and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE)

− Insm+1(B
m
s (αs), B

∗
πE
), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +

m∑
j=1

Insj(B
m
0 (α0), BπE)− Insm+1(B

m
0 (α0), B

∗
πE
),

where αs ∈ Ts(T∗E)⊗ HE, s ∈ {0, 1, . . . ,m+ 1}.

Proof: This follows in the same manner as Lemma 5.7, making use of Lemma 4.5(iii). ■

Now we can give the symmetrised versions of the preceding lemmata.

5.13 Lemma: (Iterated symmetrised covariant differentials of horizontal lifts of
vector fields I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M)⊗ HE; Sm(T∗E)⊗ HE), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗ idHE) ◦ ∇E,mXh =
m∑
s=0

Âms ((Syms⊗ idHE) ◦ (∇M,sX)h)

for all X ∈ Γm(TM).

Proof: This follows along the lines of Lemma 5.3 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with HE. ■
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5.14 Lemma: (Iterated symmetrised covariant differentials of horizontal lifts of
vector fields II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E)⊗ HE; Sm(π∗ET

∗M)⊗ HE), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗idHE) ◦ (∇M,mX)h =
m∑
s=0

B̂m
s ((Syms⊗ idHE) ◦ ∇E,sXh)

for all X ∈ Γm(TM).

Proof: This follows along the lines of Lemma 5.4 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with HE. ■

We can put together the previous four lemmata into the following decomposition result,
which is to be regarded as the main result of this section.

5.15 Lemma: (Decomposition of jets of horizontal lifts of vector fields) Let r ∈
{∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1
to define the Riemannian metric GE on E. Then there exist Cr-vector bundle mappings

Am∇E ∈ VBr(P∗mE⊗ HE; S≤m(π∗ET
∗M)⊗ HE), Bm

∇E ∈ VBr(P∗mE⊗ HE; S≤m(T∗E)⊗ HE),

defined by

Am∇E(jm(X
h)(e)) = Sym≤m⊗ idHE(X

h(e), (∇MX)h(e), . . . , (∇M,mX)h(e)),

Bm
∇E(jm(X

h)(e)) = Sym≤m⊗ idHE(X
h(e),∇EXh(e), . . . ,∇E,mXh(e)).

Moreover, Am∇E is an isomorphism, Bm
∇E is injective, and

Bm
∇E ◦ (Am

∇E)
−1 ◦ (Sym≤m ⊗idHE

)(Xh(e), (∇MX)h(e), . . . , (∇M,mX)h(e))

=

(
Xh(e),

1∑
s=0

Â1
s((Syms ⊗ idHE) ◦ (∇M,sX)(e)), . . . ,

m∑
s=0

Âm
s ((Syms ⊗ idHE) ◦ (∇M,sX)h(e))

)

and

Am
∇E ◦ (Bm

∇E)
−1 ◦ (Sym≤m ⊗ idHE)(X

h(e),∇EXh(e), . . . ,∇E,mXh(e))

=

(
Xh(e),

1∑
s=0

B̂1
s((Syms ⊗ idHE) ◦ ∇E,sXh(e)), . . . ,

m∑
s=0

B̂m
s ((Syms ⊗ idHE) ◦ ∇E,sXh(e))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 5.13

and 5.14.
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5.4. Isomorphisms for vertical lifts of dual sections. Next we consider vertical lifts of
sections of the dual bundle, i.e., the mapping defined by

Γr(E∗) ∋ λ 7→ λv ∈ Γr(T∗E).

Our objective is to relate the decomposition of the jets of λ with the decomposition of the
jets of λv. To do this, we denote

F∗me E = {jmλv(e) | λ ∈ Γm(E∗)}.

By (1.5), we have
F∗me E ≃ P∗m

e E⊗ V∗
eE.

As with the constructions of the preceding sections, we wish to use Lemma 2.1 to provide
a decomposition of F∗mE, and to do so we need to understand the covariant derivatives

∇E,mλv ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

λv, m ∈ Z≥0.

In this section we omit proofs, since proofs follow along entirely similar lines to those of the
preceding section.

The first result we give is the following.

5.16 Lemma: (Iterated covariant differentials of vertical lifts of dual sections I)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector
bundle mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ V∗E; Tm(T∗E)⊗ V∗E), s ∈ {0, 1, . . . ,m},

such that

∇E,mλv =
m∑
s=0

Ams ((∇M,πE,sλ)v)

for all λ ∈ Γm(E∗). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m satisfy the

recursion relations prescribed by A0
0(β0) = β0 and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇EAm

s )(βs) +Am
s−1 ⊗ idT∗E(βs)−

s∑
j=1

Am
s ⊗ idT∗E(Insj(βs, BπE

)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇EAm

0 )(β0)−Am
0 ⊗ idT∗E(Ins1(β0, BπE

)),

where βs ∈ Ts(π∗ET
∗M)⊗ V∗E, s ∈ {0, 1, . . . ,m+ 1}.

Proof: This follows in the same manner as Lemma 5.6, making use of Lemma 4.5(iv). ■

The “inverse” of the preceding lemma is as follows.
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5.17 Lemma: (Iterated covariant differentials of vertical lifts of dual sections II)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-vector
bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗E)⊗ V∗E; Tm(π∗ET

∗M)⊗ V∗E), s ∈ {0, 1, . . . ,m},

such that

(∇M,πE,mλ)v =
m∑
s=0

Bm
s (∇E,sλv)

for all λ ∈ Γm(E∗). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by B0
0(α0) = α0 and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +
m+1∑
j=1

Insj(B
m
0 (α0), BπE),

where αs ∈ Ts(T∗E)⊗ V∗E, s ∈ {0, 1, . . . ,m+ 1}.

Proof: This follows in the same manner as Lemma 5.7, making use of Lemma 4.5(iv). ■

Next we turn to symmetrised versions of the preceding lemmata. We show that the
preceding two lemmata induce corresponding mappings between symmetric tensors.

5.18 Lemma: (Iterated symmetrised covariant differentials of vertical lifts of dual
sections I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M)⊗ V∗E; Sm(T∗E)⊗ V∗E), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗ idV∗E) ◦ ∇E,mλv =
m∑
s=0

Âms ((Syms⊗ idV∗E) ◦ (∇M,πE,sλ)v)

for all λ ∈ Γm(E∗).

Proof: This follows along the lines of Lemma 5.3 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with V∗E. ■

The preceding lemma gives rise to an “inverse,” which we state in the following lemma.
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5.19 Lemma: (Iterated symmetrised covariant differentials of vertical lifts of dual
sections II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E)⊗ V∗E; Sm(π∗ET

∗M)⊗ V∗E), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗idV∗E) ◦ (∇M,πE,mλ)v =
m∑
s=0

B̂m
s ((Syms⊗ idV∗E) ◦ ∇E,sλv)

for all λ ∈ Γm(E∗).

Proof: This follows along the lines of Lemma 5.4 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with V∗E. ■

We can put together the previous four lemmata into the following decomposition result,
which is to be regarded as the main result of this section.

5.20 Lemma: (Decomposition of jets of vertical lifts of dual sections) Let r ∈
{∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1
to define the Riemannian metric GE on E. Then there exist Cr-vector bundle mappings

Am∇E ∈ VBr(P∗mE⊗ V∗E; S≤m(π∗ET
∗M)⊗ V∗E),

Bm
∇E ∈ VBr(P∗mE⊗ V∗E; S≤m(T∗E)⊗ V∗E),

defined by

Am∇E(jm(λ
v)(e)) = Sym≤m⊗ idV∗E(λ

v(e), (∇πEλ)v(e), . . . , (∇M,πE,mλ)v(e)),

Bm
∇E(jm(λ

v)(e)) = Sym≤m⊗ idV∗E(λ
v(e),∇Eλv(e), . . . ,∇E,mλv(e)).

Moreover, Am∇E is an isomorphism, Bm
∇E is injective, and

Bm
∇E ◦ (Am

∇E)
−1 ◦ (Sym≤m ⊗ idV∗E)(λ

v(e), (∇πEλ)v(e), . . . , (∇M,πE,mλ)v(e)) =(
λv(e),

1∑
s=0

Â1
s((Syms ⊗ idV∗E) ◦ (∇M,πE,sλ)v(e)), . . . ,

m∑
s=0

Âm
s ((Syms ⊗ idV∗E) ◦ (∇M,πE,sλ)v(e))

)

and

Am
∇E ◦ (Bm

∇E)
−1 ◦ (Sym≤m ⊗ idV∗E)(λ

v(e),∇Eλv(e), . . . ,∇E,mλv(e))

=

(
λv(e),

1∑
s=0

B̂1
s((Syms ⊗ idV∗E) ◦ ∇E,sλv(e)), . . . ,

m∑
s=0

B̂m
s ((Syms ⊗ idV∗E) ◦ ∇E,sλv(e))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 5.18

and 5.19.
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5.5. Isomorphisms for vertical lifts of endomorphisms. Next we consider vertical lifts of
endomorphisms defined by the mapping

Γr(T1
1(E)) ∋ L 7→ Lv ∈ Γr(T1

1(TE)).

We wish to relate the decomposition of the jets of L with those of Lv. Associated with this,
we denote

L∗me E = {jmLv(e) | L ∈ Γm(T1
1(E))}.

By (1.5), we have
L∗me E ≃ P∗m

e E⊗ T1
1(VeE).

As with the constructions of the preceding sections, we wish to use Lemma 2.1 to provide
a decomposition of L∗mE, and to do so we need to understand the covariant derivatives

∇E,mLv ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

Lv, m ∈ Z≥0.

In this section we omit proofs, since proofs follow along entirely similar lines to those of the
preceding section.

The first result we give is the following.

5.21 Lemma: (Iterated covariant differentials of vertical lifts of endomor-
phisms I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ T1

1(VE); T
m(T∗E)⊗ T1

1(VE)), s ∈ {0, 1, . . . ,m},

such that

∇E,mLv =
m∑
s=0

Ams ((∇M,πE,sL)v)

for all L ∈ Γm(T1
1(E)). Moreover, the vector bundle mappings Am0 , A

m
1 , . . . , A

m
m satisfy the

recursion relations prescribed by A0
0(β0) = β0 and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇EAms )(βs) +Ams−1 ⊗ idT∗E(βs)−

s∑
j=1

Ams ⊗ idT∗E(Insj(βs, BπE))

+Ams ⊗ idT∗E(Inss+1(βs, B
∗
πE
)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇EAm0 )(β0)−Am0 ⊗ idT∗E(Ins1(β0, BπE)) +Am0 ⊗ idT∗E(Ins2(β0, B

∗
πE
)),

where βs ∈ Ts(π∗ET
∗M)⊗ T1

1(VE), s ∈ {0, 1, . . . ,m+ 1}.

Proof: This follows in the same manner as Lemma 5.6, making use of Lemma 4.5(v). ■

The “inverse” of the preceding lemma is as follows.
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5.22 Lemma: (Iterated covariant differentials of vertical lifts of endomor-
phisms II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗E)⊗ T1

1(VE); T
m(π∗ET

∗M)⊗ T1
1(VE)), s ∈ {0, 1, . . . ,m},

such that

(∇M,πE,mL)v =
m∑
s=0

Bm
s (∇E,sLv)

for all L ∈ Γm(T1
1(E)). Moreover, the vector bundle mappings Bm

0 , B
m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by B0
0(α0) = α0 and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE)

− Insm+1(B
m
s (αs), B

∗
πE
), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +

m∑
j=1

Insj(B
m
0 (α0), BπE)− Insm+1(B

m
0 (α0), BπE),

where αs ∈ Ts(T∗E)⊗ T1
1(VE), s ∈ {0, 1, . . . ,m+ 1}.

Proof: This follows in the same manner as Lemma 5.7, making use of Lemma 4.5(v). ■

Next we turn to symmetrised versions of the preceding lemmata. We show that the
preceding two lemmata induce corresponding mappings between symmetric tensors.

5.23 Lemma: (Iterated symmetrised covariant differentials of vertical lifts of en-
domorphisms I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M)⊗ T1

1(VE); S
m(T∗E)⊗ T1

1(VE)), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗ idT1
1(VE)

) ◦ ∇E,mLv =

m∑
s=0

Âms ((Syms⊗ idT1
1(VE)

) ◦ (∇M,πE,sL)v)

for all L ∈ Γm(T1
1(E)).

Proof: This follows along the lines of Lemma 5.3 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with T1

1(VE). ■

The preceding lemma gives rise to an “inverse,” which we state in the following lemma.
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5.24 Lemma: (Iterated symmetrised covariant differentials of vertical lifts of en-
domorphisms II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E)⊗ T1

1(VE); S
m(π∗ET

∗M)⊗ T1
1(VE)), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗id
T1
1(VE)

) ◦ (∇M,πE,mL)v =
m∑
s=0

B̂m
s ((Syms⊗ idT1

1(VE)
) ◦ ∇E,sLv)

for all L ∈ Γm(T1
1(E)).

Proof: This follows along the lines of Lemma 5.4 in the same manner as Lemma 5.8 follows
from Lemma 5.3, by taking tensor products with T1

1(VE). ■

We can put together the previous four lemmata into the following decomposition result,
which is to be regarded as the main result of this section.

5.25 Lemma: (Decomposition of jets of vertical lifts of endomorphisms) Let r ∈
{∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1
to define the Riemannian metric GE on E. Then there exist Cr-vector bundle mappings

Am∇E ∈ VBr(P∗mE⊗ T1
1(VE); S

≤m(π∗ET
∗M)⊗ T1

1(VE)),

Bm
∇E ∈ VBr(P∗mE⊗ T1

1(VE); S
≤m(T∗E)⊗ T1

1(VE)),

defined by

Am∇E(jm(L
v)(e)) = Sym≤m⊗ idT1

1(VE)
(Lv(e), (∇πEL)v(e), . . . , (∇M,πE,mL)v(e)),

Bm
∇E(jm(L

v)(e)) = Sym≤m⊗ idT1
1(VE)

(Lv(e),∇ELv(e), . . . ,∇E,mLv(e)).

Moreover, Am∇E is an isomorphism, Bm
∇E is injective, and

Bm
∇E ◦ (Am

∇E)
−1 ◦ (Sym≤m ⊗ idT1

1(VE)
)(Lv(e), (∇πEL)v(e), . . . , (∇M,πE,mL)v(e))

=

(
Lv(e),

1∑
s=0

Â1
s((Syms ⊗ idT1

1(VE)
) ◦ (∇M,πE,sL)v(e)), . . . ,

m∑
s=0

Âm
s ((Syms ⊗ idT1

1(VE)
) ◦ (∇M,πE,sL)v(e))

)

and

Am
∇E ◦ (Bm

∇E)
−1 ◦ (Sym≤m ⊗ idT1

1(VE)
)(Lv(e),∇ELv(e), . . . ,∇E,mLv(e))

=

(
Lv(e),

1∑
s=0

B̂1
s((Syms ⊗ idT1

1(VE)
) ◦ ∇E,sLv(e)), . . . ,

m∑
s=0

B̂m
s ((Syms ⊗ idT1

1(VE)
) ◦ ∇E,sLv(e))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 5.23

and 5.24.
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5.6. Isomorphisms for vertical evaluations of dual sections. Next we consider vertical
evaluations of endomorphisms given by the mapping

Γr(E∗) ∋ λ 7→ λe ∈ Cr(E).

To study the relationship between the decomposition of the jets of λ with those of the jets
of λe, we denote

D∗m
e E = {jmλe(e) | λ ∈ Γm(E∗)}.

By (1.5), we have
D∗m
e E ⊆ P∗m

e E.

As we shall see, one can be a little more explicit about the nature of D∗m
e E, and see that

D∗m
e E ≃ (P∗m

e E⊗ V∗E)⊕ (P∗E
m−1 ⊗ V∗E).

However, this sort of isomorphism is too cumbersome to make explicit. As with the con-
structions of the preceding sections, we wish to use Lemma 2.1 to provide a decomposition
of D∗mE, and to do so we need to understand the covariant derivatives

∇E,mλe ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

λe, m ∈ Z≥0.

The results in this section have a slightly different character than in the preceding sections.
We will not give the complete proofs, but will note that they are very similar to the complete
proofs given in the next section.

Our first result is then the following.

5.26 Lemma: (Iterated covariant differentials of vertical evaluations of dual sec-
tions I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed
in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-
vector bundle mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M); Tm(T∗E)), s ∈ {0, 1, . . . ,m},

and

(Cms , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ V∗E; Tm−1(T∗E)⊗ V∗E), s ∈ {0, 1, . . . ,m− 1},

such that

∇E,mλe =
m∑
s=0

Ams ((∇M,πE,sλ)e) +
m−1∑
s=0

Cms ((∇M,πE,sλ)v)3

for all λ ∈ Γm(E∗). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m and

Cm0 , C
m
1 , . . . , C

m
m−1 satisfy the recursion relations prescribed by

A0
0(β0) = β0, A

1
1(β1) = β1, A

1
0(β0) = Ins1(β0, BπE), C

1
0 (γ0) = γ0,

3Here we regard V∗E as a subbundle of T∗E.



68 A. D. Lewis

and, for m ≥ 2,

Am+1
m+1(βm+1) = βm+1

Am+1
m (βm) = Amm−1 ⊗ idT∗E(βm)−

m∑
j=1

Insj(βm, BπE)

Am+1
s (βs) = (∇EAms )(βm) +Ams−1 ⊗ idT∗E(βs)−

s∑
j=1

Ams ⊗ idT∗E(Insj(βs, BπE)),

s ∈ {1, . . . ,m− 1},
Am+1

0 (β0) = (∇EAm0 )(β0)

and

Cm+1
m (γm) = Cmm−1 ⊗ idT∗E(γm) + γm

Cm+1
s (γs) = Ams ⊗ idT∗E(γs) + (∇ECms )(γs) + Cms−1 ⊗ idT∗E(γs)

−
s+1∑
j=1

Cms ⊗ idT∗E(Insj(γs, BπE)), s ∈ {1, . . . ,m− 1},

Cm+1
0 (γ0) = Am0 ⊗ idT∗E(γ0) + (∇ECm0 )(γ0)− Cm0 ⊗ idT∗E(Ins1(γ0, BπE)),

where βs ∈ Ts(π∗ET
∗M), s ∈ {0, 1, . . . ,m+1}, and γs ∈ Ts(π∗ET

∗M)⊗V∗E, s ∈ {0, 1, . . . ,m−
1}.

Proof: This follows in the same manner as Lemma 5.31 below, making use of Lemma 4.5(vi).
■

Now we “invert” the constructions from the preceding lemma.

5.27 Lemma: (Iterated covariant differentials of vertical evaluations of dual sec-
tions II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed
in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist Cr-
vector bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗E); Tm(π∗ET

∗M)), s ∈ {0, 1, . . . ,m},

and

(Dm
s , idE) ∈ VBr(Ts(T∗E)⊗ V∗E; Tm−1(π∗ET

∗M)⊗ V∗E), s ∈ {0, 1, . . . ,m− 1},

such that

(∇M,πE,mλ)e =
m∑
s=0

Bm
s (∇E,sλe) +

m−1∑
s=0

Dm
s (∇E,sλv)

for all λ ∈ Γm(E∗). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m and
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Dm
0 , D

m
1 , . . . , D

m
m−1 satisfy the recursion relations prescribed by B0

0(α0) = α0, D
1
0(γ0) = γ0,

Bm+1
m+1(αm+1) = αm+1

Bm+1
m (αm) = Bm

m−1 ⊗ idT∗E(αm) +

m∑
j=1

Insj(αm, BπE)− Insm+1(αm, B
∗
πE
)

Bm+1
s = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE)

− Insm+1(B
m
s (αs), B

∗
πE
), s ∈ {1, . . . ,m− 1},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +
m∑
j=1

Insj(B
m
0 (α0), BπE)− Insm+1(B

m
0 (α0), B

∗
πE
)

and

Dm+1
m (γm) = Dm

m−1 ⊗ idT∗E(γm)− γm

Dm
s (γs) = (∇EDm

s )(γs) +Dm
s−1 ⊗ idT∗E(γs)−B

m
s (γs), s ∈ {1, . . . ,m− 1},

Dm+1
0 = (∇EDm

0 )(γ0)−B
m
0 (γ0)

for αs ∈ Ts(T∗E), s ∈ {0, 1, . . . ,m}, and γs ∈ Ts(T∗E) ⊗ V∗E, s ∈ {0, 1, . . . ,m − 1}, and
where

(B
m
s , idE) ∈ VBr(Ts(T∗E)⊗ V∗E; Tm(π∗ET

∗M)⊗ V∗E), s ∈ {0, 1, . . . ,m},

are the vector bundle mappings from Lemma 5.17.

Proof: This follows in the same manner as Lemma 5.32 below, making use of Lemma 4.5(vi).
■

Next we turn to symmetrised versions of the preceding lemmata. We show that the
preceding two lemmata induce corresponding mappings between symmetric tensors.

5.28 Lemma: (Iterated symmetrised covariant differentials of vertical evaluations
of dual sections I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the
data prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0,
there exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M); Sm(T∗E)), s ∈ {0, 1, . . . ,m},

and
(Ĉms , idE) ∈ VBr(Ss(π∗ET

∗M)⊗ V∗E; Sm(T∗E)), s ∈ {0, 1, . . . ,m− 1},
such that

Symm ◦∇E,mλe =
m∑
s=0

Âms (Syms ◦(∇M,πE,sλ)e) +
m−1∑
s=0

Ĉms ((Syms⊗ idV∗E) ◦ (∇M,πE,sλ)v)

for all λ ∈ Γm(E∗).

Proof: The proof here follows along the lines of Lemma 5.33 below. ■

The preceding lemma gives rise to an “inverse,” which we state in the following lemma.
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5.29 Lemma: (Iterated symmetrised covariant differentials of vertical evaluations
of dual sections II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the
data prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0,
there exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E); Sm(π∗ET

∗M)), s ∈ {0, 1, . . . ,m},

and
(D̂m

s , idE) ∈ VBr(Ss(T∗E)⊗ V∗E; Sm(π∗ET
∗M)), s ∈ {0, 1, . . . ,m− 1},

such that

Symm ◦(∇M,πE,mλ)e =
m∑
s=0

B̂m
s (Syms ◦∇E,sλe) +

m−1∑
s=0

D̂m
s ((Syms⊗ idV∗E) ◦ ∇E,sλv)

for all λ ∈ Γm(E∗).

Proof: The proof here follows along the lines of Lemma 5.33 below. ■

We can put together the previous four lemmata, along with Lemma 5.25, into the
following decomposition result, which is to be regarded as the main result of this section.

5.30 Lemma: (Decomposition of jets of vertical evaluations of dual sections) Let
r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in Section 4.1
to define the Riemannian metric GE on E. Then there exist Cr-vector bundle mappings

Am∇E ∈ VBr(D∗mE; S≤m(π∗ET
∗M)), Bm

∇E ∈ VBr(D∗mE; S≤m(T∗E))

defined by

Am∇E(jm(λ
e)(e)) = Sym≤m(λ

e(e), (∇πEλ)e(e), . . . , (∇M,πE,mλ)e(e)),

Bm
∇E(jm(λ

e)(e)) = Sym≤m(λ
e(e),∇Eλe(e), . . . ,∇E,mλe(e)).

Moreover, Am∇E and Bm
∇E are injective, and

Bm
∇E ◦ (Am

∇E)
−1 ◦ Sym≤m(λe(e), (∇πEλ)e(e), . . . , (∇M,πE,mλ)e(e))

=

(
λe(e),

1∑
s=0

Â1
s(Syms ◦(∇M,πE,sλ)e(e)), . . . ,

m∑
s=0

Âm
s (Syms ◦(∇M,πE,sλ)e(e))

)

+

(
0, λv(e),

1∑
s=0

Ĉ2
s((Syms ⊗ idV∗E) ◦ (∇M,πE,sλ)v(e)), . . . ,

m−1∑
s=0

Ĉm
s ((Syms ⊗ idV∗E) ◦ (∇M,πE,sλ)v(e))

)
and

Am
∇E ◦ (Bm

∇E)
−1 ◦ Sym≤m(λe(e),∇Eλe(e), . . . ,∇E,mλe(e))

=

(
λe(e),

1∑
s=0

B̂1
s(Syms ◦∇E,sλe(e)), . . . ,

m∑
s=0

B̂m
s (Syms ◦∇E,sλe(e))

)

+

(
0, λv(e),

1∑
s=0

D̂2
s((Syms ⊗ idV∗E) ◦ ∇E,sλv(e)), . . . ,

m−1∑
s=0

D̂m
s ((Syms ⊗ idV∗E) ◦ ∇E,sλv(e))

)
,
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where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, and Ĉms and D̂m

s , s ∈
{0, 1, . . . ,m− 1}, are as in Lemmata 5.28 and 5.29.

5.7. Isomorphisms for vertical evaluations of endomorphisms. Next we consider vertical
evaluations of endomorphisms, i.e., the mapping given by

Γr(T1
1(E)) ∋ L 7→ Le ∈ Γr(TE).

To study the relationship between the decomposition of jets of L with those of Le, we denote

C∗m
e E = {jmLe(e) | L ∈ Γm(T1

1(E))}.

By (1.5), we have
C∗m
e E ⊆ P∗m

e E⊗ VeE.

As we shall see, one can be a little more explicit about the nature of D∗m
e E, and see that

C∗m
e E ≃ (P∗m

e E⊗ V∗E⊗ VeE)⊕ (P∗E
m−1 ⊗ V∗E⊗ VeE).

However, this sort of isomorphism is too cumbersome to make explicit. As with the con-
structions of the preceding sections, we wish to use Lemma 2.1 to provide a decomposition
of C∗mE, and to do so we need to understand the covariant derivatives

∇E,mLe ≜ ∇E · · · ∇E︸ ︷︷ ︸
m times

Le, m ∈ Z≥0.

The results in this section have a slightly different character than in the preceding sections,
so we provide complete proofs.

The first result we give is the following.

5.31 Lemma: (Iterated covariant differentials of vertical evaluations of endomor-
phisms I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data pre-
scribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist
Cr-vector bundle mappings

(Ams , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ VE; Tm(T∗E)⊗ VE), s ∈ {0, 1, . . . ,m},

and

(Cms , idE) ∈ VBr(Ts(π∗ET
∗M)⊗ T1

1(VE); T
m−1(T∗E)⊗ T1

1(VE)), s ∈ {0, 1, . . . ,m− 1},

such that

∇E,mLe =
m∑
s=0

Ams ((∇M,πE,sL)e) +
m−1∑
s=0

Cms ((∇M,πE,sL)v)4

4Here we regard T1
1(VE) as a subbundle of T∗E⊗ VE by the mapping

T1
1(VE) ∋ A 7→ A ◦ ver ∈ T∗E⊗ VE.
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for all L ∈ Γm(T1
1(E)). Moreover, the vector bundle mappings Am0 , A

m
1 , . . . , A

m
m and

Cm0 , C
m
1 , . . . , C

m
m−1 satisfy the recursion relations prescribed by

A0
0(β0) = β0, A

1
1(β1) = β1, A

1
0(β0) = Ins1(β0, BπE), C

1
0 (γ0) = γ0,

and, for m ≥ 2,

Am+1
m+1(βm+1) = βm+1

Am+1
m (βm) = Am

m−1 ⊗ idT∗E(βm)−
m∑
j=1

Insj(βm, BπE
) + Insm+1(βm, B

∗
πE
)

Am+1
s (βs) = (∇EAm

s )(βm) +Am
s−1 ⊗ idT∗E(βs)−

s∑
j=1

Am
s ⊗ idT∗E(Insj(βs, BπE

))

+Am
s ⊗ idT∗E(Inss+1(βs, B

∗
πE
)), s ∈ {1, . . . ,m− 1},

Am+1
0 (β0) = (∇EAm

0 )(β0)−Am
0 ⊗ idT∗E(Ins1(β0, B

∗
πE
))

and

Cm+1
m (γm) = Cm

m−1 ⊗ idT∗E(γm) + γm

Cm+1
s (γs) = Am

s ⊗ idT∗E(γs) + (∇ECm
s )(γs) + Cm

s−1 ⊗ idT∗E(γs)

−
s+1∑
j=1

Cm
s ⊗ idT∗E(Insj(γs, BπE

)) + Cm
s ⊗ idT∗E(Inss+1(γs, B

∗
πE
)), s ∈ {1, . . . ,m− 1},

Cm+1
0 (γ0) = Am

0 ⊗ idT∗E(γ0) + (∇ECm
0 )(γ0)− Cm

0 ⊗ idT∗E(Ins1(γ0, BπE
))

+ Cm
0 ⊗ idT∗E(Ins2(γ0, B

∗
πE
)),

where βs ∈ Ts(π∗ET
∗M) ⊗ VE, s ∈ {0, 1, . . . ,m}, and γs ∈ Ts(π∗ET

∗M) ⊗ T1
1(VE), s ∈

{0, 1, . . . ,m− 1}.

Proof: The assertion is clearly true for m = 0 and, for m = 1, we have

∇ELe = (∇πEL)e + Ins1(L,BπE) + Lv

by Lemma 4.5(vii), which gives the result for m = 1. Thus suppose the result true for
m ≥ 2 so that

∇E,mLe =
m∑
s=0

Ams ((∇M,πE,sL)e) +

m−1∑
s=0

Cms ((∇M,πE,sL)v)

for vector bundle mappings Ams and Cms satisfying the stated recursion relations. We then
compute

∇E,m+1Le =
m∑
s=0

(∇EAms )((∇M,πE,sL)e) +
m∑
s=0

Ams ⊗ idT∗E(∇E(∇M,πE,sL)e)

+
m−1∑
s=0

(∇ECms )((∇M,πE,sL)v) +
m−1∑
s=0

Cms ⊗ idT∗E(∇E(∇M,πE,sL)v)

=

m∑
s=0

(∇EAms )((∇M,πE,sL)e) +

m∑
s=0

Ams ⊗ idT∗E((∇M,πE,s+1L)e)
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−
m∑
s=1

s∑
j=1

Ams ⊗ idT∗E(Insj((∇M,πE,sL)e, BπE))

+
m∑
s=0

Ams ⊗ idT∗E(Inss+1((∇M,πE,sL)e, B∗
πE
)) +

m∑
s=0

Ams ⊗ idT∗E((∇M,πE,sL)v)

+
m−1∑
s=0

(∇ECms )((∇M,πE,sL)v) +
m−1∑
s=0

Cms ⊗ idT∗E((∇M,πE,s+1L)v)

−
m−1∑
s=1

s∑
j=1

Cms ⊗ idT∗E(Insj((∇M,πE,sL)v, BπE))

+

m−1∑
s=0

Cms ⊗ idT∗E(Inss+1((∇M,πE,sL)v, B∗
πE
))

= (∇M,πE,m+1L)e +

Amm−1 ⊗ idT∗E((∇M,πE,mL)e)−
m∑
j=1

Insj((∇M,πE,mL)e, BπE)

+ Insm+1((∇M,πE,mL)e, B∗
πE
) + (∇M,πE,mL)v + Cmm−1 ⊗ idT∗E((∇M,πE,mL)v)

)

+

(
m−1∑
s=1

(∇EAms )((∇M,πE,sL)e) +

m−1∑
s=1

Ams−1 ⊗ idT∗E((∇M,πE,sL)e)

−
m−1∑
s=1

s∑
j=1

Ams ⊗ idT∗E(Insj((∇M,πE,sL)e), BπE)

+
m−1∑
s=1

Ams ⊗ idT∗E(Inss+1((∇M,πE,sL)e), B∗
πE
) +

m−1∑
s=1

Ams ⊗ idT∗E((∇M,πE,sL)v)

+
m−1∑
s=1

(∇ECms )((∇M,πE,sL)v) +
m−1∑
s=1

Cms−1 ⊗ idT∗E((∇M,πE,sL)v)

−
m−1∑
s=0

s∑
j=1

Cms ⊗ idT∗E(Insj((∇M,πE,sL)v, BπE))

+
m−1∑
s=1

Cms ⊗ idT∗E(Inss+1((∇M,πE,sL)v, B∗
πE
))

)
+ (∇EAm0 )(Le) +Am0 ⊗ idT∗E(Ins1(L

e, B∗
πE
)) +Am0 ⊗ idT∗E(L

v)

+ (∇ECm0 )(Lv)− Cm0 ⊗ idT∗E(Ins1(L
v, BπE)) + Cm0 ⊗ idT∗E(Ins2(L

v, B∗
πE
)).

From these calculations, the lemma follows. ■

Now we “invert” the constructions from the preceding lemma.

5.32 Lemma: (Iterated covariant differentials of vertical evaluations of endomor-
phisms II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data pre-
scribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there exist
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Cr-vector bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗E)⊗ VE; Tm(π∗ET

∗M)⊗ VE), s ∈ {0, 1, . . . ,m},

and

(Dm
s , idE) ∈ VBr(Ts(T∗E)⊗ T1

1(VE); T
m−1(π∗ET

∗M)⊗ T1
1(VE)), s ∈ {0, 1, . . . ,m− 1},

such that

(∇M,πE,mL)e =
m∑
s=0

Bm
s (∇E,sLe) +

m−1∑
s=0

Dm
s (∇E,sLv)

for all L ∈ Γm(T1
1(E)). Moreover, the vector bundle mappings Bm

0 , B
m
1 , . . . , B

m
m and

Dm
0 , D

m
1 , . . . , D

m
m−1 satisfy the recursion relations prescribed by B0

0(α0) = α0, D
1
0(γ0) = γ0,

Bm+1
m+1(αm+1) = αm+1

Bm+1
m (αm) = Bm

m−1 ⊗ idT∗E(αm) +

m∑
j=1

Insj(αm, BπE)− Insm+1(α,B
∗
πE
)

Bm+1
s = (∇EBm

s )(αs) +Bm
s−1 ⊗ idT∗E(αs) +

m∑
j=1

Insj(B
m
s (αs), BπE)

− Insm+1(B
m
s (αs), B

∗
πE
), s ∈ {1, . . . ,m− 1},

Bm+1
0 (α0) = (∇EBm

0 )(α0) +

m∑
j=1

Insj(B
m
0 (α0), BπE)− Insm+1(B

m
0 (α0), B

∗
πE
)

and

Dm+1
m (γm) = Dm

m−1 ⊗ idT∗E(γm)− γm

Dm
s (γs) = (∇EDm

s )(γs) +Dm
s−1 ⊗ idT∗E(γs)−B

m
s (γs), s ∈ {1, . . . ,m− 1},

Dm+1
0 = (∇EDm

0 )(γ0)−B
m
0 (γ0)

for αs ∈ Ts(T∗E⊗VE), s ∈ {0, 1, . . . ,m+1}, and γs ∈ Ts(T∗E)⊗T1
1(VE), s ∈ {0, 1, . . . ,m},

and where

(B
m
s , idE) ∈ VBr(Ts(T∗E)⊗ T1

1(VE); T
m(π∗ET

∗M)⊗ T1
1(VE)), s ∈ {0, 1, . . . ,m},

are the vector bundle mappings from Lemma 5.22.

Proof: The assertion is clearly true for m = 0, so suppose it true for m ∈ Z>0. Thus

(∇M,πE,mL)e =
m∑
s=0

Bm
s (∇E,sLe) +

m−1∑
s=0

Dm
s ((∇E,sL)v). (5.7)
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Working on the left-hand side of this equation, using Lemma 4.5(vii), we have

∇E(∇M,πE,mL)e = (∇M,πE,m+1L)e −
m∑
j=1

Insj((∇M,πE,mL)e, BπE)

+ Insm+1((∇M,πE,mL)e, B∗
πE
) + (∇M,πE,mL)v

= (∇M,πE,m+1L)e −
m∑
s=0

m∑
j=1

Insj(B
m
s (∇E,sLe), BπE)

+

m∑
s=0

Insm+1(B
m
s (∇E,sLe), B∗

πE
) +

m∑
s=0

B
m
s (∇E,sLv).

Working on the right-hand side of (5.7),

∇E(∇M,πE,mL)e =
m∑
s=0

(∇EBm
s )(∇E,sLe) +

m∑
s=0

Bm
s ⊗ idT∗E(∇E,s+1Le)

+
m−1∑
s=0

(∇EDm
s )(∇E,sLv) +

m−1∑
s=0

Dm
s ⊗ idT∗E(∇E,s+1Lv).

Combining the preceding two computations,

(∇M,πE,m+1L)e =

m∑
s=0

(∇EBm
s )(∇E,sLe) +

m∑
s=0

Bm
s ⊗ idT∗E(∇E,s+1Le)

+

m−1∑
s=0

(∇EDm
s )(∇E,sLv) +

m−1∑
s=0

Dm
s ⊗ idT∗E(∇E,s+1Lv)

+

m∑
s=0

m∑
j=1

Insj(B
m
s (∇E,sLe), BπE

)−
m∑
s=1

Insm+1(B
m
s (∇E,sLe), B∗

πE
)

−
m∑
s=0

B
m

s (∇E,sLv)

= ∇E,m+1Le +

(
Bm

m−1 ⊗ idT∗E(∇E,mLe) +Dm
m−1 ⊗ idT∗E(∇E,mLv)

+

m∑
j=1

Insj(∇E,mLe, BπE
)− Insm+1(∇E,mLe, B∗

πE
)− (∇E,mLv)


+

(
m−1∑
s=1

(∇EBm
s )(∇E,sLe) +

m−1∑
s=1

Bm
s−1 ⊗ idT∗E(∇E,sLe) +

m−1∑
s=1

(∇EDm
s )(∇E,sLv)

+

m−1∑
s=1

Dm
s−1 ⊗ idT∗E(∇E,sLv) +

m−1∑
s=1

m∑
j=1

Insj(B
m
s (∇E,sLe), BπE

)

−
m−1∑
s=1

Insm+1(B
m
s (∇E,sLe), B∗

πE
) −

m−1∑
s=1

B
m

s (∇E,sLv)

)

+

(∇EBm
0 )(Le) + (∇EDm

0 )(Lv) +

m∑
j=1

Insj(B
m
0 (Le), BπE

)
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− Insm+1(B
m
0 (Le), B∗

πE
)−B

m

0 (Lv)

)
.

The lemma follows from these computations. ■

Next we turn to symmetrised versions of the preceding lemmata. We show that the
preceding two lemmata induce corresponding mappings between symmetric tensors.

5.33 Lemma: (Iterated symmetrised covariant differentials of vertical evaluations
of endomorphisms I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the
data prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0,
there exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ss(π∗ET
∗M)⊗ VE; Sm(T∗E)⊗ VE), s ∈ {0, 1, . . . ,m},

and

(Ĉms , idE) ∈ VBr(Ss(π∗ET
∗M)⊗ T1

1(VE); S
m(T∗E)⊗ VE), s ∈ {0, 1, . . . ,m− 1},

such that

(Symm⊗ idVE) ◦ ∇E,mLe

=
m∑
s=0

Âms ((Syms⊗ idVE) ◦ (∇M,πE,sL)e +
m−1∑
s=0

Ĉms ((Syms⊗ idT1
1(VE)

) ◦ (∇M,πE,sL)v)

for all L ∈ Γm(T1
1(E)).

Proof: Following along the lines of the proof of Lemma 5.8, we define Âms by requiring that

Âms ((Syms⊗ idVE) ◦ (∇M,πE,sL)e) = (Symm⊗ idVE) ◦Ams ((∇M,πE,sL)e),

and Ĉms by requiring that

Ĉms ((Syms⊗ idT1
1(VE)

) ◦ (∇M,πE,sL)e) = (Symm⊗ idVE) ◦ Cms ((∇M,πE,sL)e).

That this definition of Âms makes sense follows exactly as in the proof of Lemma 5.8. Let
us see how the same arguments also apply to the definition of Ĉms .

For m ∈ Z>0, we define Cm : T≤m−1(π∗ET
∗M)⊗ T1

1(VE) → T≤m(T∗E)⊗ VE by

Cm(Lv, (∇πEL)v, . . . , (∇M,πE,m−1L)v)

=

(
C1
0 (L

v),
1∑
s=0

C2
s ((∇M,πE,sL)v), . . . ,

m−1∑
s=0

Cms ((∇M,πE,sL)v)

)
,

making the identification of T1
1(VE) with a subspace of T∗E ⊗ VE as in the footnote from

Lemma 5.31. Note that we have a natural mapping

T∗E⊗ T∗m−1E → T∗mE
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cf. [Saunders 1989, Theorem 6.2.9]. This then induces a mapping

Pm : (RE ⊕ T∗m−1E)⊗ T1
1(VE) → (RE ⊗ T∗mE)⊗ VE.

Now define
P̂m : π∗E(RM ⊕ T∗m−1M)⊗ T1

1(VE) → (RE ⊕ T∗mE)⊗ VE

by
P̂m = Pm ◦ ((idR ⊕jm−1πE)⊗ idT1

1(VE)
),

noting that
idR ⊕jm−1πE : π

∗
E(RMT∗m−1M) → RE ⊕ T∗m−1E

is injective. Also define

Qm : S≤m−1(T∗E)⊗ T1
1(VE) → Sm(T∗E)⊗ VE

by

Qm(A0 ⊗ α0 ⊗ u0, . . . , Am−1 ⊗ αm−1 ⊗ um−1)

= (Sym1(A0 ⊗ α0)⊗ u0, . . . ,Symm(Am−1 ⊗ αm−1)⊗ um−1).

Note that the diagram

S≤m−1(T∗E)⊗ T1
1(VE)

Sm−1

∇E ⊗id
T1
1(VE)//

Qm

��

(RE ⊕ T∗m−1E)⊗ T1
1(VE)

Pm

��
S≤m(T∗E)⊗ VE

Sm
∇E⊗idVE

// (RE ⊕ T∗mE)⊗ VE

commutes. We also define

Q̂m = Qm ◦ (π∗m−1 ⊗ idT1
1(VE)

),

where
π∗m−1 : S

≤m−1(π∗ET
∗M) → S≤m−1(T∗E)

is the inclusion. Note that the diagram

S≤m−1(π∗ET
∗M)

π∗
m−1 //

Sm−1

∇M,∇πE
��

S≤m−1(T∗E)

Sm−1

∇E

��
π∗E(RM ⊕ T∗m−1M)

idR ⊕jm−1πE
// RE ⊕ T∗m−1E

commutes.
Let us organise the mappings we require into the following diagram:

T≤m−1(π∗
ET∗M) ⊗ T1

1(VE)

Sym≤m−1 ⊗ id
T1
1(VE)
//

Cm

��

S≤m−1(π∗
ET∗M) ⊗ T1

1(VE)

S
m−1

∇M,∇πE
⊗id

T1
1(VE)
//

Ĉm

��

π∗
E (RM ⊕ T∗m−1M) ⊗ T1

1(VE)

P̂m

��
T≤m(T∗E) ⊗ VE

Sym≤m ⊗ idVE // S≤m(T∗E) ⊗ VE

Sm
∇E⊗idVE // (RE ⊕ T∗mE) ⊗ VE

(5.8)
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Here Ĉm is defined so that the right square commutes, which is possible since the horizontal
arrows in the right square are isomorphisms. We shall show that the left square also
commutes. Indeed,

Ĉm ◦ (Sym≤m−1⊗ idT1
1(VE)

)(Lv, (∇πEL)v, . . . , (∇M,πE,mL)v)

= (Sm∇E ⊗ idVE)
−1 ◦ P̂m ◦ (Sm−1

∇M,∇πE
⊗ idT1

1(VE)
)

◦ (Sym≤m−1⊗ idT1
1(VE)

)(Lv, (∇πEL)v, . . . , (∇M,πE,mLv)

= (Sym≤m−1⊗ idVE)(L
v,∇ELv, . . . ,∇E,mLv)

= (Sym≤m⊗ idVE) ◦ Cm(Lv, (∇πEL)v, . . . , (∇M,πE,mL)v).

Thus the diagram (5.8) commutes. Thus, if we define

Ĉms ((Syms⊗ idT1
1(VE)

) ◦ (∇M,πE,sL)v) = (Symm⊗ idVE) ◦ Cms ((∇M,πE,sL)v),

then we have

(Symm⊗ idVE) ◦ ∇E,mLe =

m∑
s=0

Ĉms ((Syms⊗ idT1
1(VE)

) ◦ (∇M,πE,sL)v),

as desired. ■

The preceding lemma gives rise to an “inverse,” which we state in the following lemma.

5.34 Lemma: Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data
prescribed in Section 4.1 to define the Riemannian metric GE on E. For m ∈ Z≥0, there
exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ss(T∗E)⊗ VE; Sm(π∗ET

∗M)⊗ VE), s ∈ {0, 1, . . . ,m},

and

(D̂m
s , idE) ∈ VBr(Ss(T∗E)⊗ T1

1(VE); S
m(π∗ET

∗M)⊗ VE), s ∈ {0, 1, . . . ,m− 1},

such that

(Symm⊗idVE) ◦ (∇M,πE,mL)e

=
m∑
s=0

B̂m
s ((Syms⊗ idVE) ◦ ∇E,sLe) +

m−1∑
s=0

D̂m
s ((Syms⊗ idT1

1(VE)
) ◦ ∇E,sLv)

for all L ∈ Γm(T1
1(E)).

Proof: Following along the lines of the proof of Lemma 5.8, we define B̂m
s by requiring that

B̂m
s ((Syms⊗ idVE) ◦ ∇E,sLe = (Symm⊗ idVE) ◦Bm

s (∇E,sLe),

and Ĉms by requiring that

Ĉms ((Syms⊗ idT1
1(VE)

) ◦ ∇E,sLv) = (Symm⊗ idVE) ◦ Cms (∇E,sLv).

That these definitions make sense follows along the same lines as the proof of Lemma 5.33.
■

We can put together the previous four lemmata into the following decomposition result,
which is to be regarded as the main result of this section.
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5.35 Lemma: (Decomposition of jets of vertical evaluations of endomorphisms)
Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle, with the data prescribed in
Section 4.1 to define the Riemannian metric GE on E. Then there exist Cr-vector bundle
mappings

Am∇E ∈ VBr(C∗mE; S≤m(π∗ET
∗M)⊗ VE), Bm

∇E ∈ VBr(C∗mE; S≤m(T∗E)⊗ VE)

defined by

Am∇E(jm(L
e)(e)) = Sym≤m⊗ idVE(L

e(e), (∇πEL)e(e), . . . , (∇M,πE,mL)e(e)),

Bm
∇E(jm(L

e)(e)) = Sym≤m⊗ idVE(L
e(e),∇ELe(e), . . . ,∇E,mLe(e)).

Moreover, Am∇E and Bm
∇E are injective, and

Bm
∇E ◦ (Am

∇E)
−1 ◦ (Sym≤m ⊗ idVE)(L

e(e), (∇πEL)e(e), . . . , (∇M,πE,mL)e(e))

=

(
Le(e),

1∑
s=0

Â1
s((Syms ⊗ idVE) ◦ (∇M,πE,sL)e(e)), . . . ,

m∑
s=0

Âm
s ((Syms ⊗ idVE) ◦ (∇M,πE,sL)e(e))

)

+

(
0, Lv(e),

1∑
s=0

Ĉ2
s((Syms ⊗ idT1

1(VE)
) ◦ (∇M,πE,sL)v(e)), . . . ,

m−1∑
s=0

Ĉm
s ((Syms ⊗ idT1

1(VE)
) ◦ (∇M,πE,sL)v(e))

)

and

Am
∇E ◦ (Bm

∇E)
−1 ◦ (Sym≤m ⊗ idVE)(L

e(e),∇ELe(e), . . . ,∇E,mLe(e))

=

(
Le(e),

1∑
s=0

B̂1
s((Syms ⊗ idVE) ◦ ∇E,sLe(e)), . . . ,

m∑
s=0

B̂m
s ((Syms ⊗ idVE) ◦ ∇E,sLe(e))

)

+

(
0, Lv(e),

1∑
s=0

D̂2
s((Syms ⊗ idT1

1(VE)
) ◦ ∇E,sLv(e)), . . . ,

m−1∑
s=0

D̂m
s ((Syms ⊗ idT1

1(VE)
) ◦ ∇E,sLv(e))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, and Ĉms and D̂m

s , s ∈
{0, 1, . . . ,m− 1}, are as in Lemmata 5.33 and 5.34.

5.8. Isomorphisms for pull-backs of functions. Next we generalise the presentation of
Section 5.1 from the pull-back of a vector bundle projection to the pull-back by a general
mapping. The development here is a little different from the preceding sections, so we first
have a little bit of setting up to do. For Cr-manifolds M and N, and for Φ ∈ Cr(M;N), we
consider the mapping

Cr(N) ∋ f 7→ Φ∗f ∈ Cr(M).
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We wish to compare the decomposition of jets of f with those of Φ∗f , and to do so we
consider the subbundle T∗m

Φ M of T∗mM defined by

T∗m
Φ,xM = {jm(Φ∗f)(x) | f ∈ Cm(N)}.

Following Lemma 2.1, we shall give a formula for iterated covariant differentials of pull-
backs of functions on N. To do this, we let ∇M and ∇N be affine connections on M and
N, respectively. We note that we have the vector bundle connection Φ∗∇N in the vector
bundle Φ∗TN over M. Explicitly,

(Φ∗∇N
XΦ

∗Y )(x) = (x,∇N
TxΦ(X(x))Y ).

Following our usual mild notational abuse, we shall also denote by Φ∗∇N the connection in
the dual bundle (Φ∗TN)∗ ≃ Φ∗T∗N. We have a natural mapping

Φ̂ : TM → Φ∗TN

vx 7→ (x, TxΦ(vx)).

This mapping induces a mappings on sections which we denote by the same symbol; thus
we have the mapping

Φ̂ : Γ∞(TM) → Γ∞(Φ∗TN).

The following lemma gives an important tensor for our analysis.

5.36 Lemma: (Tensor for pull-back connection) Let r ∈ {∞, ω}. Let M and N be
Cr-manifolds and let ∇M and ∇N be Cr-affine connections on M and N, respectively. Let
Φ ∈ Cr(M;N). Then there exists AΦ ∈ Γr(T2(T∗M)⊗ Φ∗TN) such that, for x ∈ M,

Φ̂(∇M
XY )(x)− Φ∗∇N

XΦ̂(Y )(x) = AΦ(X(x), Y (x))

for X,Y ∈ Γ∞(TM).

Proof: Let KM : TTM → TM and KN : TTN → TN be the connectors for ∇M and ∇N so
that

∇M
XY = KM ◦ TY ◦X, X, Y ∈ Γ∞(TM),

and
∇N
UV = KN ◦ TV ◦ U, U, V ∈ Γ∞(TN).

We, moreover, have

Φ̂(∇M
XY ) = TΦ ◦KM ◦ TY ◦X, X, Y ∈ Γ∞(TM),

and
Φ∗∇N

XΦ̂(Y ) = KN ◦ T (TΦ ◦ Y ) ◦X, X, Y ∈ Γ∞(TM)

[Michor 2008, §10.12]. In preparation to use these formulae, we have the following results.
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1 Sublemma: If πE : E → M is a smooth vector bundle, if ξ ∈ Γ∞(E), and if f ∈ C∞(M),
then

Tx(fξ)(vx) = f(x)Txξ(vx) + ⟨df(x); vx⟩ξv(x).

Proof: Let ∇πE be a linear connection in the vector bundle E which gives the decomposition
TE = HE⊕ VE. Let hor and ver be the horizontal and vertical projections. Let vx ∈ TxM
and let γ : I → M be a smooth curve for which γ′(0) = vx. Denote Ξ(t) = f ◦ γ(t)ξ ◦ γ(t)
the corresponding curve in E. Then

hor(Ξ′(t)) = hlft(f ◦ γ(t)ξ ◦ γ(t), γ′(t)), ver(Ξ′(t)) = vlft(f ◦ γ(t)ξ ◦ γ(t),∇πE
γ′(t)Ξ(t)).

We now have

∇πE
γ′(t)Ξ(t) = f ◦ γ(t)∇πE

γ′(t)ξ ◦ γ(t) + ⟨df ◦ γ(t); γ′(t)⟩ξ ◦ γ(t).

Thus

Tx(fξ)(vx) =
d

dt

∣∣∣∣
t=0

f ◦ γ(t))ξ ◦ γ(t)

= f(x) hlft(f(x)ξ(x), vx) + vlft(f(x)ξ(x), f(x)∇πE
vxξ + ⟨df(x); vx⟩ξ(x))

= f(x)Ξ′(0) + ⟨df(x); vx⟩ξ(x) = f(x)Txξ(vx) + ⟨df(x); vx⟩ξ(x)),

as claimed. ▼

2 Sublemma: If M and N are smooth manifolds, if Φ ∈ C∞(M;N), and if X ∈ Γ∞(TM),
then

TTΦ ◦Xv(vx) = vlft(TxΦ(vx), TxΦ(X(x))).

Proof: We have

TTΦ ◦Xv(vx) =
d

dt

∣∣∣∣
t=0

TxΦ(vx + tX(x))

=
d

dt

∣∣∣∣
t=0

(TxΦ(vx) + tTxΦ(X(x)))

= vlft(TxΦ(vx), TxΦ(X(x))),

as claimed. ▼

We now directly compute, using Sublemma 1,

Φ̂(∇M
XfY )(x) = TΦ ◦KM ◦ T (fY ) ◦X(x)

= f(x)TΦ ◦KM ◦ TY ◦X(x) + ⟨df(x);X(x)⟩TΦ ◦KM ◦ Y v ◦X(x)

= f(x)Φ̂(∇M
XY )(x) + ⟨df(x);X(x)⟩TΦ ◦X(x),

noting that KM is a left-inverse for vertical lift. We also directly compute, using both of
the sublemmata above,

Φ∗∇N
X f̂Y (x) = KN ◦ TTΦ ◦ T (fY ) ◦X(x)

= f(x)KN ◦ T (TΦ ◦ Y ) ◦X(x) + ⟨df(x);X(x)⟩KN ◦ TTΦ ◦ Y v ◦X(x)

= f(x)Φ∗∇N
X Ŷ (x) + ⟨df(x);X(x)⟩KN(vlft(TxΦ(X(x)), TxΦ(X(x))))

= f(x)Φ∗∇N
X Ŷ (x) + ⟨df(x);X(x)⟩TΦ ◦ Y ◦X(x),
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again noting that KN is the left-inverse for the vertical lift. Combining the preceding two
computations gives the tensoriality of

(X,Y ) 7→ Φ̂(∇M
XY )(x)− Φ∗∇N

XΦ̂(Y )(x),

and so gives AΦ ∈ Γr(T2(TM)⊗ Φ∗TN) satisfying the assertion of the lemma. ■

Note that, if A ∈ Γ∞(Tk(T∗N)), then Φ∗A denotes the pull-back of A to Γ∞(Tk(T∗M))
and also the section of the tensor bundle Tk(Φ∗T∗N). Let x ∈ TxM, let v1, . . . , vk ∈ TxM,
and denote uj = TxΦ(vj), j ∈ {1, . . . , k}. Note that

Φ∗A((x, u1), . . . , (x, uk)) = A(u1, . . . , uk) = A(TxΦ(v1), . . . , TxΦ(vk))

= Φ∗A(v1, . . . , vk),
(5.9)

where we are using the two interpretations of the symbol Φ∗A.
With the above as background, we can now understand the iterated covariant derivatives

∇M,mΦ∗f = ∇M · · · ∇M︸ ︷︷ ︸
m times

Φ∗f, m ∈ Z>0,

and
∇N,mf = ∇N · · · ∇N︸ ︷︷ ︸

m times

f, m ∈ Z>0,

for f ∈ C∞(N). The following lemma gives the first part of this development, playing the
rôle of Lemma 4.5 in this case.

5.37 Lemma: (Differentiation of pull-backs of covariant tensors) Let r ∈ {∞, ω}.
Let M and N be Cr-manifolds with Cr-affine connections ∇M and ∇N, respectively. Define
BΦ = push1,2AΦ with AΦ as in Lemma 5.36. Then, for k ∈ Z>0 and A ∈ Γr(Tk(T∗N)),

∇MΦ∗A = Φ∗∇NA+DBΦ
(Φ∗A).

Proof: Let x ∈ M. Let X1, . . . , Xk ∈ Γ∞(TM). For Xk+1 ∈ Γ∞(TM), we have

LXk+1
(Φ∗A(X1, . . . , Xk))

= (∇M
Xk+1

Φ∗A)(X1, . . . , Xk) +

k∑
j=1

Φ∗A(X1, . . . ,∇M
Xk+1

Xj , . . . , Xk)

and

LXk+1
(Φ∗A(Φ̂(X1), . . . , Φ̂(Xk))) = (Φ∗∇N

Xk+1
Φ∗A)(Φ̂(X1), . . . , Φ̂(Xk))

+
k∑
j=1

Φ∗A(Φ̂(X1), . . . ,Φ
∗∇N

Xk+1
Φ̂(Xj), . . . , Φ̂(Xk)),

using the two interpretations of Φ∗A. By (5.9) we have, in the above expressions,

Φ∗A(X1, . . . , Xk) = Φ∗A(Φ̂(X1), . . . , Φ̂(Xk)).
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By (5.9) again, we have

Φ∗A(X1, . . . ,∇M
Xk+1

Xj , . . . , Xk) = Φ∗A(Φ̂(X1), . . . , Φ̂(∇M
Xk+1

Xj), . . . , Φ̂(Xk)).

Also note that

(Φ∗∇N
Xk+1

Φ∗A)(Φ̂(X1), . . . , Φ̂(Xk))(x) = (Φ∗∇N
Xk+1

Φ∗A)(TxΦ(X1(x)), . . . , TxΦ(Xk(x)))

= ∇N
TxΦ(Xk+1(x))

A(TxΦ(X1(x)), . . . , TxΦ(Xk+1(x)))

= ∇NA(TxΦ(X1(x)), . . . , TxΦ(Xk+1(x)))

= Φ∗∇NA(X1, . . . , Xk+1)(x).

Combining the above gives

∇MΦ∗A(X1, . . . , Xk+1)

= Φ∗∇NA(X1, . . . , Xk+1)

+
k∑
j=1

Φ∗A(Φ̂(X1), . . . ,Φ
∗∇N

Xk+1
Φ̂(Xj)− Φ̂(∇M

Xk+1
Xj), . . . , Φ̂(Xk))

= Φ∗∇NA(X1, . . . , Xk+1)−
k∑
j=1

Φ∗A(Φ̂(X1), . . . , AΦ(Xk+1, Xj), . . . , Φ̂(Xk)).

Thus

∇MΦ∗A = Φ∗∇NA−
k∑
j=1

Insj(Φ
∗A,BΦ),

giving the result by Lemma 3.11. ■

We now have the following lemma, the first of two regarding iterated covariant differ-
entials.

5.38 Lemma: (Iterated covariant differentials of pull-backs of functions I) Let
r ∈ {∞, ω} and let M and N be Cr-manifolds with Cr-affine connections ∇M and ∇N,
respectively. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(Ams , idM) ∈ VBr(Ts(Φ∗T∗N); Tm(T∗M)), s ∈ {0, 1, . . . ,m},

such that

∇M,mΦ∗f =
m∑
s=0

Ams (Φ
∗∇N,sf)

for all f ∈ Cm(N). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m satisfy the

recursion relations prescribed by

A0
0(β0) = β0, A

1
1(β1) = β1, A

1
0 = 0,

and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇MAm

s )(βs) +Am
s−1 ⊗ idT∗M(βs)−

s∑
j=1

Am
s ⊗ idT∗M(Insj(βs, BΦ)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇MAm

0 )(β0),

where βs ∈ Ts(Φ∗T∗N), s ∈ {0, 1, . . . ,m}.
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Proof: The assertion clearly holds for the initial conditions of the recursion, simply because

Φ∗f = Φ∗f, d(Φ∗f) = Φ∗df + 0f.

So suppose that it holds for m ∈ Z>0. Thus

∇M,mΦ∗f =

m∑
s=0

Ams (Φ
∗∇N,sf),

where the vector bundle mappings Aas , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the stated
recursion relations. Then

∇M,m+1Φ∗f =
m∑
s=0

(∇MAms )(Φ
∗∇N,sf) +

m∑
s=0

Ams ⊗ idT∗M(∇MΦ∗∇N,sf)

=

m∑
s=0

(∇MAms )(Φ
∗∇N,sf) +

m∑
s=0

Ams ⊗ idT∗M(Φ∗∇N,s+1f)

−
m∑
s=0

s∑
j=1

Ams ⊗ idT∗M Insj(Φ
∗∇N,sf,BΦ)

= Φ∗∇N,m+1f +

m∑
s=1

(∇MAms )(Φ
∗∇N,sf) +Ams−1 ⊗ idT∗M(Φ∗∇N,sf)

−
s∑
j=1

Ams ⊗ idT∗M(Insj(Φ
∗∇N,sf,BΦ))

+ (∇MAm0 )(Φ∗f)

by Lemma 5.37. From this the lemma follows. ■

We shall also need to “invert” the relationship of the preceding lemma.

5.39 Lemma: (Iterated covariant differentials of pull-backs of functions II) Let
r ∈ {∞, ω} and let M and N be Cr-manifolds with Cr-affine connections ∇M and ∇N,
respectively. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(Bm
s , idM) ∈ VBr(Ts(T∗M); Tm(Φ∗T∗N)), s ∈ {0, 1, . . . ,m},

such that

Φ∗∇N,mf =
m∑
s=0

Bm
s (∇M,sΦ∗f)

for all f ∈ Cm(N). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by

B0
0(α0) = α0, B

1
1(α1) = α1, B

1
0 = 0,

and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇MBm

s )(αs) +Bm
s−1 ⊗ idT∗M(αs) +

m∑
j=1

Insj(B
m
s (αs), BΦ), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇MBm

0 )(α0) +

m∑
j=1

Insj(B
m
0 (α0), BΦ),
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where αs ∈ Ts(T∗M), s ∈ {0, 1, . . . ,m}.

Proof: The assertion clearly holds for the initial conditions for the recursion because

Φ∗f = Φ∗f, Φ∗(df) = d(Φ∗f) + 0f.

So suppose it true for m ∈ Z>0. Thus

Φ∗∇N,mf =
m∑
s=0

Bm
s (∇M,sΦ∗f), (5.10)

where the vector bundle mappings Ba
s , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the

recursion relations from the statement of the lemma. Then, by Lemma 5.37, we can work
on the left-hand side of (5.10) to give

∇MΦ∗∇N,mf = Φ∗∇N,m+1f −
m∑
j=1

Insj(Φ
∗∇N,mf,BΦ)

= Φ∗∇N,m+1f −
m∑
s=0

m∑
j=1

Insj(B
m
s (∇M,sΦ∗f), BΦ).

Working on the right-hand side of (5.1) gives

∇MΦ∗∇N,mf =
m∑
s=0

∇MBm
s (∇M,sΦ∗f) +

m∑
s=0

Bm
s ⊗ idT∗M(∇M,s+1Φ∗f).

Combining the preceding two equations gives

Φ∗∇N,m+1f =

m∑
s=0

∇MBm
s (∇M,sΦ∗f) +

m∑
s=0

Bm
s ⊗ idT∗M(∇M,s+1Φ∗f)

+
m∑
s=0

m∑
j=1

Insj(B
m
s (∇M,sΦ∗f), BΦ)

= ∇M,m+1Φ∗f +
m∑
s=1

(
∇MBm

s (∇M,sΦ∗f) +Bm
s−1 ⊗ idT∗M(∇M,sΦ∗f)

+
m∑
j=1

Insj(B
m
s (∇M,sΦ∗f), BΦ)

+∇MBm
0 (Φ∗f) +

m∑
j=1

Insj(B
m
0 (Φ∗f), BΦ),

and the lemma follows from this. ■

With this data, we have the following result.

5.40 Lemma: (Iterated symmetrised covariant differentials of pull-backs of func-
tions I) Let r ∈ {∞, ω} and let M and N be Cr-manifolds with Cr-affine connections ∇M

and ∇N, respectively. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(Âms , idM) ∈ VBr(Ss(Φ∗T∗N); Sm(T∗M)), s ∈ {0, 1, . . . ,m},
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such that

Symm ◦∇M,mΦ∗f =

m∑
s=0

Âms (Syms ◦Φ
∗∇N,sf)

for all f ∈ Cm(N).

Proof: This follows from Lemma 5.38 in the same way as Lemma 5.3 follows from
Lemma 5.1. ■

Next we consider the “inverse” of the preceding lemma.

5.41 Lemma: (Iterated symmetrised covariant differentials of horizontal lifts of
functions II) Let r ∈ {∞, ω} and let M and N be Cr-manifolds with Cr-affine connections
∇M and ∇N, respectively. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(B̂m
s , idM) ∈ VBr(Ss(T∗M); Sm(Φ∗T∗N)), s ∈ {0, 1, . . . ,m},

such that

Symm ◦Φ∗∇N,mf =
m∑
s=0

B̂m
s (Syms ◦∇M,sΦ∗f)

for all f ∈ Cm(N).

Proof: This follows from Lemma 5.39 in the same way as Lemma 5.4 follows from
Lemma 5.2. ■

The following lemma provides two decompositions of T∗m
Φ M, one “in the domain” and

one “in the codomain,” and the relationship between them. The assertion simply results
from an examination of the preceding four lemmata.

5.42 Lemma: (Decomposition of jets of pull-backs of functions) Let r ∈ {∞, ω} and
let M and N be Cr-manifolds with Cr-affine connections ∇M and ∇N, respectively. Then
there exist Cr-vector bundle mappings

Am∇M,∇N ∈ VBr(T∗m
Φ M; S≤m(Φ∗T∗N)), Bm

∇M,∇N ∈ VBr(T∗m
Φ M; S≤m(T∗M)),

defined by

Am∇M,∇N(jm(Φ
∗f)(x)) = Sym≤m(Φ

∗f(x),Φ∗∇Nf(x), . . . ,Φ∗∇N,mf(x)),

Bm
∇M,∇N(jm(Φ

∗f)(x)) = Sym≤m(Φ
∗f(x),∇MΦ∗f(x), . . . ,∇M,mΦ∗f(x)).

Moreover, Am∇M,∇N is an isomorphism, Bm
∇M,∇N is injective, and

Bm
∇M,∇N ◦ (Am∇M,∇N)

−1 ◦ (Sym≤m(Φ
∗f(e),Φ∗∇Nf(x), . . . ,Φ∗∇N,mf(x))

=

(
A0

0(Φ
∗f(x)),

1∑
s=0

Â1
s(Syms ◦Φ

∗∇N,sf(x)), . . . ,

m∑
s=0

Âms (Syms ◦Φ
∗∇N,sf(x))

)
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and

Am∇M,∇N ◦ (Bm
∇M,∇N)

−1 ◦ Sym≤m(Φ
∗f(x),∇MΦ∗f(x), . . . ,∇M,mΦ∗f(x))

=

(
B0

0(Φ
∗f(x)),

1∑
s=0

B̂1
s(Syms ◦∇M,sΦ∗f(x)), . . . ,

m∑
s=0

B̂m
s (Syms ◦∇M,sΦ∗f(x))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 5.40

and 5.41.

6. Fibre norms for some useful jet bundles

In Section 5 we saw how to make decompositions for jets of sections of vector bundles
and jets of various lifts to the total space of a vector bundle πE : E → M, using the Levi-
Civita affine connection induced by a natural Riemannian metric on E. In this section we
consider fibre norms for these jet bundles. The fibre norm for the space of jets of sections
of a vector bundle is deduced in a natural way from a Riemannian metric on M and a fibre
metric in πE : E → M. For fibre norms of lifted objects, the story is more complicated. Since
the objects are lifted from M, there are two natural fibre norms in each case, one coming
from the Riemannian metric on E, and the other coming from the Riemannian metric on
M and the fibre metric on the vector bundle.

The setup is the following. We let r ∈ {∞, ω} and let πE : E → M be a Cr-vector
bundle. We consider a Riemannian metric GM on M, a fibre metric GπE on E, the Levi-
Civita connection ∇M on M, and a vector bundle connection ∇πE in E, all being of class Cr.
This gives the Riemannian metric GE of (4.1) and the associated Levi-Civita connection
∇E. This data gives the fibre metrics for all sorts of tensors defined on the total space E.
We, however, are interested only in the lifted tensors such as are described in Section 3.

The reader will definitely observe a certain repetitiveness to our constructions in this
section, rather similar to that seen in Section 5. However, the ideas here are important and
the notation is confusing, so we do not skip anything.

We treat the smooth and real analytic cases simultaneously in this section. In the
smooth case, the formulae we give are useful for applying the methods of the paper to the
setting of the paper in smooth category.

6.1. Fibre norms for horizontal lifts of functions. We let r ∈ {∞, ω} and let πE : E → M
be a Cr-vector bundle. For f ∈ Cm(M), we have π∗Ef ∈ Cm(E). We can, therefore, think
of the m-jet of π∗Ef as being characterised by jmf , as well as by jmπ

∗
Ef , and of comparing

these two characterisations. Thus we have the two fibre norms

∥jmf(x)∥2GM,m
=

m∑
j=0

1

(j!)2
∥∇M,jf(x)∥2GM

and

∥jmπ∗Ef(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jπ∗Ef(e)∥2GE

. (6.1)

These fibre norms can be related by virtue of Lemma 5.5. To do so, we make use of the
following lemma.
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6.1 Lemma: (Fibre norms for horizontal lifts of functions)

∥π∗E∇M,mf(e)∥GE
= ∥∇M,mf(πE(e))∥GM

.

Proof: We have the fibre metric G−1
E on T∗E associated with the Riemannian metric GE.

The subbundles H∗E and V∗E are G−1
E -orthogonal. We note that T ∗

e πE : T
∗
πE(e)

M → H∗
eE is

an isometry. Thus we have the formula

∥π∗EB∥GE
= ∥B∥GM

, B ∈ Γ0(Tm(T∗M)),

and the assertion of the lemma is merely a special case of this formula. ■

We note that the fibre norm (6.1) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE; S≤m(T∗E))

from Lemma 5.5. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE; S≤m(π∗ET
∗M))

from Lemma 5.5, then we have the alternative fibre norm

∥jmπ∗Ef(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥π∗E∇M,jf(e)∥2GE

=
m∑
j=0

1

(j!)2
∥∇M,jf(πE(e))∥2GM

.

The relationship between the fibre norms ∥·∥GE,m
and ∥·∥′GE,m

can be phrased as, “What is

the relationship between the jet of the lift and the lift of the jet?” This is a question we
will phrase below for other sorts of lifts, and will address comprehensively when we prove
the continuity of the various lifting operations in Section 9.3.

6.2. Fibre norms for vertical lifts of sections. We let r ∈ {∞, ω} and let πE : E → M be
a Cr-vector bundle. For ξ ∈ Γm(E), we have ξv ∈ Γm(TE). We can, therefore, think of the
m-jet of ξv as being characterised by jmξ, as well as by jmξ

v, and of comparing these two
characterisations. Thus we have the two fibre norms

∥jmξ(x)∥2GM,πE,m
=

m∑
j=0

1

(j!)2
∥∇M,πE,jξ(x)∥2GM,πE

and

∥jmξv(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jξv(e)∥2GE

. (6.2)

These fibre norms can be related by virtue of Lemma 5.10. To do so, we make use of the
following lemma.
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6.2 Lemma: (Fibre norms for vertical lifts of sections)

∥(∇M,πE,mξ)v(e)∥GE
= ∥∇M,πE,mξ(πE(e))∥GM,πE

.

Proof: The subbundles HE and VE are GE-orthogonal and the subbundles H∗E and V∗E
are G−1

E -orthogonal. We note that the identification VeE ≃ EπE(e) is an isometry and that
T ∗
e πE : T

∗
πE(e)

M → H∗
eE is an isometry. Thus we have the formula

∥Bv∥GE
= ∥B∥GM,πE

, B ∈ Γ0(Tm(T∗M)⊗ E),

and the assertion of the lemma is merely a special case of this formula. ■

We note that the fibre norm (6.2) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE⊗ VE; S≤m(T∗E)⊗ VE)

from Lemma 5.10. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE⊗ VE; S≤m(π∗ET
∗M)⊗ VE)

from Lemma 5.10, then we have the alternative fibre norm

∥jmξv(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥(∇M,πE,jξ)v(e)∥2GE

=

m∑
j=0

1

(j!)2
∥∇M,πE,jξ(πE(e))∥2GM,πE

.

Again, this points out the matter of the relationship between the jet of a lift versus the lift
of the jet, and this matter will be considered in detail in the continuity results of Section 9.3.

6.3. Fibre norms for horizontal lifts of vector fields. We let r ∈ {∞, ω} and let πE : E → M
be a Cr-vector bundle. For X ∈ Γm(TM), we have Xh ∈ Γm(TE). We can, therefore, think
of the m-jet of Xh as being characterised by jmX, as well as by jmX

h, and of comparing
these two characterisations. Thus we have the two fibre norms

∥jmX(x)∥2GM,m
=

m∑
j=0

1

(j!)2
∥∇M,jX(x)∥2GM

and

∥jmXh(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jXh(e)∥2GE

. (6.3)

These fibre norms can be related by virtue of Lemma 5.15. To do so, we make use of the
following lemma.
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6.3 Lemma: (Fibre norms for horizontal lifts of vector fields)

∥(∇M,mX)h(e)∥GE
= ∥∇M,mX(πE(e))∥GM

.

Proof: The subbundles HE and VE are GE-orthogonal. We note that the identification
HeE ≃ TπE(e)M is an isometry and that T ∗

e πE : T
∗
πE(e)

M → H∗
eE is an isometry. Thus we have

the formula
∥Bh∥GE

= ∥B∥GM
, B ∈ Γ0(Tm(T∗M)⊗ TM),

and the assertion of the lemma is merely a special case of this formula. ■

We note that the fibre norm (6.3) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE⊗ HE; S≤m(T∗E)⊗ HE)

from Lemma 5.15. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE⊗ HE; S≤m(π∗ET
∗M)⊗ HE)

from Lemma 5.15, then we have the alternative fibre norm

∥jmXh(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥(∇M,jX)h(e)∥2GE

=
m∑
j=0

1

(j!)2
∥∇M,jX(πE(e))∥2GM

.

Again, this points out the matter of the relationship between the jet of a lift versus the lift
of the jet, and this matter will be considered in detail in the continuity results of Section 9.3.

6.4. Fibre norms for vertical lifts of dual sections. We let r ∈ {∞, ω} and let πE : E → M
be a Cr-vector bundle. For λ ∈ Γm(E∗), we have λv ∈ Γm(T∗E). We can, therefore, think of
the m-jet of λv as being characterised by jmλ, as well as by jmλ

v, and of comparing these
two characterisations. Thus we have fibre norms

∥jmλ(x)∥2GM,πE,m
=

m∑
j=0

1

(j!)2
∥∇M,πE,jλ(x)∥2GM,πE

and

∥jmλv(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jλv(e)∥2GE

. (6.4)

These fibre norms can be related by virtue of Lemma 5.20. To do so, we make use of the
following lemma.

6.4 Lemma: (Fibre norms for vertical lifts of dual sections)

∥(∇M,πE,mλ)v(e)∥GE
= ∥∇M,πE,mλ(πE(e))∥GM,πE

.

Proof: The subbundles H∗E and V∗E are G−1
E -orthogonal. We note that the identification

V∗
eE ≃ E∗

πE(e)
is an isometry and that T ∗

e πE : T
∗
πE(e)

M → H∗
eE is an isometry. Thus we have

the formula
∥Bv∥GE

= ∥B∥GM,πE
, B ∈ Γ0(Tm(T∗M)⊗ E∗),

and the assertion of the lemma is merely a special case of this formula. ■
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We note that the fibre norm (6.4) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE⊗ V∗E; S≤m(T∗E)⊗ V∗E)

from Lemma 5.20. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE⊗ V∗E; S≤m(π∗ET
∗M)⊗ V∗E)

from Lemma 5.20, then we have the alternative fibre norm

∥jmλv(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥(∇M,πE,jλ)v(e)∥2GE

=
m∑
j=0

1

(j!)2
∥∇M,πE,jλ(πE(e))∥2GM,πE

.

Again, this points out the matter of the relationship between the jet of a lift versus the lift
of the jet, and this matter will be considered in detail in the continuity results of Section 9.3.

6.5. Fibre norms for vertical lifts of endomorphisms. We let r ∈ {∞, ω} and let πE : E →
M be a Cr-vector bundle. For L ∈ Γm(T1

1(E)), we have L
v ∈ Γm(T1

1(E)). We can, therefore,
think of them-jet of Lv as being characterised by jmL, as well as by jmL

v, and of comparing
these two characterisations. Thus we have the two fibre norms

∥jmL(x)∥2GM,πE,m
=

m∑
j=0

1

(j!)2
∥∇M,πE,jL(x)∥2GM,πE

and

∥jmLv(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jLv(e)∥2GE

. (6.5)

These fibre norms can be related by virtue of Lemma 5.25. To do so, we make use of the
following lemma.

6.5 Lemma: (Fibre norms for vertical lifts of endomorphisms)

∥(∇M,πE,mL)v(e)∥GE
= ∥∇M,πE,mL(πE(e))∥GM,πE

.

Proof: The subbundles H∗E and V∗E are G−1
E -orthogonal. We note that the identifications

VeE ≃ EπE(e) and V∗
eE ≃ E∗

πE(e)
are isometries, and that T ∗

e πE : T
∗
πE(e)

M → H∗
eE is an

isometry. Thus we have the formula

∥Bv∥GE
= ∥B∥GM,πE

, B ∈ Γ0(Tm(T∗M)⊗ T1
1(E)),

and the assertion of the lemma is merely a special case of this formula. ■

We note that the fibre norm (6.5) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE⊗ T1

1(VE); S
≤m(T∗E)⊗ T1

1(VE))

from Lemma 5.25. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE⊗ T1
1(VE); S

≤m(π∗ET
∗M)⊗ T1

1(VE))

from Lemma 5.25, then we have the alternative fibre norm

∥jmLv(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥(∇M,πE,jL)v(e)∥2GE

=
m∑
j=0

1

(j!)2
∥∇M,πE,jL(πE(e))∥2GM,πE

.

Again, this points out the matter of the relationship between the jet of a lift versus the lift
of the jet, and this matter will be considered in detail in the continuity results of Section 9.3.
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6.6. Fibre norms for vertical evaluations of dual sections. We let r ∈ {∞, ω} and let
πE : E → M be a Cr-vector bundle. For λ ∈ Γm(E∗), we have λe ∈ Cm(E). We can, therefore,
think of the m-jet of λe as being characterised by jmλ, as well as by jmλ

e, and of comparing
these two characterisations.

Thus we have the two fibre norms

∥jmλ(x)∥2GM,πE,m
=

m∑
j=0

1

(j!)2
∥∇M,πE,jλ(x)∥2GM,πE

and

∥jmλe(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jλe(e)∥2GE

. (6.6)

These fibre norms can be related by virtue of Lemma 5.30. To do so, we make use of the
following lemma.

6.6 Lemma: (Fibre norms for vertical evaluations of dual sections)

∥(∇M,πE,mλ)e(e)∥GE
= ∥∇M,πE,mλ(πE(e))(e)∥GM,πE

.

Proof: The subbundles H∗E and V∗E are G−1
E -orthogonal. We note that the identification

V∗
eE ≃ E∗

πE(e)
is an isometry, and that T ∗

e πE : T
∗
πE(e)

M → H∗
eE is an isometry. Thus we have

the formula

∥Be(e)∥GE
= ∥B(πE(e))(e)∥GM,πE

, B ∈ Γ0(Tm(T∗M)⊗ E∗),

and the assertion of the lemma is merely a special case of this formula. ■

We note that the fibre norm (6.6) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE; S≤m(T∗E))

from Lemma 5.30. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE; S≤m(π∗ET
∗M))

from Lemma 5.30, then we have the alternative fibre norm

∥jmλe(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥(∇M,πE,jλ)e(e)∥2GE

=

m∑
j=0

1

(j!)2
∥∇M,πE,jλ(πE(e))(e)∥2GM,πE

.

Again, this points out the matter of the relationship between the jet of a lift versus the lift
of the jet, and this matter will be considered in detail in the continuity results of Section 9.3.

6.7. Fibre norms for vertical evaluations of endomorphisms. We let r ∈ {∞, ω} and let
πE : E → M be a Cr-vector bundle. For L ∈ Γm(T1

1(E)), we have Le ∈ Γm(TE). We can,
therefore, think of the m-jet of Le as being characterised by jmL, as well as by jmL

e, and
of comparing these two characterisations. Thus we have the two fibre norms

∥jmL(x)∥2GM,πE,m
=

m∑
j=0

1

(j!)2
∥∇M,πE,jL(x)∥2GM,πE



Geometric analysis on real analytic manifolds 93

and

∥jmLe(e)∥2GE,m
=

m∑
j=0

1

(j!)2
∥∇E,jLe(e)∥2GE

. (6.7)

These fibre norms can be related by virtue of Lemma 5.35. To do so, we make use of the
following lemma.

6.7 Lemma: (Fibre norms for vertical evaluations of endomorphisms)

∥(∇M,πE,mL)e(e)∥GE
= ∥∇M,πE,mL(πE(e))(e)∥GM,πE

.

Proof: The subbundles H∗E and V∗E are G−1
E -orthogonal. We note that the identification

V∗
eE ≃ E∗

πE(e)
is an isometry and that T ∗

e πE : T
∗
πE(e)

M → H∗
eE is an isometry. Thus we have

the formula

∥Be(e)∥GE
= ∥B(πE(e))(e)∥GM,πE

, B ∈ Γ0(Tm(T∗M)⊗ T1
1(E)),

and the assertion of the lemma is merely a special case of this formula. ■

We note that the fibre norm (6.7) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(P∗mE⊗ VE; S≤m(T∗E)⊗ VE)

from Lemma 5.35. If instead we use the vector bundle mapping

Am∇E ∈ VBr(P∗mE⊗ VE; S≤m(π∗ET
∗M)⊗ VE)

from Lemma 5.35, then we have the alternative fibre norm

∥jmLe(e)∥′2GE,m
=

m∑
j=0

1

(j!)2
∥(∇M,πE,jL)e(e)∥2GE

=
m∑
j=0

1

(j!)2
∥∇M,πE,jL(e)∥2GM,πE

.

Again, this points out the matter of the relationship between the jet of a lift versus the lift
of the jet, and this matter will be considered in detail in the continuity results of Section 9.3.

6.8. Fibre norms for pull-backs of functions. We let r ∈ {∞, ω} and let M and N be
Cr-manifolds, and let Φ ∈ Cr(M;N). For f ∈ Cm(N), we have Φ∗f ∈ Cm(M). We can,
therefore, think of the m-jet of Φ∗f as being characterised by jmf , as well as by jmΦ

∗f ,
and of comparing these two characterisations. Thus we have the two fibre norms

∥jmf(x)∥2GN,m
=

m∑
j=0

1

(j!)2
∥∇N,jf(x)∥2GN

and

∥jmΦ∗f(e)∥2GM,m
=

m∑
j=0

1

(j!)2
∥∇M,jΦ∗f(e)∥2GM

. (6.8)

These fibre norms can be related by virtue of Lemma 5.42. To make use of this relationship,
we shall also need to relate the norms of the terms in these expressions. In the preceding
sections, this was easy to do since the Riemannian metric on E was related in a specific way
to the Riemannian metric on M and the fibre metric in E. Here, this is not so simple since,
if we choose a Riemannian metric GM on M and a Riemannian metric GN on N, these will
be have no useful relationship. So, rather than getting an equality between certain norms,
the best we can achieve (and all that we need) is a useful bound, and this is the content of
the next lemma.
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6.8 Lemma: (Fibre norms for pull-backs of functions) For a compact set K ⊆ M:

(i) there exists C ∈ R>0 such that

∥Φ∗∇N,mf(x)∥GM
≤ Cm∥∇N,mf(Φ(x))∥GN

, x ∈ K, m ∈ Z≥0;

(ii) if Φ is a submersion or an injective immersion, then C from part (i) can be chosen
so that it holds that

∥∇N,mf(Φ(x))∥GN
≤ Cm∥Φ∗∇N,mf(x)∥GM

, x ∈ K, m ∈ Z≥0.

Proof: The essential part of the proof is the following linear algebraic sublemma.

1 Sublemma: Let (U,GU) and (V,GV) be finite-dimensional R-inner product spaces and
let Φ ∈ HomR(U;V). Then there exists C ∈ R>0 such that

∥Φ∗A∥GU
≤ Ck∥A∥GV

for every A ∈ Tk(V∗), k ∈ Z≥0. If, additionally, Φ is a surjective submersion or an
injective immersion, then C can be chosen so that, additionally, it holds that

∥A∥GV
≤ Ck∥Φ∗A∥GU

for every A ∈ Tk(V∗), k ∈ Z≥0.

Proof: Let (f1, . . . , fm) and (e1, . . . , en) be orthonormal bases for U and V with dual bases
(f1, . . . , fm) and (e1, . . . , en). Write

A =
n∑

j1,...,jk=1

Aj1···jke
j1 ⊗ · · · ⊗ ejk

and

Φ =

n∑
j=1

m∑
a=1

Φjaej ⊗ fa.

Then

Φ∗A =
n∑

j1,...,jk=1

m∑
a1,...,ak=1

Φj1a1 · · ·Φ
jk
ak
Aj1···jkf

a1 ⊗ · · · ⊗ fak .

Denote
∥Φ∥∞ = max

{∣∣Φja∣∣ ∣∣ a ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
}
.

We have

∥Φ∗A∥2GU
=

m∑
a1,...,ak=1

 n∑
j1,...,jk=1

Φj1a1 · · ·Φ
jk
ak
Aj1···jk

2

≤
m∑

a1,...,ak=1

 n∑
j1,...,jk=1

∣∣Φj1a1 · · ·ΦjkakAj1···jk ∣∣
2

≤
m∑

a1,...,ak=1

 n∑
j1,...,jk=1

∣∣Φj1a1 · · ·Φjkak ∣∣2
 n∑

j1,...,jk=1

|Aj1···jk |
2


≤ (nm∥Φ∥2∞)k∥A∥2GV

.
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The first part of the result follows by taking C =
√
nm∥Φ∥∞.

If Φ is surjective, let Ψ ∈ HomR(V;U) be a right-inverse for Φ. Then, by the first part
of the result, there exists C ∈ R>0 such that

∥A∥GV
= ∥(Φ ◦ Ψ)∗A∥GV

≤ ∥Ψ∗Φ∗A∥GV
≤ Ck∥Φ∗A∥GU

for every A ∈ Tk(V∗), k ∈ Z≥0.
If Φ is injective, we choose the orthonormal basis (e1, . . . , en) so that (e1, . . . , em) is a

basis for image(Φ). In this case we have

Φ =

m∑
a,b=1

Φbaeb ⊗ fa,

where the m×m matrix with components Φba, a, b ∈ {1, . . . ,m}, is invertible, and

Φ∗A =
m∑

b1,...,bk=1

m∑
a1,...,ak=1

Φb1a1 · · ·Φ
bk
ak
Ab1···bkf

a1 ⊗ · · · ⊗ fak .

Letting Ψb
a, a, b ∈ {1, . . . ,m}, be defined by

Ψc
aΦ

b
c =

{
1, a = b,

0, a ̸= b,

we have

A =
m∑

b1,...,bk=1

m∑
a1,...,ak=1

Ψb1
a1 · · ·Ψ

bk
ak
(Φ∗A)b1···bke

a1 ⊗ · · · ⊗ eak ,

and the conclusion in this case follows just as in the first part of the proof since, locally, a
surjective submersion and an injective immersion can be made linear in an appropriate set
of coordinates [Abraham, Marsden, and Ratiu 1988, Theorems 3.5.2 and 3.5.7]. ▼

To prove the first part of the lemma, let x ∈ K and take Cx ∈ R>0 as in the sublemma
such that

∥Φ∗∇N,mf(x)∥GM
≤ Cmx ∥∇N,mf(Φ(x))∥GN

, m ∈ Z≥0.

By continuity, and noting the exact form of the constant C from the sublemma (i.e., de-
pending on the size of the derivative of TxΦ), there exists a neighbourhood Ux of x such
that

∥Φ∗∇N,mf(y)∥GM
≤ (2Cx)

m∥∇N,mf(Φ(y))∥GN
, y ∈ Nx, m ∈ Z>0.

Then take x1, . . . , xk ∈ K such that K ⊆ ∪kj=1Uxj . The first part of the lemma then follows
by taking

C = max{2Cx1 , . . . , 2Cxk}.

The second part of the lemma follows, mutatis mutandis, from the second part of the
sublemma. ■
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We note that the fibre norm (6.8) makes use of the vector bundle mapping

Bm
∇E ∈ VBr(T∗m

Φ M; S≤m(T∗M))

from Lemma 5.42. If instead we use the vector bundle mapping

Am∇E ∈ VBr(T∗m
Φ M; S≤m(Φ∗T∗N))

from Lemma 5.42, then we have the alternative fibre norm

∥jmΦ∗f(e)∥′2GM,m
=

m∑
j=0

1

(j!)2
∥Φ∗∇N,jf(e)∥2GM

.

The relationship between the fibre norms ∥·∥GM,m
and ∥·∥′GM,m

can be phrased as, “What

is the relationship between the jet of the pull-back and the pull-back of the jet?” This is a
question we will phrase below for other sorts of lifts, and will address comprehensively in
the proof of continuity of pull-back in Theorem 9.3.

7. Estimates related to jet bundle norms

In Section 5 we gave formulae relating derivatives of geometric objects to derivatives
of their lifts, and vice versa. In Section 6 we defined fibre metrics associated with spaces
of lifted objects. In each of the multitude of constructions, there arose certain vector
bundle mappings that satisfied recursion relations. In order to establish some important
comparison results for different characterisations of topologies, we will need some rather
detailed technical estimates concerning the growth of these recursively defined vector bundle
mappings in the real analytic case, and we develop these here. As a part of this, we establish
a number of fairly simple, linear algebraic estimates. It is not the existence of these estimates
that are of interest, but the form they take. As we shall see, for the real analytic topology,
the dimensions of various tensor spaces show up in ways that need to be bookkept.

The results in this section are important, but somewhat elaborate. Moreover, they
apply specifically to the real analytic setting. The algebraic computations and estimates of
Section 7.1, when applied in the smooth setting, do not require the very particular forms
we give here.

7.1. Algebraic estimates. To work with the topologies we present in Section 2.4, we
will have to compute and estimate high-order derivatives of various sorts of tensors. In
this section we collect the fairly elementary formulae we shall need. All norms on tensor
products are those induced by an inner product as in Lemma 2.2. For simplicity, therefore,
we shall often omit any particular symbols attached to “∥·∥” to connote which norm we are
talking about; all vector spaces have a unique norm (given the data) that we shall use.

We start by giving the norm of the identity mapping on tensors.

7.1 Lemma: (The norm of the identity map) If V is a finite-dimensional R-vector
space with inner product G, then ∥idV∥ =

√
dimR(V).
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Proof: Let (e1, . . . , en) be an orthonormal basis for V with dual basis (e1, . . . , en) the dual
basis. Write

idV =

n∑
j=1

n∑
k=1

δkj ek ⊗ ej .

We have

∥A∥2 =
n∑
j=1

n∑
k=1

(δkj )
2 = n,

as claimed. ■

Next we consider the norm of the tensor product of linear maps.

7.2 Lemma: (Norms of tensor products) Let U, V, W, and X be finite-dimensional
R-vector spaces with inner products. Then, for A ∈ HomR(U;V) and B ∈ HomR(W;X),

∥A⊗B∥ = ∥A∥∥B∥.

Proof: Let (e1, . . . , en), (f1, . . . , fm), (g1, . . . , gk), and (h1, . . . , hl) be orthonormal bases for
U, V, W, and X, respectively. Let (e1, . . . , en), (f1, . . . , fm), (g1, . . . , gk), and (h1, . . . , hl)
be the dual bases. Write

A =
n∑
j=1

m∑
a=1

Aajfa ⊗ ej , B =
k∑
i=1

l∑
b=1

Bb
ihb ⊗ gi

so that

A⊗B =
n∑
j=1

k∑
i=1

m∑
a=1

l∑
b=1

AajB
b
i (fa ⊗ hb)⊗ (ej ⊗ gi).

Then

∥A⊗B∥2 =
n∑
j=1

k∑
i=1

m∑
a=1

l∑
b=1

(AajB
b
i )

2

≤

 n∑
j=1

m∑
a=1

(Aaj )
s

( k∑
i=1

l∑
b=1

(Bb
i )

2

)
= ∥A∥2∥B∥2,

as claimed. ■

Our next estimate concerns the relationship between norms of tensors evaluated on
arguments.

7.3 Lemma: (Norm of tensor evaluation) Let U and V be finite-dimensional R-vector
spaces with inner products G and H, respectively. Then

∥L(u)∥ ≤ ∥L∥ ∥u∥

for all linear mappings L ∈ HomR(U;V) and for all u ∈ U.
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Proof: Let (f1, . . . , fm) and (e1, . . . , en) be an orthonormal basis for U and V. For L ∈
HomR(U;V), write

L =
m∑
a=1

n∑
j=1

Ljaej ⊗ fa.

Then we compute, using Cauchy–Schwarz,

∥L(u)∥2 =
n∑
j=1

(
m∑
a=1

Ljau
a

)2

≤
n∑
j=1

(
m∑
a=1

∣∣Ljaua∣∣
)2

≤
n∑
j=1

(
m∑
a=1

∣∣Lja∣∣2
)(

m∑
a=1

|ua|2
)

= ∥L∥2∥u∥2,

giving the lemma. ■

We shall also make use of a sort of “reverse inequality” related to the above.

7.4 Lemma: (Upper bound for norm of linear map) Let U and V be finite-dimensional
R-vector spaces with inner products GU and GV. For L ∈ HomR(U;V),

∥L∥ ≤
√

dimR(U) sup{∥L(u)∥ | ∥u∥ = 1}.

Proof: The result is true with equality and without the constant if one uses the induced
norm for HomR(U;V), rather than the tensor norm as we do here. So the statement of the
lemma is really about relating the induced norm with the tensor norm.

The tensor norm, in the case of linear mappings as we have here, is really the Frobenius
norm, and as such it is computed as the ℓ2-norm of the vector of the set of dimR(U)
eigenvalues of

√
LT ◦ L. On the other hand, the induced norm is the ℓ∞ norm of this

same vector of eigenvalues of
√
LT ◦ L. These interpretations can be found in [Bhatia 1997,

page 7]. For this reason, an application of (1.3) gives the result. ■

Another tensor estimate we shall find useful concerns symmetrisation.

7.5 Lemma: (Norms of symmetrised tensors) Let V be a finite-dimensional R-vector
space and let G be an inner product on V. Then

∥Symk(A)∥ ≤ ∥A∥

for every A ∈ Tk(V∗) and k ∈ Z>0.

Proof: The result follows from the following sublemma.

1 Sublemma: The map Symk : T
k(V∗) → Sk(V∗) is the orthogonal projection.

Proof: Let us simply denote by G the inner product on Tk(V∗), defined as in Lemma 2.2.
It suffices to show that G(A,S) = G(Symk(A), S) for every A ∈ Tk(V∗) and S ∈ Sk(V∗). It
suffices to show that this is true as A runs over a set of generators for Tk(V∗) and S runs
over a set of generators for Sk(V∗).

Thus we let (e1, . . . , en) be an orthonormal basis for V with dual basis (e1, . . . , en). Then
we have generators

ea1 ⊗ · · · ⊗ eak , a1, . . . , ak ∈ {1, . . . , n},
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for Tk(V∗) and
Symk(e

b1 ⊗ · · · ⊗ ebk), b1, . . . , bk ∈ {1, . . . , n},

for Sk(V∗). For a1, . . . , ak, b1, . . . , bk ∈ {1, . . . , n}, we wish to show that the inner product

G(ea1 ⊗ · · · ⊗ eak , Symk(e
b1 ⊗ · · · ⊗ ebk))

=
1

k!

∑
σ∈Sk

G(ea1 ⊗ · · · ⊗ eak , ebσ(1) ⊗ · · · ⊗ ebσ(k))

=
1

k!

∑
σ∈Sk

G(ea1 , ebσ(1)) · · ·G(eak , ebσ(k))

is equal to
G(Symk(e

a1 ⊗ · · · ⊗ eak),Symk(e
b1 ⊗ · · · ⊗ ebk)).

Unless {a1, . . . , ak} and {b1, . . . , bk} agree as multisets, we have

0 = G(ea1⊗· · ·⊗eak , Symk(e
b1⊗· · ·⊗ebk)) = G(Symk(e

a1⊗· · ·⊗eak),Symk(e
b1⊗· · ·⊗ebk)).

Thus we can suppose that {a1, . . . , ak} and {b1, . . . , bk} agree as multisets.
In this case, since

Symk(e
a1 ⊗ · · · ⊗ eak) = Symk(e

b1 ⊗ · · · ⊗ ebk),

we can assume, without loss of generality, that aj = bj , j ∈ {1, . . . , k}. For l ∈ {1, . . . , n},
let kal ∈ Z≥0 be the number of occurrences of l in the list (a1, . . . , ak). Let Sa

k ⊆ Sk be
those permutations σ for which aj = aσ(j), j ∈ {1, . . . , k}. Note that card(Sa

k ) = ka1 ! · · · kan !
since Sa

k consists of compositions of permutations that permute all the 1’s, all the 2’s, etc.,
in the list (a1, . . . , ak). With these bits of notation, we have

ea1 ⊗ · · · ⊗ eak = eaσ(1) ⊗ · · · ⊗ eaσ(k) ⇐⇒ σ ∈ Sa
k .

Therefore,

G(ea1 ⊗ · · · ⊗ eak , eaσ(1) ⊗ · · · ⊗ eaσ(k)) =

{
1, σ ∈ Sa

k ,

0, otherwise.

We then have

G(ea1 ⊗ · · · ⊗ eak ,Symk(e
a1 ⊗ · · · ⊗ eak))

=
ka1 ! · · · kan !

k!
G(ea1 ⊗ · · · ⊗ eak , ea1 ⊗ · · · ⊗ eak) =

ka1 ! · · · kan !
k!

.

Next we calculate

G(Symk(e
a1 ⊗ · · · ⊗ eak), Symk(e

a1 ⊗ · · · ⊗ eak)).

Let σ ∈ Sk and, for l ∈ {1, . . . , n}, let kσ(a)l ∈ Z≥0 be the number of occurrences of l in

the list (aσ(1), . . . , aσ(k)). Let S
σ(a)
k ⊆ Sk be those permutations σ′ for which aσ(j) = aσ′(j),

j ∈ {1, . . . , k}. As above, card(Sσ(a)
k ) = k

σ(a)
1 ! · · · kσ(a)n !. Also as above, we then have

G(eσ(1) ⊗ · · · ⊗ eσ(k),Symk(e
a1 ⊗ · · · ⊗ eak)) =

k
σ(a)
1 ! · · · kσ(a)n !

k!
=
ka1 ! · · · kan !

k!
,
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if ka1 , . . . , k
a
n are as in the preceding paragraph. Therefore,

G(Symk(e
a1 ⊗ · · · ⊗ eak),Symk(e

a1 ⊗ · · · ⊗ eak))

=
1

k!

∑
σ∈Sk

G(eσ(1) ⊗ · · · ⊗ eσ(k),Symk(e
a1 ⊗ · · · ⊗ eak))

=
1

k!

∑
σ∈Sk

ka1 ! · · · kan !
k!

=
ka1 ! · · · kan !

k!
,

and so we have

G(ea1 ⊗ · · · ⊗ eak , Symk(e
b1 ⊗ · · · ⊗ ebk))

= G(Symk(e
a1 ⊗ · · · ⊗ eak), Symk(e

a1 ⊗ · · · ⊗ eak)),

and the sublemma follows. ▼

Now, given A ∈ Tk(V∗), we write A = Symk(A)+A1 where A1 is orthogonal to Sk(V∗).
We then have ∥A∥2 = ∥Symk(A)∥2 + ∥A1∥2, from which the lemma follows. ■

The sublemma from the preceding lemma is proved, differently, by Neuberger [1968,
page 124].

Let us also determine the norm of various insertion operators that we shall use. We
shall use notation that is specific to the manner in which we shall use these estimates, and
this will seem unmotivated out of context. Let U, V, and W be finite-dimensional R-vector
spaces, let m, s, r ∈ Z>0 and a ∈ {0, 1, . . . , r}, let S ∈ T1

r−a+2(U), and let

A ∈ Ts+r−a+1
m+a+1 (U)⊗W ⊗ V∗.

We then have the mapping

I1A,S,j : T
s(U∗)⊗ V → Tm+r+1(U∗)⊗W

defined by
I1A,S,j(β) = A(Insj(β, S)).

Here we implicitly use the isomorphism

κ : Tsm(U) → HomR(T
s(U∗); Tm(U∗)),

for a finite-dimensional R-vector space U and for m, s ∈ Z≥0, via

κ(v1 ⊗ · · · ⊗ vs ⊗ α1 ⊗ · · · ⊗ αm)(β1 ⊗ · · · ⊗ βs) = ⟨β1; v1⟩ · · · ⟨βs; vs⟩α1 ⊗ · · · ⊗ αm,

for va ∈ U, a ∈ {1, . . . , s}, and αj , βb ∈ U∗, b ∈ {1, . . . , s}, j ∈ {1, . . . ,m}. Thus, for
additional finite-dimensional R-vector spaces V and W, we have the identification

Tms (U)⊗W ⊗ V∗ ≃ HomR(T
s(U∗)⊗ V; Tm(U∗)⊗W).

We now have the following result.
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7.6 Lemma: (Norm of composition with tensor insertion I) With the preceding no-
tation,

∥I1A,S,j∥ ≤ ∥A∥∥S∥.

Proof: Let (f1, . . . , fm) be an orthonormal basis for U with dual basis (f1, . . . , fm). Let
(e1, . . . , en) be an orthonormal basis for V with (e1, . . . , en) the dual basis. Let (g1, . . . , gk)
be an orthonormal basis for W with (g1, . . . , gk) the dual basis. Let us write

S =
m∑
a=1

m∑
a1,...,ar−a+2

Saa1···ar−a+2
fa ⊗ fa1 ⊗ · · · ⊗ far−a+2

and

A =

m∑
a1,...,as+r−a+1=1

m∑
b1,...,bm+a+1=1

k∑
α=1

n∑
l=1

A
aa···as+r−a+1α
b1···bm+a+1l

× f b1 ⊗ · · · ⊗ f bm+a+1 ⊗ fa1 ⊗ · · · ⊗ fas+1 ⊗ gα ⊗ el.

We then have, for a1, . . . , as ∈ {1, . . . ,m}, α ∈ {1, . . . , k}, and l ∈ {1, . . . , n},

InsS,j(f
a1 ⊗ · · · ⊗ fas ⊗ gα ⊗ el)

= Insj(f
a1 ⊗ · · · ⊗ faj ⊗ · · · ⊗ fas ⊗ gα ⊗ el, S)

=

m∑
b1,...,br−a+2=1

S
aj
b1···br−a+2

× fa1 ⊗ · · · ⊗ faj−1 ⊗ f b1 ⊗ · · · ⊗ f br−a+2 ⊗ faj+1 ⊗ · · · ⊗ fas ⊗ gα ⊗ el

=
m∑

c1,...,cj−1=1

m∑
cj+1,...,cs=1

n∑
b1,...,br−a+2=1

k∑
β=1

n∑
p=1

S
aj
b1···br−a+2

δa1c1 · · · δaj−1
cj−1 δ

aj+1
cj+1 · · · δascs δ

β
αδ

l
p

× f c1 ⊗ · · · ⊗ f cj−1 ⊗ f b1 ⊗ · · · ⊗ f br−a+2 ⊗ f cj+1 ⊗ · · · ⊗ f cs ⊗ gβ ⊗ ep.

Thus

I1A,S,j(f
a1 ⊗ · · · ⊗ fas ⊗ gα ⊗ el)

=

m∑
b1,...,br−a+2=1

m∑
d1,...,dm+a+1=1

k∑
α=1

n∑
l=1

A
a1···aj−1b1···br−a+2aj+1···asα
d1···dm+a+1l

S
aj
b1···br−a+2

× fd1 ⊗ · · · ⊗ fdm+a+1 ⊗ gα ⊗ el.
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Then we calculate, using Cauchy–Schwarz,

∥I1A,S,j∥2 =

m∑
a1,...,as=1

m∑
d1,...,dm+a+1=1

k∑
α=1

n∑
l=1

 m∑
b1,...,br−a+2=1

A
a1···aj−1b1···br−a+2aj+1···asα
d1···dm+a+1l

S
aj

b1···br−a+2

2

≤
m∑

a1,...,as=1

m∑
d1,...,dm+a+1=1

k∑
α=1

n∑
l=1

 m∑
b1,...,br−a+2=1

∣∣∣Aa1···aj−1b1···br−a+2aj+1···asα
d1···dm+a+1l

S
aj

b1···br−a+2

∣∣∣
2

≤
m∑

a1,...,as=1

m∑
d1,...,dm+a+1=1

k∑
α=1

n∑
l=1

 m∑
b1,...,br−a+2=1

∣∣∣Aa1···aj−1b1···br−a+2aj+1···as

d1···dm+a+1l

∣∣∣2


×

 m∑
b1,...,br−a+2=1

∣∣∣Saj

b1···br−a+2

∣∣∣2


≤ ∥A∥2∥S∥2,

as claimed. ■

Now we perform the same sort of estimate for a similar construction. We take U, V,
and W as above, and m, s, r, and a as above. We also still take S ∈ T1

r−a+2(U), but here
we take

B ∈ Tsm+a(U)⊗W ⊗ V∗.

We then have the mapping

I2B,S,j : T
s(U∗)⊗ V → Tm+r+1(U∗)⊗W

defined by
I2B,S,j(β) = Insj(B(β), S)

We now have the following result, whose proof follows from direct computation, just as does
Lemma 7.6.

7.7 Lemma: (Norm of composition with tensor insertion II) With the preceding
notation,

∥I2B,S,j∥ ≤ ∥B∥∥S∥.

7.2. Tensor field estimates. We next turn to providing estimates for the tensors Ams , B
m
s ,

Cms , and Dm
s , m ∈ Z≥0, s ∈ {0, 1, . . . ,m}, that appear in the lemmata from Section 5. In

this section is where all of our seemingly pointless computations from Sections 3 and 4, and
our only slightly less seemingly pointless constructions from Sections 5 and 6, bear fruit.
We first develop a general estimate, and then show how this estimate can be made to apply
to all of the required tensors from Section 5.

We work with real analytic vector bundles πE : E → M and πF : F → M. The rôle of
πE : E → M in this discussion and that in Section 5 is different. One should think of E in
Section 5 as being played by M here. This is because the tensors in Section 5 are defined as
having E as their base space. So here we rename this base space as M. As a consequence
of this, one should think of (1) the rôle of M in the lemma below as being played by E in
the lemmata of Section 5, (2) the rôle of ∇M in the lemma below as being played by ∇E
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in the lemmata of Section 5, and (2) the rôle of ∇πE in the lemma below as being played
by the induced connection in an appropriate tensor bundle in the lemmata of Section 5. In
our development here, we use the symbol ∇M,πE to denote the connection induced in any
of the myriad bundles formed by taking tensor products of TM, T∗M, E, and E∗, cf. the
constructions at the beginning of Section 2.2.

With this as backdrop, the main technical result we have is the following.

7.8 Lemma: (Bound for families of real analytic tensors defined by recursion)
Let πE : E → M and πF : F → M be real analytic vector bundles, let ∇M be a real analytic
affine connection on M, let ∇πE and ∇πF be real analytic vector bundle connections in E
and F, respectively. Let GM be a real analytic Riemannian metric on M, and let GπE and
GπF be real analytic fibre metrics for E and F, respectively. Suppose that we are given the
following data:

(i) ϕm ∈ Γω(Tmm(TM)⊗ F⊗ E∗), m ∈ Z≥0;

(ii) Φsm ∈ Γω(End(Tsm+1(TM)⊗ F⊗ F∗)), m ∈ Z≥0, s ∈ {0, 1, . . . ,m};
(iii) Ψs

jm ∈ Γω(Hom(Tsm(TM)⊗F⊗E∗; Tsm+1(TM)⊗F⊗E∗)), m ∈ Z≥0, s ∈ {0, 1, . . . ,m},
j ∈ {0, 1, . . . ,m};

(iv) Λsm ∈ Γω(Hom(Ts−1
m (TM)⊗ F⊗ E∗; Tsm+1(TM)⊗ F⊗ E∗)), m ∈ Z≥0, s ∈ {1, . . . ,m};

(v) Ams ∈ Γω(Tsm(TM)⊗ F⊗ E∗), m ∈ Z≥0, s ∈ {0, 1, . . . ,m},
and that the data satisfies the recursion relations prescribed by A0

0 = ϕ0 and

Am+1
m+1 = Φm+1

m ◦ ϕm+1, m ∈ Z≥0

Am+1
s = Φsm ◦ ∇M,πE⊗πFAms +

m∑
j=0

Ψs
jm ◦Ams + Λsm ◦Ams−1, m ∈ Z>0, s ∈ {1, . . . ,m},

Am+1
0 = Φ0

m ◦ ∇M,πE⊗πFAm0 +
m∑
j=0

Ψ0
jm ◦Am0 , m ∈ Z≥0.

Suppose that the data are such that, for each compact K ⊆ M, there exist C1, σ1 ∈ R>0

satisfying

(i) ∥Dr
∇M,∇πE⊗πF

ϕm(x)∥GM,πE⊗πF
≤ C1σ

−r
1 r!, m, r ∈ Z≥0;

(ii) ∥Dr
∇M,∇πF

Φsm(x) ◦ A∥GM,πE⊗πF
≤ C1σ

−r
1 r!∥A∥GM,πE⊗πF

, A ∈ Tsm+a(TxM ⊗ Fx ⊗ E∗
x),

m, r, a ∈ Z≥0, s ∈ {0, 1, . . . ,m+ 1};
(iii) ∥Dr

∇M,∇πE⊗πF
Ψs
jm(x) ◦A∥GM,πE⊗πF

≤ C1σ
−r
1 r!∥A∥GM,πE⊗πF

, A ∈ Tsm+a(TxM⊗ Fx ⊗ E∗
x),

m, r, a ∈ Z≥0, s ∈ {0, 1, . . . ,m}, j ∈ {0, 1, . . . ,m};
(iv) ∥Dr

∇M,∇πE⊗πF
Λsm(x) ◦ A∥GM,πE⊗πF

≤ C1σ
−r
1 r!∥A∥GM,πE⊗πF

, A ∈ Ts−1
m+a(TxM ⊗ Fx ⊗ E∗

x),

m, r, a ∈ Z≥0, s ∈ {0, 1, . . . ,m}.
for x ∈ K.

Then, for K ⊆ M compact, there exist C, σ, ρ ∈ R>0 such that

∥Dr
∇M,∇πE⊗πF

Ams (x)∥GM,πE⊗πF
≤ Cσ−mρ−(m+r−s)(m+ r − s)!

for m, r ∈ Z≥0, s ∈ {0, 1, . . . ,m}, and x ∈ K.
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Proof: We prove the lemma with a sort of meandering induction, covering various special
cases of m and s before giving a proof for the general case.

Before we embark on the proof, we organise some data that will arise in the estimate
that we prove.

1. We take K ⊆ M compact and define C1, σ1 ∈ R>0 as in the statement of the lemma.
We shall assume, without loss of generality, that C1 > 1 and σ1 < 1.

2. Choose β ∈ R>0 sufficiently large that

∞∑
k=0

β−k <∞,

and let α = β
β−1 > 1 denote the value of this sum. Let γ = 4α.

3. We note that, for any a, b, c ∈ Z>0 with b < c, we have

(a+ b)!

b!
<

(a+ c)!

c!
.

This is a direct computation:

(a+ b)!

b!
= (1 + b) · · · (a+ b) < (1 + c) · · · (a+ c) =

(a+ c)!

c!
.

4. For m ∈ Z≥0 and s ∈ {0, 1, . . . ,m}, we denote

Cm,s =

{
1, m = 0 or s = 0,(
m−1
s−1

)
, otherwise.

We note that

(a) Cm,m = 1, that

(b) Cm,s ≤ Cm+1,s, that

(c) Cm,s ≤ Cm+1,s+1, and that

(d) mCm,s ≤ (m+ 1− s)Cm+1,s.

The first and second of these assertions is obvious. For the third, for m, s ∈ Z>0 with
s ≤ m, we compute

Cm,s =
(m− 1)!

(s− 1)!(m− s)!
≤ m

s

(m− 1)!

(s− 1)!(m− s)!
= Cm+1,s+1.

For the fourth, for m ∈ Z>0 and s ∈ Z>0 satisfying s ≤ m, we compute

mCm,s = m
(m− 1)!

(s− 1)!(m− s)!
= (m− s+ 1)

m!

(s− 1)!(m+ 1− s)!
= (m− s+ 1)Cm+1,s.

5. We shall have occasion below, and also subsequently, to use a standard multinomial
estimate. First let α1, . . . , αn ∈ R>0 and note that

(α1 + · · ·+ αn)
m =

∑
m1+···+mn=m

m!

m1! · · ·mn!
αm1
1 · · ·αmn

n .
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Taking α1 = · · · = αn = 1, we see that

m!

m1! · · ·mn!
≤ nm (7.1)

whenever m1, . . . ,mn ∈ Z≥0 sum to m.

Given all of this, we shall prove that

∥Dr
∇M,∇πE⊗πF

Ams (x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mCm,s

(
β

σ1

)m+r−s
(m+ r − s)! (7.2)

for m, r ∈ Z≥0, s ∈ {0, 1, . . . ,m}, and x ∈ K.

Case m = s = 0:

Directly using the hypotheses, we have

∥Dr
∇M,∇πE⊗πF

A0
0(x)∥GM,πE⊗πF

= ∥Dr
∇M,∇πE⊗πF

ϕ0(x)∥GM,πE⊗πF

≤ C1σ
−r
1 r! ≤ C1(C1σ

−1
1 γ)0C0,0

(
β

σ1

)0+r−0

(0 + r − 0)!

for r ∈ Z≥0 and x ∈ K. This gives (7.2) in this case.

Case m ∈ Z>0 and s = m:

By Lemma 4.4, we have

Dr
∇M,∇πE⊗πF

Amm = Dr
∇M,∇πE⊗πF

(Φmm−1 ◦ ϕm) =
r∑

a=0

(
r

a

)
Da

∇M,∇πEΦ
m
m−1(D

r−a
∇M,∇πE⊗πF

ϕm)

for m, r ∈ Z≥0. Therefore, by Lemma 7.3, using the hypotheses, and by the preliminary
observation 3 above,

∥Dr
∇M,∇πE⊗πF

Amm∥GM,πE⊗πF
≤

r∑
a=0

r!

a!(r − a)!
(C1σ

−a
1 a!)(C1σ

−(m+r−a)
1 (r − a)!)

≤ C1C1σ
−m
1 r!

r∑
a=0

σ−a1

(
β

σ1

)r−a
≤ C1C1σ

−m
1

(
β

σ1

)r
r!

r∑
a=0

β−a

≤ C1(C1σ
−1
1 γ)mCm,m

(
β

σ1

)m+r−m
(m+ r −m)!.

As this holds for every m ∈ Z>0, r ∈ Z≥0, and x ∈ K, this gives (7.2) in this case.
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Case m = 1 and s = 0:

By Lemma 4.4 we have

Dr
∇M,∇πE⊗πF

A1
0 =

r∑
a=0

(
r

a

)
Da

∇M,∇πEΦ
0
0(D

r−a
∇M,∇πE⊗πF

∇M,πE⊗πFA0
0)︸ ︷︷ ︸

term 1

+

r∑
a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Ψ0

00(D
r−a
∇M,∇πE⊗πF

A0
0)︸ ︷︷ ︸

term 2(a)

+

r∑
a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Ψ0

10(D
r−a
∇M,∇πE⊗πF

A0
0)︸ ︷︷ ︸

term 2(b)

.

As we showed in the proof of Lemma 4.8, we have

Dr−a
∇M,∇πE⊗πF

(∇M,πE⊗πFA0
0) = Dr−a+1

∇M,πE⊗πF
A0

0.

Therefore, by Lemma 7.3 and using the hypotheses,

∥term 1(x)∥GM,πE⊗πF
≤

r∑
a=0

r!

a!(r − a)!
(C1σ

−a
1 a!)(C1σ

−(r−a+1)
1 (r − a+ 1)!)

≤ C1C1(r + 1)!
r∑

a=0

σ−a1

(
β

σ1

)r−a+1

≤ C1C1

(
β

σ1

)r+1

(r + 1)!
r∑

a=0

β−a

≤ C1(C1α)

(
β

σ1

)r+1

(r + 1)!.

In a similar manner,

∥term 2(a)(x)∥GM,πE⊗πF
, ∥term 2(b)(x)∥GM,πE⊗πF

≤ C1(C1α)

(
β

σ1

)r
r!.

Therefore, for r ∈ Z≥0 and x ∈ K,

∥Dr
∇M,∇πE⊗πF

A1
0(x)∥GM,πE⊗πF

≤ 1

4
C1(C1γ)

(
β

σ1

)r+1

(r + 1)! +
1

2
C1(C1γ)

(
β

σ1

)r
r!

≤ C1(C1σ
−1
1 γ)1C1,0

(
β

σ1

)1+r−0

(1 + r − 0)!

and this gives (7.2) in this case.
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Case m ∈ Z>0 and s = 0:

We use induction on m, the desired estimate having been shown to be true for m = 1. By
Lemma 4.4 we have

Dr
∇M,∇πE⊗πF

Am+1
0 =

r∑
a=0

(
r

a

)
Da

∇M,∇πEΦ
0
m(D

r−a
∇M,∇πE⊗πF

∇M,πE⊗πFAm0 )︸ ︷︷ ︸
term 1

+
r∑

a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Ψ0

0m(D
r−a
∇M,∇πE⊗πF

Am0 )︸ ︷︷ ︸
term 2(a)

+

m∑
j=1

r∑
a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Ψ0
jm(D

r−a
∇M,∇πE⊗πF

Am0 )︸ ︷︷ ︸
term 2(b)

.

For term 1, as above for the case m = 1 and s = 0, we have

∥Dr−a
∇M,∇πE⊗πF

(∇M,πE⊗πFAm0 )∥GM,πE⊗πF
≤ ∥Dr−a+1

∇M,∇πE⊗πF
Am0 ∥GM,πE⊗πF

.

We now use Lemma 7.3, the hypotheses, the induction hypotheses, and the preliminary
observation 3 above to determine that

∥term 1(x)∥GM,πE⊗πF
≤

r∑
a=0

r!

a!(r − a)!
(C1σ

−a
1 a!)

×

(
C1(C1σ

−1
1 γ)mCm,0

(
β

σ1

)m+r−a+1

(m+ r − a+ 1)!

)

≤ C1(C1σ
−1
1 γ)mCm,0

(
β

σ1

)m+r+1

(m+ r + 1)!

r∑
a=0

β−a

≤ C1(C1σ
−1
1 γ)mCm,0α

(
β

σ1

)m+r+1

(m+ r + 1)!

By a similar computation, we have

∥term 2(a)(x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mCm,0α

(
β

σ1

)m+r

(m+ r)!.

We also have, making use of our observation 4 from above,

∥term 2(b)(x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mmCm,0α

(
β

σ1

)m+r

(m+ r)!

≤ C1(C1σ
−1
1 γ)m(m+ 1)Cm+1,0α

(
β

σ1

)m+r

(m+ r)!

≤ C1(C1σ
−1
1 γ)mCm+1,0α

(
β

σ1

)m+r

(m+ r + 1)!.
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Thus, for x ∈ K,

∥Dr
∇M,∇πE⊗πF

Am+1
0 (x)∥GM,πE⊗πF

≤ 1

4
C1(C1σ

−1
1 γ)mCm,0γ

(
β

σ1

)m+r+1

(m+ r + 1)!

+
1

4
C1(C1σ

−1
1 γ)mCm,0γ

(
β

σ1

)m+r

(m+ r)!

+
1

4
C1(C1σ

−1
1 γ)mCm+1,0γ

(
β

σ1

)m+r

(m+ r + 1)!

≤ C1(C1σ
−1
1 γ)m+1Cm+1,0

(
β

σ1

)m+1+r−0

(m+ 1 + r − 0)!.

This proves (7.2) by induction in this case.

Case m ∈ Z>0 and s ∈ {1, . . . ,m− 1}:

We use induction first on m (the result having been proved for the case m = 0) and, for
fixedm, by induction on s (the result having been proved for the case s = 0). By Lemma 4.4
we have

Dr
∇M,∇πE⊗πF

Am+1
s =

r∑
a=0

(
r

a

)
Da

∇M,∇πEΦ
s
m(D

r−a
∇M,∇πE⊗πF

∇M,πE⊗πFAms )︸ ︷︷ ︸
term 1

+
r∑

a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Ψs

0m(D
r−a
∇M,∇πE⊗πF

Ams )︸ ︷︷ ︸
term 2(a)

+
m∑
j=1

r∑
a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Ψs
jm(D

r−a
∇M,∇πE⊗πF

Ams )︸ ︷︷ ︸
term 2(b)

+
r∑

a=0

(
r

a

)
Da

∇M,∇πE⊗πF
Λsm(D

r−a
∇M,∇πE⊗πF

Ams−1)︸ ︷︷ ︸
term 3

.

We can argue just as in the preceding paragraph that, for x ∈ K,

∥term 1(x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mCm,sα

(
β

σ1

)m+r+1−s
(m+ r + 1− s)!

∥term 2(a)(x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mCm,sα

(
β

σ1

)m+r−s
(m+ r − s)!

∥term 2(b)(x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mCm+1,sα

(
β

σ1

)m+r−s
(m+ r + 1− s)!

∥term 3(x)∥GM,πE⊗πF
≤ C1(C1σ

−1
1 γ)mCm,s−1α

(
β

σ1

)m+r−s+1

(m+ r − s+ 1)!.
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Adding these as in the previous case and using our observation 4 above, we have

∥Dr
∇M,∇πE⊗πF

Am+1
s (x)∥GM,πE⊗πF

≤ C1(C1σ
−1
1 γ)m+1Cm+1,s

(
β

σ1

)m+1+r−s
(m+ 1 + r − s)!,

proving (7.2) by induction in this case.
We now note that a standard binomial estimate via (7.1) gives Cm,s ≤ 2m. The lemma

now follows from (7.2) by taking

C = C1, σ = 2C1σ
−1
1 γ, ρ =

β

σ1
. ■

We now apply the lemma to the recursion relations that we proved in Lemmata 5.1,
5.2, 5.6, 5.7, 5.11, 5.12, 5.16, 5.17, 5.21, 5.22, 5.26, 5.27, 5.31, 5.32, 5.38, and 5.39. We first
provide the correspondence between the data from the preceding lemmata with the data of
Lemma 7.8.

1. Lemma 5.1: We have

(a) M = E, E = F = RE,

(b) ϕm(βm) = βm, βm ∈ Tm(T∗M), m ∈ Z≥0,

(c) Φsm(α
m+1
s ) = αm+1

s , αm+1
s ∈ Tsm+1(T

∗M⊗F⊗E∗)), m ∈ Z≥0, s ∈ {0, 1, . . . ,m+1},
(d) Ψs

jm(α
m
s )(βs) = −αms ⊗ idT∗M(Insj(βs, BE)), α

m
s ∈ Hom(Ts(T∗M)⊗ E; Tm(T∗M)⊗

F), βs ∈ Ts(T∗M)⊗ E, m ∈ Z>0, s ∈ {1, . . . ,m}, j ∈ {1, . . . , s},
(e) Λsm(α

m
s−1) = αms−1 ⊗ idT∗M, αms−1 ∈ Hom(Ts−1(T∗M)⊗ E; Tm(T∗M)⊗ F), m ∈ Z>0,

s ∈ {1, . . . ,m},
(f) Ψ0

jm = 0, m ∈ Z≥0, and

(g) Λ0
m = 0, m ∈ Z≥0.

2. Lemma 5.2: We have

(a) M = E, E = F = RE,

(b) ϕm(βm) = βm, βm ∈ Tm(T∗M), m ∈ Z≥0,

(c) Φsm(α
m+1
s ) = αm+1

s , αm+1
s ∈ Tsm+1(T

∗M⊗F⊗E∗), m ∈ Z≥0, s ∈ {0, 1, . . . ,m+1},
(d) Ψs

jm(α
m
s )(βs) = Insj(α

m
s (βs), BE), α

m
s ∈ Hom(Ts(T∗M) ⊗ E; Tm(T∗M) ⊗ F), βs ∈

Ts(T∗M)⊗ E, m ∈ Z>0, s ∈ {1, . . . ,m}, j ∈ {1, . . . ,m}, and
(e) Λsm(α

m
s−1) = αms−1 ⊗ idT∗M, αms−1 ∈ Hom(Ts−1(T∗M)⊗ E; Tm(T∗M)⊗ F), m ∈ Z>0,

s ∈ {0, . . . ,m}.
3. Lemma 5.6: We have

M = E, E = F = VE,

and all other data derived from Lemma 5.6, similarly to the case of Lemma 5.1.

4. Lemma 5.7: We have
M = E, E = F = VE,

and all other data derived from Lemma 5.7, similarly to the case of Lemma 5.2.

5. Lemma 5.11: We have
M = E, E = F = HE,

and all other data derived from Lemma 5.11, similarly to the case of Lemma 5.1.
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6. Lemma 5.12: We have
M = E, E = F = HE,

and all other data derived from Lemma 5.12, similarly to the case of Lemma 5.2.

7. Lemma 5.16: We have
M = E, E = F = V∗E,

and all other data derived from Lemma 5.16, similarly to the case of Lemma 5.1.

8. Lemma 5.17: We have
M = E, E = F = V∗E,

and all other data derived from Lemma 5.16, similarly to the case of Lemma 5.2.

9. Lemma 5.21: We have
M = E, E = F = T1

1(VE),

and all other data derived from Lemma 5.21, similarly to the case of Lemma 5.1.

10. Lemma 5.22: We have
M = E, E = F = T1

1(VE),

and all other data derived from Lemma 5.22, similarly to the case of Lemma 5.2.

11. Lemma 5.26: We have

(a) M = E, E = RE ⊕ V∗E, F = RE ⊕RE,

(b) ϕm(βm, δm) = βm, (βm, δm) ∈ Tm(T∗M)⊗ E, m ∈ Z≥0,

(c) Φsm(α
m+1
s , γm+1

s ) = (αm+1
m , γm+1

s ), (αm+1
s , γm+1

s ) ∈ Tsm+1(T
∗M)⊗F⊗E∗, m ∈ Z≥0,

s ∈ {0, 1, . . . ,m− 1},
(d) Φmm(α

m+1
m , γm+1

m ) = (0, 0), (αm+1
m , γm+1

m ) ∈ Tmm+1(T
∗M)⊗ F⊗ E∗, m ∈ Z≥0,

(e) Ψs
jm(α

m
s , γ

m
s )(βs, δs) = (−αms ⊗ idT∗M(Insj(βs, BE)),

−
∑s+1

j=1 γ
m
s ⊗ idT∗M(Insj(δs, BE))), (αms , γ

m
s ) ∈ Tsm(T

∗M) ⊗ F ⊗ E∗, (βs, δs) ∈
Ts(T∗M)⊗ E, m ≥ 2, s ∈ {1, . . . ,m− 1}, j ∈ {1, . . . , s},

(f) Ψm
jm(α

m
m, γ

m
m)(βm, δm) = (−Insj(βm, BE), δm), (αmm, γ

m
m) ∈ Tmm(T

∗M) ⊗ F ⊗ E∗,
(βm, δm) ∈ Tm(T∗M)⊗ E, m ≥ 2, j ∈ {1, . . . ,m},

(g) Ψm
00(α

m
0 , γ

m
0 )(β0, δ0) = (0,−γm0 ⊗ idT∗M(Ins1(δ0, BE))), (α

m
0 , γ

m
0 ) ∈ Tm0 (T∗M)⊗F⊗

E∗, (β0, δ0) ∈ E, m ≥ 2,

(h) Λsm(α
m
s , γ

m
s ) = (αms−1 ⊗ idT∗M, γ

m
s−1 ⊗ idT∗M), m ≥ 2, s ∈ {1, . . . ,m}.

12. Lemma 5.27: We have

(a) M = E, E = RE ⊕ V∗E, F = RE ⊕RE,

(b) ϕm(βm, δm) = βm, (βm, δm) ∈ Tm(T∗M)⊗ E, m ∈ Z≥0,

(c) Φsm(α
m+1
s , γm+1

s ) = (αm+1
m , γm+1

s ), (αm+1
s , γm+1

s ) ∈ Tsm+1(T
∗M)⊗F⊗E∗, m ∈ Z≥0,

s ∈ {0, 1, . . . ,m− 1},
(d) Φmm(α

m+1
m , γm+1

m ) = (0, 0), (αm+1
m , γm+1

m ) ∈ Tmm+1(T
∗M)⊗ F⊗ E∗, m ∈ Z≥0,

(e) Ψs
jm(α

m
s , γ

m
s )(βs, δs) = (Insj(α

m
s (βs), BE)− Insm+1(α

m
s (βs), B

∗
E),−B

m
s ),

(αms , γ
m
s ) ∈ Tsm(T

∗M)⊗ F⊗E∗, (βs, δs) ∈ Ts(T∗M)⊗E, m ≥ 2, s ∈ {1, . . . ,m− 1},
j ∈ {1, . . . ,m},
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(f) Ψm
jm(α

m
m, γ

m
m)(βm, δm) = (Insj(βm, BE)− Insm+1(βm, B

∗
E),−δm),

(αmm, γ
m
m) ∈ Tmm(T

∗M)⊗ F⊗ E∗, (βm, δm) ∈ Tm(T∗M)⊗ E, m ≥ 2, j ∈ {1, . . . ,m},
(g) Ψm

00(α
m
0 , γ

m
0 )(β0, δ0) = (0,−γm0 ⊗ idT∗M(Ins1(δ0, BE))), (α

m
0 , γ

m
0 ) ∈ Tm0 (T∗M)⊗F⊗

E∗, (β0, δ0) ∈ E, m ≥ 2,

(h) Λsm(α
m
s , γ

m
s ) = (αms−1 ⊗ idT∗M, γ

m
s−1 ⊗ idT∗M), m ≥ 2, s ∈ {1, . . . ,m}.

13. Lemma 5.31: We have

M = E, E = VE⊕ T1
1(VE), F = VE⊕ VE,

and all other data derived from Lemma 5.31, similarly to the case of Lemma 5.26.

14. Lemma 5.32: We have

M = E, E = VE⊕ T1
1(VE), F = VE⊕ VE,

and all other data derived from Lemma 5.32, similarly to the case of Lemma 5.27.

15. Lemma 5.38: We have

M = M, E = Φ∗T∗N, F = T∗M,

and all other data derived from Lemma 5.38, similarly to the case of Lemma 5.1.

16. Lemma 5.39: We have

M = M, E = T∗M, F = Φ∗T∗N,

and all other data derived from Lemma 5.39, similarly to the case of Lemma 5.2.

Having now translated the lemmata of Section 5 to the general Lemma 7.8, we now need
to show that the data of the lemmata of Section 5 satisfy the hypotheses of Lemma 7.8.
As is easily seen, there are a few sorts of expressions that appear repeatedly, and we shall
simply give estimates for these terms and leave to the reader the putting together of the
pieces.

The following lemma gives the required bounds.

7.9 Lemma: (Specific bounds for terms coming from recursion) Let πE : E → M be
a real analytic vector bundle, let ∇M be a real analytic affine connection on M, and let ∇πE

be a real analytic vector bundle connection in E. Let GM be a real analytic Riemannian
metric on M and let GE be a real analytic fibre metrics for E. Let S ∈ Γω(T1

2(TM)). Let
K ⊆ M be compact and let n be the larger of the dimension of M and the fibre dimension of
E and let σ0 = n−1. Let m, r, a ∈ Z≥0 and s ∈ {0, 1, . . . ,m}. Then we have the following
bounds for x ∈ K:

(i) ∥Dr
∇M,∇πE

idTm(T∗M)⊗E(x)∥GM,πE
≤ σm+r+1

0 ;

(ii) ∥Dr
∇M,∇πE

idTm
s (T∗M)⊗E(x)∥GM,πE

≤ σ2m+r+1
0 ;

(iii) if Φsm(α
m+1
s ) = αm+1

s , αm+1
s ∈ Tsm+1(T

∗M) ⊗ E, then there exist C1, σ1 ∈ R>0 such
that

∥Dr
∇M,∇πEΦ

s
m ◦Da

∇M,∇πEA
m+1
s (x)∥GM,πE

≤ ∥Da
∇M,∇πEA

m+1
s (x)∥GM,πE

;
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(iv) if

Ψs
jm(α

m
s )(βs) = (αms ⊗ idT∗M)(Insj(βs, S)),

αms ∈ Hom(Ts(T∗M)⊗ E; Tm(T∗M)⊗ E), βs ∈ Ts(T∗M)⊗ E,

then there exist C1, σ1 ∈ R>0 such that

∥Dr
∇M,∇πEΨ

s
jm ◦Da

∇M,∇πEA
m
s (x)∥GM,πE

≤ C1σ
−r
1 r!∥Da

∇M,∇πEA
m
s (x)∥GM,πE

;

(v) if

Ψs
jm(α

m
s )(βs) = Insj(α

m
s (βs), S),

αms ∈ Hom(Ts(T∗M)⊗ E; Tm(T∗M)⊗ E), βs ∈ Ts(T∗M)⊗ E,

then there exist C1, σ1 ∈ R>0 such that

∥Dr
∇M,∇πEΨ

s
jm ◦Da

∇M,∇πEA
m
s (x)∥GM,πE

≤ C1σ
−r
1 r!∥Da

∇M,∇πEA
m
s (x)∥GM,πE

;

(vi) if

Λsm(α
m
s−1) = αms−1 ⊗ idT∗M, αms ∈ Hom(Ts−1(T∗M)⊗ E; Tm(T∗M)⊗ E),

then there exist C1, σ1 ∈ R>0 such that

∥Dr
∇M,∇πEΛ

s
m ◦Da

∇M,∇πEA
m
s−1(x)∥GM,πE

≤ ∥Da
∇M,∇πEA

m
s−1(x)∥GM,πE

.

Proof: Parts (i) and (ii) follow from Lemma 7.1 along with the fact that the covariant
derivative of the identity tensor is zero. Part (iii) is a tautology, but one that arises in the
lemmata of Section 5.

For the next two parts of the proof, let C1, σ1 ∈ R>0 be such that

∥Dr
∇MS(x)∥GM

≤ C1σ
−r
1 r!, x ∈ K, (7.3)

this being possible by Lemma 2.3, and recalling the rôle of the factorials in the defini-
tion (2.6) of the fibre norms.

(iv) Let us define

Ψ̂s
jm(β

m
s+1)(αs) = (βms+1)(Insj(αs, S)),

βms+1 ∈ Hom(Ts+1(T∗M)⊗ E; Tm(T∗M)⊗ E), αs ∈ Ts(T∗M)⊗ E

and
τ sm(α

m
s ) = αms ⊗ idT∗M, αms ∈ Hom(Ts(T∗M)⊗ E; Tm(T∗M)⊗ E)

so that Ψs
jm = Ψ̂s

m ◦ τ sm. Note that Ψ̂s
jm = InsS,j so that, by Lemma 4.3,

Dr
∇M,∇πE Ψ̂

s
jm(D

a
∇M,∇πEB

m
s+1) = InsDr

∇M,∇πE
S,j(D

a
∇M,∇πEB

m
s+1).

Since the covariant derivative of the identity tensor is zero,

Da
∇M,∇πE (A

m
s ⊗ idT∗M) = (Da

∇M,∇πEA
m
s )⊗ idT∗M),
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from which we deduce that Da
∇M,∇πE

τ sm = τ sm+a. Thus

Dr
∇M,∇πEΨ

s
jm ◦Da

∇M,∇πEA
m
s = Dr

∇M,∇πE (Ψ̂
s
jm ◦ τ sm) ◦Da

∇M,∇πEA
m
s

= InsDr
∇M,∇πE

S,j(D
a
∇M,∇πEA

m
s ⊗ idT∗M).

By Lemmata 7.6 and 7.2, this part of the lemma follows immediately.
(v) Here we have Ψs

m(α
m
s ) = InsS,j ◦α

m
s and, following the arguments from the preceding

part of the proof,

Dr
∇M,∇πEΨ

s
m ◦Da

∇M,∇πEA
m
s = InsDr

∇M,∇πE
S,j(D

a
∇M,∇πEA

m
s ),

and so this part of the lemma follows from Lemma 7.7.
(vi) This follows from Lemma 7.2 and the fact that the covariant derivative of the

identity tensor is zero. ■

8. Independence of topologies on connections and metrics

The seminorms introduced in Section 2.4 for defining topologies for the space of real
analytic sections of a vector bundle πE : E → M are made upon a choice of various objects,
namely (1) an affine connection ∇M on M, (2) a vector bundle connection ∇πE in E, (3) a
Riemannian metric GM on M, and (4) a fibre metric GπE for E. In order for these topologies
to be useful, they should be independent of all of these choices. This is made more urgent
by our very specific choice in Section 4.1 of a Riemannian metric GE on the total space
E and its Levi-Civita connection. These choices were made because they made available
to us the geometric constructions of Section 4, constructions of which substantial use was
made in Sections 5 and 7, and of which will be made in Section 9, as well as in the present
section.

That the topologies are independent of choices of geometric objects is more or less clear
in the smooth case, but we will rather precisely point out why this is so in our developments
below. In the real analytic case, one must make use of all of the technical developments of
Sections 3–7.

8.1. Comparison of iterated covariant derivatives for different connections. Our con-
structions start by comparing how covariant derivatives of high-order differ when one
changes connection. The reader will see substantial similarity between the results in this
section and those in Sections 4.3 and 5.

We let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. We consider Cr-affine

connections ∇M and ∇M
on M, and vector bundle connections ∇πE and ∇πE in E. It then

holds that
∇M
XY = ∇M

XY + SM(Y,X), ∇πE
X ξ = ∇πE

X ξ + SπE(ξ,X)

for SM ∈ Γr(T1
2(TM)) and SπE ∈ Γr(E∗ ⊗ T∗M⊗ E).

First we relate covariant derivatives of higher-order tensors.
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8.1 Lemma: (Covariant derivatives of higher-order tensors with respect to dif-
ferent connections) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. Consider

Cr-affine connections ∇M and ∇M
on M, and Cr-vector bundle connections ∇πE and ∇πE

in E. If k ∈ Z>0 and if B ∈ Γ1(Tk(T∗M)⊗ E), then

∇M,πEB = ∇M,πEB −
k∑
j=1

Insj(B,SM)− Insk+1(B,SπE).

Proof: We have

LXk+1
(B(X1, . . . , Xk, α)) = (∇M,πE

Xk+1
B)(X1, . . . , Xk, α)

+
k∑
j=1

B(X1, . . . ,∇
M
Xk+1

Xj , . . . , Xk, α) +B(X1, . . . , Xk,∇
πE
Xk+1

α)

= (∇M,πE
Xk+1

B)(X1, . . . , Xk, α) +
k∑
j=1

B(X1, . . . ,∇M
Xk+1

Xj , . . . , Xk, α)

+
k∑
j=1

B(X1, . . . , SM(Xj , Xk+1), . . . , Xk, α) +B(X1, . . . , Xk,∇πE
Xk+1

α)

+B(X1, . . . , Xk, SπE(α,Xk+1)).

This gives

∇M,πEB = ∇M,πEB −
k∑
j=1

Insj(B,SM)− Insk+1(B,SπE),

as claimed. ■

With this lemma, we can provide the following characterisation of iterated covariant
differentials of sections of E with respect to different connections.

8.2 Lemma: (Iterated covariant differentials of sections with respect to different
connections I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. Consider

Cr-affine connections ∇M and ∇M
on M, and Cr-vector bundle connections ∇πE and ∇πE

in E. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(Ams , idE) ∈ VBr(Ts(T∗M⊗ E); Tm(T∗M)⊗ E), s ∈ {0, 1, . . . ,m},

such that

∇M,πE,mξ =

m∑
s=0

Ams (∇M,πE,sξ)

for all ξ ∈ Γm(E). Moreover, the vector bundle mappings Am0 , A
m
1 , . . . , A

m
m satisfy the
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recursion relations prescribed by A0
0(β0) = β0 and

Am+1
m+1(βm+1) = βm+1,

Am+1
s (βs) = (∇M,πEAms )(βs) +Ams−1 ⊗ idT∗M(βs)−

s∑
j=1

Ams ⊗ idT∗M(Insj(βs, SM))

−Ams ⊗ idT∗M(Inss+1(βs, SπE)), s ∈ {1, . . . ,m},

Am+1
0 (β0) = (∇M,πEAm0 )(β0)−Am0 ⊗ idT∗M(Ins1(β0, SπE)),

where βs ∈ Ts(T∗M)⊗ E, s ∈ {0, 1, . . . ,m}.

Proof: The assertion clearly holds for m = 0, so suppose it true for m ∈ Z>0. Thus

∇M,πE,mξ =

m∑
s=0

Ams (∇M,πE,sξ),

where the vector bundle mappings Aas , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the
recursion relations from the statement of the lemma. Then

∇M,πE,m+1
ξ =

m∑
s=0

(∇M,πEAms )(∇M,πE,sξ) +
m∑
s=0

Ams ⊗ idT∗M(∇M,πE∇M,πE,sξ)

=

m∑
s=0

(∇M,πEAms )(∇M,πE,sξ) +
m∑
s=0

Ams ⊗ idT∗M(∇M,πE,s+1ξ)

−
m∑
s=1

s∑
j=1

Ams ⊗ idT∗M(Insj(∇M,πE,sξ, SM))

−
m∑
s=1

Ams ⊗ idT∗M(Inss+1(∇M,πE,sξ, SπE))−Am0 ⊗ idT∗M(Ins1(ξ, SπE))

= ∇M,πE,m+1ξ +

m∑
s=1

(
(∇M,πEAms )(∇M,πE,sξ) +Ams−1 ⊗ idT∗M(∇M,πE,sξ)

−
s∑
j=1

Ams ⊗ idT∗M(Insj(∇M,πE,sξ, SM))− Ams ⊗ idT∗M(Inss+1(∇M,πE,sξ, SπE))


− (∇M,πEAm0 )(ξ)−Am0 ⊗ idT∗M(Ins1(ξ, SπE))

by Lemma 8.1. From this, the lemma follows. ■

The lemma has an “inverse” which we state next.

8.3 Lemma: (Iterated covariant differentials of sections with respect to different
connections II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. Consider

Cr-affine connections ∇M and ∇M
on M, and Cr-vector bundle connections ∇πE and ∇πE

in E. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(Bm
s , idE) ∈ VBr(Ts(T∗M⊗ E); Tm(T∗M)⊗ E), s ∈ {0, 1, . . . ,m},
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such that

∇M,πE,mξ =

m∑
s=0

Bm
s (∇M,πE,sξ)

for all ξ ∈ Γm(E). Moreover, the vector bundle mappings Bm
0 , B

m
1 , . . . , B

m
m satisfy the

recursion relations prescribed by B0
0(α0) = β0 and

Bm+1
m+1(αm+1) = αm+1,

Bm+1
s (αs) = (∇M,πEBm

s )(αs) +Bm
s−1 ⊗ idT∗M(αs) +

m∑
j=1

Insj(B
m
s (αs), SM)

+ Insm+1(B
m
s (αsξ), SπE), s ∈ {1, . . . ,m},

Bm+1
0 (α0) = (∇M,πEBm

0 )(α0) +
m∑
j=1

Insj(B
m
0 (α0), SM) + Insm+1(B

m
0 (α0), SπE),

where αs ∈ Ts(T∗M)⊗ E, s ∈ {0, 1, . . . ,m}.
Proof: The lemma is clearly true for m = 0, so suppose it true for m ∈ Z>0. Thus

∇M,πE,mξ =
m∑
s=0

Bm
s (∇M,πE,sξ), (8.1)

where the vector bundle mappings Ba
s , a ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , a}, satisfy the

recursion relations given in the lemma. Then, working with the left-hand side of this
relation,

∇M,πE∇M,πE,mξ = ∇M,πE,m+1ξ −
m∑
j=1

Insj(∇M,πE,mξ, SM)− Insm+1(∇M,πE,mξ, SπE)

= ∇M,πE,m+1ξ −
m∑
s=0

m∑
j=1

Insj(B
m
s (∇M,πE,sξ), SM)

−
m∑
s=0

Insm+1(B
m
s (∇M,πE,sξ), SπE),

by Lemma 8.1. Now, working with the right-hand side of (8.1),

∇M,πE∇M,πE,mξ =
m∑
s=0

(∇M,πEBm
s )(∇M,πE,mξ) +

m∑
s=0

Bm
s ⊗ idT∗M(∇M,πE,m+1

ξ).

Combining the preceding two computations,

∇M,πE,m+1ξ = ∇M,πE,m+1
ξ +

m∑
s=1

(
(∇M,πEBm

s )(∇M,πE,sξ) +Bm
s−1 ⊗ idT∗M(∇M,πE,sξ)

+
m∑
j=1

Insj(B
m
s (∇M,πE,sξ), SM) + Insm+1(B

m
s (∇M,πE,sξ), SπE)


+ (∇M,πEBm

0 )(ξ) +

m∑
j=1

Insj(B
m
0 (ξ), SM) + Insm+1(B

m
0 (ξ), SπE),

and from this the lemma follows. ■
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Now we give symmetrised versions of the preceding lemmata, since it is these that are
required for computations with jets.

8.4 Lemma: (Iterated symmetrised covariant differentials of sections with re-
spect to different connections I) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector

bundle. Consider Cr-affine connections ∇M and ∇M
on M, and Cr-vector bundle connec-

tions ∇πE and ∇πE in E. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(Âms , idE) ∈ VBr(Ts(T∗M⊗ E); Tm(T∗M)⊗ E), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗ idE) ◦ ∇M,πE,mξ =

m∑
s=0

Âms ((Syms⊗ idE) ◦ ∇M,πE,sξ)

for all ξ ∈ Γm(E).

Proof: We define Am : T≤m(T∗M)⊗ E → T≤m(T∗M)⊗ E by

Am(ξ,∇πEξ, . . . ,∇M,πE,mξ) =

(
A0

0(ξ),

1∑
s=0

A1
s(∇M,πE,sξ), . . . ,

m∑
s=0

Ams (∇M,πE,sξ)

)
.

Let us organise the mappings we require into the following diagram:

T≤m(T∗M)⊗ E
Sym≤m ⊗ idE //

Am

��

S≤m(T∗M)⊗ E
Sm

∇M
,∇πE //

Âm

��

JmE

T≤m(T∗M)⊗ E
Sym≤m ⊗ idE // S≤m(T∗M)⊗ E

Sm
∇M,∇πE // JmE

(8.2)

Here Âm is defined so that the right square commutes. We shall show that the left square
also commutes. Indeed,

Âm ◦ Sym≤m⊗ idE(ξ,∇πEξ, . . . ,∇M,πE,mξ)

= (Sm
∇M

,∇πE
)−1 ◦ Sm∇M,∇πE

◦ (Sym≤m⊗ idE)(ξ,∇
πEξ, . . . ,∇M,πE,mξ)

= Sym≤m⊗ idVE(ξ,∇
πEξ, . . . ,∇M,πE,mξ)

= (Sym≤m⊗ idE) ◦Am(ξ,∇πEξ, . . . ,∇M,πE,mξ).

Thus the diagram (8.2) commutes. Thus, if we define

Âms ((Syms⊗ idE) ◦ ∇M,πE,sξ) = (Symm⊗ idE) ◦Ams (∇M,πE,sξ), (8.3)

then we have

(Symm⊗ idE) ◦ ∇M,πE,mξ =

m∑
s=0

Âms ((Syms⊗ idE) ◦ ∇M,πE,sξ),

as desired. ■

The previous lemma has an “inverse” which we state next.
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8.5 Lemma: (Iterated symmetrised covariant differentials of sections with re-
spect to different connections II) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector

bundle. Consider Cr-affine connections ∇M and ∇M
on M, and Cr-vector bundle connec-

tions ∇πE and ∇πE in E. For m ∈ Z≥0, there exist Cr-vector bundle mappings

(B̂m
s , idE) ∈ VBr(Ts(T∗M⊗ E); Tm(T∗M)⊗ E), s ∈ {0, 1, . . . ,m},

such that

(Symm⊗ idE) ◦ ∇M,πE,mξ =

m∑
s=0

B̂m
s ((Syms⊗ idE) ◦ ∇M,πE,sξ)

for all ξ ∈ Γm(E).

Proof: The proof here is identical with the proof of Lemma 8.4, making the obvious nota-
tional transpositions. ■

The preceding four lemmata combine to give the following result.

8.6 Lemma: (Decompositions of jets of sections with respect to different con-
nections) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. Consider Cr-affine

connections ∇M and ∇M
on M, and Cr-vector bundle connections ∇πE and ∇πE in E. For

m ∈ Z≥0, there exist Cr-vector bundle mappings

Am ∈ VBr(JmE; S≤m(T∗M)⊗ E), Bm ∈ VBr(JmE; S≤m(T∗M)⊗ E),

defined by

Am(jmξ(x)) = Sym≤m⊗ idE(ξ(x),∇πEξ(x), . . . ,∇M,πE,mξ(x)),

Bm(jmξ(x)) = Sym≤m⊗ idVE(ξ(x),∇
πEξ(x), . . . ,∇M,πE,mξ(x)).

Moreover, Am and Bm are isomorphisms, and

Bm ◦ (Am)−1 ◦ (Sym≤m⊗ idE)(ξ(x),∇πEξ(x), . . . ,∇M,πE,mξ(x))

=

(
ξ(x),

1∑
s=0

Â1
s((Syms⊗ idE) ◦ ∇M,πE,sξ(x)), . . . ,

m∑
s=0

Âms ((Syms⊗ idE) ◦ ∇M,πE,sξ(x))

)
and

Am ◦ (Bm)−1 ◦ (Sym≤m⊗ idE)(ξ(x),∇
πEξ(x), . . . ,∇M,πE,mξ(x))

=

(
ξ(x),

1∑
s=0

B̂1
s((Syms⊗ idE) ◦ ∇M,πE,sξ(e)), . . . ,

m∑
s=0

B̂m
s ((Syms⊗ idE) ◦ ∇M,πE,sξ(x))

)
,

where the vector bundle mappings Âms and B̂m
s , s ∈ {0, 1, . . . ,m}, are as in Lemmata 8.4

and 8.5.

8.2. Comparison of metric-related notions for different connections and metrics. We
next consider how various constructions involving Riemannian metrics and fibre metrics
vary when one varies the fibre metrics. The first result concerns fibre norms for tensor
products induced by a fibre metric.
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8.7 Lemma: (Comparison of fibre norms for different fibre metrics) Let πE : E → M
be a smooth vector bundle and let G1 and G2 be smooth fibre metrics on E. Let K ⊆ M be
compact. Then there exist C, σ ∈ R>0 such that

σr+s

C
∥A(x)∥G2

≤ ∥A(x)∥G1
≤ C

σr+s
∥A(x)∥G2

for all A ∈ Γ0(Trs(E)), r, s ∈ Z≥0, and x ∈ K.

Proof: We begin by proving a linear algebra result.

1 Sublemma: If G1 and G2 are inner products on a finite-dimensional R-vector space V,
then there exists C ∈ R>0 such that

C−1G1(v, v) ≤ G2(v, v) ≤ CG1(v, v)

for all v ∈ V.

Proof: Let G♭j ∈ HomR(V;V
∗) and G♯j ∈ HomR(V

∗;V), j ∈ {1, 2}, be the induced linear
maps. Note that

G1(G
♯
1
◦G♭2(v1), v2) = G2(v1, v2) = G2(v2, v1) = G1(G

♯
1
◦G♭2(v2), v1),

showing that G♯1 ◦ G♭2 is G1-symmetric. Let (e1, . . . , en) be a G1-orthonormal basis for V

that is also a basis of eigenvectors for G♯1 ◦G♭2. The matrix representatives of G1 and G2 are
then

[G1] =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , [G2] =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,
where λ1, . . . , λn ∈ R>0. Let us assume without loss of generality that

λ1 ≤ · · · ≤ λn.

Then taking C = max{λn, λ−1
1 } gives the result, as one can verify directly. ▼

Next we use the preceding sublemma to give the linear algebraic version of the lemma.

2 Sublemma: Let V be a finite-dimensional R-vector space and let G1 and G2 be inner
products on V. Then there exist C, σ ∈ R>0 such that

σr+s

C
∥A∥G2

≤ ∥A∥G1
≤ C

σr+s
∥A∥G2

for all A ∈ Trs(V), r, s ∈ Z≥0.

Proof: As in the proof of Sublemma 1, let (e1, . . . , en) be a G1-orthonormal basis for V

consisting of eigenvectors forG♯1◦G
♭
2. Let λ1, . . . , λn ∈ R>0 be the corresponding eigenvalues,

supposing that
λ1 ≤ · · · ≤ λn.
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Note that G2(ej , ek) = δjkλj , j ∈ {1, . . . , n}, (δjk being the Kronecker delta symbol) so
that (ê1 ≜ λ−1

1 e1, . . . , ên ≜ λ−1
n en) is a G2-orthonormal basis. Denote by (e1, . . . , en) and

(ê1, . . . , ên) be the dual bases. Note that êj = λje
j , j ∈ {1, . . . , n}.

Now let A ∈ Trs(V) and write

A =
n∑

j1,...,jr=1

n∑
k1,...,ks=1

Aj1···jrk1···ksej1 ⊗ · · · ⊗ ejr ⊗ ek1 ⊗ · · · ⊗ eks

and

A =
n∑

j1,...,jr=1

n∑
k1,...,ks=1

Âj1···jrk1···ks êj1 ⊗ · · · ⊗ êjr ⊗ êk1 ⊗ · · · ⊗ êks .

We necessarily have

Âj1···jrk1···ks = λj1 · · ·λjrλ−1
k1

· · ·λ−1
ks
Aj1···jrk1···ks , j1, . . . , jr, k1, . . . , ks ∈ {1, . . . , n}.

We have

∥A∥G1
=

 n∑
j1,...,jr=1

n∑
k1,...,ks=1

∣∣∣Aj1···jrk1···ks

∣∣∣2
1/2

, ∥A∥G2
=

 n∑
j1,...,jr=1

n∑
k1,...,ks=1

∣∣∣Âj1···jrk1···ks

∣∣∣2
1/2

.

Therefore, if we let σ = min{λ1, λ−1
n }, we have

∥A∥G2
≤ σ−(r+s)∥A∥G1

.

This gives one half of the estimate in the sublemma, and the other is established analogously.
▼

The lemma follows from the preceding sublemma since C and σ depend only on G1 and
G2 through the largest and smallest eigenvalues of G♯1 ◦ G♭2, which are uniformly bounded
above and below on K. ■

Now we can compare fibre norms for jet bundles associated with different metrics and
connections.

8.8 Lemma: (Comparison of fibre norms for jet bundles for different metrics and
connections) Let r ∈ {∞, ω} and let πE : E → M be a Cr-vector bundle. Consider Cr-

affine connections ∇M and ∇M
on M, and Cr-vector bundle connections ∇πE and ∇πE in

E. Consider Cr-Riemannian metrics GM and GM for M, and Cr-fibre metrics GπE and
GπE for E. Let K ⊆ M be compact. Then there exist C, σ ∈ R>0 such that

σm

C
∥jmξ(x)∥GM,πE,m

≤ ∥jmξ(x)∥GM,πE,m
≤ C

σm
∥jmξ(x)∥GM,πE,m

for all ξ ∈ Γm(E), m ∈ Z≥0, and x ∈ K.

Proof: We first make some preliminary constructions that will be useful.
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By Lemma 8.4, we have

ξ(x) = Â0
0ξ(x),

(Sym1⊗ idE)∇
πEξ(x) = Â1

1(∇πEξ(x)) + Â1
0(ξ(x)),

...

(Symm⊗ idE) ◦ ∇M,πE,mξ(x) =
m∑
s=0

Âms ((Syms⊗ idE) ◦ ∇M,πE,sξ(x)).

(8.4)

In like manner, by Lemma 8.5, we have

ξ(x) = B̂0
0ξ(x),

(Sym1⊗ idE)∇πEξ(x) = B̂1
1(∇

πEξ(x)) + B̂1
0(ξ(x)),

...

(Symm⊗ idE) ◦ ∇M,πE,mξ(x) =

m∑
s=0

B̂m
s ((Syms⊗ idE) ◦ ∇M,πE,sξ(x)).

(8.5)

By Lemma 7.3, we have

∥Ams (βs)∥GM,πE
≤ ∥Ams ∥GM,πE

∥βs∥GM,πE

for βs ∈ Ts(T∗M)⊗ E, m ∈ Z>0, s ∈ {0, 1, . . . ,m}. By Lemma 7.5,

∥Syms(A)∥GM,πE
≤ ∥A∥GM,πE

for A ∈ Ts(T∗E) and s ∈ Z>0. Thus, recalling (8.3),

∥Âms (Syms(βs))∥GM,πE
= ∥Symm ◦Ams (βs)∥GM,πE

≤ ∥Ams ∥GE
∥βs∥GM,πE

,

for βs ∈ Ts(π∗ET
∗M)⊗ E, m ∈ Z>0, s ∈ {1, . . . ,m}.

By Lemmata 7.8 and 7.9 with r = 0, there exist σ1, ρ1 ∈ R>0 such that

∥Aks(x)∥GM,πE
≤ σ−k1 ρ

−(k−s)
1 (k − s)!, k ∈ Z≥0, s ∈ {0, 1, . . . , k}, x ∈ K.

Without loss of generality, we assume that σ1, ρ1 ≤ 1. Thus, abbreviating σ2 = σ1ρ1, we
have

∥Âks((Syms⊗ idE) ◦ ∇M,πE,sξ(x)∥GM,πE
≤ C1σ

−k
2 (k − s)!∥(Syms⊗ idE) ◦ ∇M,πE,sξ(x)∥GM,πE

for m ∈ Z≥0, k ∈ {0, 1, . . . ,m}, s ∈ {0, 1, . . . , k}, x ∈ K. Thus, by (1.3) and (8.5),

∥jmξ(x)∥GM,πE,m
≤

m∑
k=0

1

k!
∥(Symk⊗ idE) ◦ ∇M,πE,kξ(x)∥GM,πE

=

m∑
k=0

1

k!

∥∥∥∥∥
k∑
s=0

Âks((Syms⊗ idE) ◦ ∇M,πE,sξ(x))

∥∥∥∥∥
GM,πE

≤
m∑
k=0

k∑
s=0

C1σ
−k
2

s!(k − s)!

k!

1

s!
∥(Syms⊗ idE) ◦ ∇M,πE,sξ(x)∥GM,πE
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for x ∈ K and m ∈ Z≥0. Now note that

s!(k − s)!

k!
≤ 1, C1σ

−k
2 ≤ C1σ

−m
2 ,

for s ∈ {0, 1, . . . ,m}, k ∈ {0, 1, . . . , s}, since σ2 ≤ 1. Then

∥jmξ(x)∥GM,πE,m
≤ C1σ

−m
2

m∑
k=0

k∑
s=0

1

s!
∥(Syms⊗ idE) ◦ ∇M,πE,sξ(x)∥GM,πE

≤ C1σ
−m
2

m∑
k=0

m∑
s=0

1

s!
∥(Syms⊗ idE) ◦ ∇M,sξ(x)∥GM,πE

= (m+ 1)C1σ
−m
2

m∑
s=0

1

s!
∥(Syms⊗ idE) ◦ ∇M,πE,sξ(x)∥GM,πE

.

Now let σ < σ2 and note that

lim
m→∞

(m+ 1)
σ−m2

σ−m
= 0.

Thus there exists N ∈ Z>0 such that

(m+ 1)C1σ
−m
2 ≤ C1σ

−m, m ≥ N.

Let

C = max

{
C1, 2C1

σ

σ2
, 3C1

(
σ

σ2

)2

, . . . , (N + 1)C1

(
σ

σ2

)N}
.

We then immediately have (m + 1)C1σ
−m
2 ≤ Cσ−m for all m ∈ Z≥0. We then have,

using (1.3),

∥jmξ(x)∥GM,πE,m
≤ Cσ−m

m∑
s=0

1

s!
∥(Syms⊗ idE) ◦ ∇M,πE,sξ(x)∥GM,πE

= C
√
mσ−m∥jmξ(x)∥GM,πE,m

.

After modifying C and σ in the manner of the computations just preceding, we have

∥jmξ(x)∥GM,πE,m
≤ Cσ−m∥jmξ(x)∥GM,πE,m

.

This gives one half of the desired pair of estimates.
For the other half of the estimate, we use (8.5), and Lemmata 7.8 and 7.9 in the

computations above to arrive at the estimate

∥jmξ(x)∥GM,πE,m
≤ Cσ−m∥jmξ(x)∥GM,πE,m

,

which gives the result. ■
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8.9 Remark: (Adaptation to the smooth case) The preceding result holds in the
smooth case, and with a much easier proof. In the result, one can replace “Cσ−m” with a
fixed constant “C” for each m. For this reason, the proof is also far simpler, as one need
not keep track of all the factorial terms that give rise to the exponential component in the
estimates. •

8.3. Local descriptions of the real analytic topology. We endeavour to make our presen-
tation as unencumbered of coordinates as possible. While the intrinsic jet bundle charac-
terisations of the seminorms are useful for abstract definitions and proofs, concrete proofs
often require local descriptions of the topologies. In this section we provide these local
descriptions of the topologies. By proving that these local descriptions are equivalent to
the intrinsic descriptions above, we also prove that these intrinsic descriptions of topologies
do not depend on the choice of metrics or connections.

Let us develop the notation for working with local descriptions of topologies. Let U ⊆ Rn
be an open set and let Φ ∈ Cω(U;Rk). We define local seminorms as follows. For K ⊆ U

compact and for a ∈ c0(Z≥0;R>0), denote

p′ωK,a(Φ) = sup
{a0a1 · · · am

I!
|DIΦa(x)|

∣∣∣
x ∈ K, a ∈ {1, . . . , k}, I ∈ Zn≥0, |I| ≤ m, m ∈ Z≥0

}
.

These seminorms, defined for all compact K ⊆ U and a ∈ c0(Z≥0;R>0), define the local
Cω-topology for Cω(U;Rk).

There are many possible variations of the seminorms that one can use, and these varia-
tions are equivalent to the seminorms above. For example, rather than using the ∞-vector
norm, one might use the 2-vector norm. In doing so, one uses (1.3) to give

sup{|DIΦa(x)| | I ∈ Zn≥0, |I| = m, a ∈ {1, . . . , k}} ≤ ∥DmΦ(x)∥

≤
√
knm sup{|DIΦa(x)| | I ∈ Zn≥0, |I| = m, a ∈ {1, . . . , k}}.

If we define
b0 = 2

√
ka0, bj = 2

√
naj , j ∈ Z>0,

then, noting that nj ≤ nm for j ∈ {0, 1, . . . ,m} and that m+1 ≤ 2m for m ∈ Z≥0, we have

p′ωK,a(Φ) ≤ sup
{a0a1 · · · am

I!
∥DmΦ(x)∥

∣∣∣
x ∈ K, I ∈ Zn≥0, |I| ≤ m, m ∈ Z≥0

}
≤ p′ωK,b(Φ),

and this gives equivalence of the topologies using the ∞- and 2-norms. Another variation
in the seminorms is that one might scale the derivatives by 1

|I|! rather than
1
I! . In this case,

we use the standard multinomial estimate (7.1) to give

|I|!
I!

≤ nm.

Thus, if we take
b0 = a0, bj = naj , j ∈ Z>0,
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we have

p′ωK,b(Φ) ≤

sup

{
a0a1 · · · am

|I|!
|DIΦa(x)|

∣∣∣∣ x ∈ K, a ∈ {1, . . . , k}, I ∈ Zn≥0, |I| ≤ m, m ∈ Z≥0

}
≤ p′ωK,a(Φ).

This gives the equivalence of the topologies defined using the scaling factor 1
|I|! for derivatives

in place of 1
I! . One can also combine the previous modifications. Indeed, if we use the 2-norm

and the scaling factor 1
|I!| , then one readily sees that we recover the intrinsic seminorms on

the trivial vector bundle RkU of Section 2.4 using (1) the Euclidean inner product for the
Riemannian metric on U and for the fibre metric on Rk and (2) standard differentiation as
covariant differentiation. We shall use this observation in the proof of Theorem 8.10 below.

We wish to show that these local topologies can be used to define a topology for Γω(E)
that is equivalent to the intrinsic topologies defined in Section 2.4 using jet bundles, con-
nections, and metrics. To state the result, let us indicate some notation. Let (V, ψ) be
a vector bundle chart for πE : E → M with (U, ϕ) the induced chart for M. Suppose that
ψ(V) = ϕ(U)×Rk. Given a section ξ, we define ψ∗(ξ) : ϕ(U) → Rk by requiring that

ψ ◦ ξ ◦ ϕ−1(x) = (x, ψ∗(ξ)(x)).

With this notation, we have the following result.

8.10 Theorem: (Agreement of intrinsic and local topologies) Let πE : E → M be a
Cω-vector bundle. Let GM be a Riemannian metric on M, let GπE be a vector bundle metric
on E, let ∇M be an affine connection on M, and let ∇πE be a vector bundle connection on
E, with all of these being of class Cω. Then the following two collections of seminorms for
Γω(E) define the same topology:

(i) pωK,a, a ∈ c0(Z≥0;R>0), K ⊆ M compact;

(ii) p′ωK,a ◦ ψ∗, a ∈ c0(Z≥0;R>0), K ⊆ ϕ(U) compact, (V, ψ) is a vector bundle chart for
E with (U, ϕ) the induced chart for M.

Proof: As alluded to in the discussion above, it suffices to use the norm

∥DmΦ(x)∥2 =

 ∑
I∈Zn

≥0

|I|=m

k∑
a=1

|DIΦa(x)|2


1/2

for derivatives of Rk-valued functions on U ⊆ Rn. If we denote

jmΦ(x) = (Φ(x),DΦ(x), . . . ,DmΦ(x)),

then we define

∥jmΦ(x)∥22,m =
m∑
j=0

1

(j!)2
∥DjΦ(x)∥22,
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this norm agreeing with the fibre norms used in Section 2.4 with the flat connections and
with the Euclidean inner products. We use these norms to define seminorms that we denote
by q′ in place of the local seminorms p′ as above.

We might like to use Lemma 8.8 in this proof. However, we cannot do so. The reason for
this is that the proof of Lemma 8.8 makes reference to Lemma 7.8. The proof of this lemma
relies on the bound (7.3), which is deduced from Lemma 2.3. The proof of Lemma 2.3
in [Jafarpour and Lewis 2014], we note, relies on exactly what we are now proving. To
intrude on the potential circular logic, we must give a proof of this part of the theorem that
does not rely on Lemma 8.8. In fact, the only part of the chain of results that we need to
prove independently is the bound (7.3). In particular, if we can show that Lemma 8.8 holds
in the current situation where

1. M = U ⊆ Rn and E = RkU,

2. GU and GπE are the Euclidean inner products, and

3. ∇M
and ∇πE are the flat connections,

this will be enough to make use of this result.
Let (V, ψ) be a vector bundle chart for E with (U, ϕ) the chart for M. Standard estimates

for real analytic functions [e.g., Krantz and Parks 2002, Proposition 2.2.10] give C1, σ1 ∈
R>0 such that

∥Dr
∇U,∇

πESU(x)∥2, ∥Dr
∇U,∇

πESπE(x)∥2 ≤ C1σ
−r
1 r!, x ∈ K.

This gives the bound (7.3) in this case, and so we can use Lemma 7.9, and then Lemma 7.8,
and then the computation of Lemma 8.8 to give

σm

C
∥jmξ∥GM,πE,m

≤ ∥jm(ψ∗(ξ))(ϕ(x))∥2,m ≤ C

σm
∥jmξ∥GM,πE,m

.

Now, having established Lemma 8.8 in the case of interest, we proceed with the proof,
making use of this fact.

Let K ⊆ ϕ(U) be compact and let a ∈ c0(Z≥0;R>0). As per our appropriate version of
Lemma 8.8, there exist C, σ ∈ R>0 such that

∥jm(ψ∗(ξ))(ϕ(x))∥2,m ≤ C

σm
∥jmξ(x)∥GM,πE,m

for every ξ ∈ Γω(E), x ∈ ϕ−1(K), and m ∈ Z≥0. Then

a0a1 · · · am∥jm(ψ∗(ξ))(ϕ(x))∥2,m ≤ Ca0a1 · · · am
σm

∥jmξ(x)∥GM,πE,m

for every ξ ∈ Γω(E), x ∈ ϕ−1(K), and m ∈ Z≥0. Define b ∈ c0(Z≥0;R>0) by

b0 = Ca0, bj =
aj
σ
, j ∈ Z>0.

Then, taking supremums of the preceding inequality gives

q′ωK,a ◦ ψ∗(ξ) ≤ pωϕ−1(K),b(ξ)

for ξ ∈ Γω(E).
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Now let K ⊆ M be compact and let a ∈ c0(Z≥0;R>0). Let x ∈ K and let (Vx, ψx) be
a vector bundle chart for E with (Ux, ϕx) the chart for M with x ∈ Ux. We suppose that
Ux is relatively compact and that, by our appropriate version of Lemma 8.8, there exist
Cx, σx ∈ R>0 such that

∥jmξ(y)∥GM,πE,m
≤ Cx
σmx

∥jm(ψ∗ξ)(y)∥m,2

for ξ ∈ Γω(E), y ∈ cl(Ux), m ∈ Z≥0. Therefore,

a0a1 · · · am∥jmξ(y)∥GπE,m
≤ Cxa0a1 · · · am

σmx
∥jm(ψ∗ξ)(y)∥m,2

for ξ ∈ Γω(E), y ∈ cl(Ux), m ∈ Z≥0. Compactness of K gives x1, . . . , xs ∈ K such that
K ⊆ ∪sj=1Uxj and we then take

C = max{Cx1 , . . . , Cxs}, σ = min{σx1 , . . . , σxs}.

We define b ∈ c0(Z≥0;R>0) by

b0 = Ca0, bj =
aj
σ
, j ∈ Z>0.

We then arrive at the inequality

pωK,a(ξ) ≤ q′ωcl(Ux1 ),b
◦ ψx1∗(ξ) + · · ·+ q′ωcl(Uxs ),b

◦ ψxs∗(ξ)

which is valid for ξ ∈ Γω(E). ■

8.11 Remark: (Adaptation to the smooth case) The preceding theorem holds in the
smooth case. The proof is slightly simpler in the smooth case, unlike in the proof of
Lemma 8.8 where the smooth case is significantly simpler than the real analytic case. Note
also that, in the smooth case, one does not need the local estimates for derivatives of real
analytic functions, so this also significantly simplifies the logic. •

An immediate consequence of the theorem is that the topologies defined by the semi-
norms of Section 2.4 are independent of the choice of connections ∇M and ∇πE , Riemannian
metric GM, and vector bundle metric GπE , since the preceding result shows that all such
topologies are the same as the one defined by local seminorms.

9. Continuity of standard geometric operations

In this section we put to use the somewhat complicated results of the preceding sections
to prove the continuity of standard algebraic and differential operations on real analytic
manifolds. The reader will notice as they go through the proofs that there are definite
themes that emerge from the various proofs of continuity. Moreover, we take full advan-
tage of the results from Section 7.1 that were nominally developed to prove the bounds
of Lemma 7.8, so illustrating their general utility. We hope that a demonstration of the
collection of results—some easy, other less easy—will prove useful.



Geometric analysis on real analytic manifolds 127

As a general comment on the results in this section, we shall prove in many cases
that certain linear mappings between spaces of sections of real analytic vector bundles
are continuous and open onto their image, i.e., homeomorphisms onto their image. One
might hope to do this with a general Open Mapping Theorem. Indeed, since the space of
real analytic sections of a vector bundle is both webbed and ultrabornological, one is in
a perhaps in a position to use the Open Mapping Theorem of De Wilde [1967] (see also
[Meise and Vogt 1997, Theorem 24.30]). However, since the images of our mappings are
not necessarily ultrabornological (even closed subspaces of ultrabornological spaces may not
be ultrabornological), we typically prove the openness by a direct argument, by virtue of
our having given in Section 5 relations between iterated covariant derivatives going “both
ways.” Moreover, the use of seminorms to prove these results is in keeping with the general
tenor of this work.

As we have indicated as we have been going along, the results in this section are ap-
plicable to the smooth case. We shall indicate the modifications required in sample cases,
with the general situation following easily from these.

9.1. Continuity of algebraic operations. We begin with a consideration of continuity of
standard algebraic operations with vector bundles.

9.1 Theorem: (Continuity of algebraic operations) Let πE : E → M and πF : F → M
be Cω-vector bundles. Then the following mappings are continuous:

(i) Γω(E)⊕ Γω(E) ∋ (ξ, η) 7→ ξ + η ∈ Γω(E);

(ii) Γω(F⊗ E∗)× Γω(E) ∋ (L, ξ) 7→ L ◦ ξ ∈ Γω(F).

Also, fixing an injective vector bundle mapping L ∈ Γω(F ⊗ E∗), the following mapping is
open onto its image:

(iii) Γω(E) ∋ ξ 7→ L ◦ ξ ∈ Γω(F).

Proof: We suppose that we have a real analytic affine connection∇M onM, and real analytic
vector bundle connections ∇πE and ∇πF in E and F, respectively. We suppose that we have
a real analytic Riemannian metric GM on M, and real analytic fibre metrics GπE and GπF
on E and F, respectively. This gives the seminorms pωK,a and qωK,a, K ⊆ M compact,
a ∈ c0(Z≥0;R>0), for Γω(E) and Γω(F), respectively. We denote the induced seminorms
for Γω(F⊗ E∗) by qωK,a ⊗ pωK,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0).

(i) The fibre norms from Section 2.3 satisfy the triangle inequality, and this readily gives

pωK,a(ξ + η) ≤ pωK,a(ξ) + pωK,a(η),

which immediately gives this part of the result.
(ii) Let us make some preliminary computations from which this part of the theorem

will follow easily.
First, by Lemma 7.3, we have

∥L ◦ ξ(x)∥GM,πF
≤ ∥L(x)∥GM,πF⊗πE

∥ξ(x)∥GM,πE
. (9.1)

Next, by Lemmata 4.4, 7.3, and 7.5, we have

∥Dk
∇M,∇πF (L ◦ ξ(x))∥GM,πF

≤
k∑
j=0

(
k

j

)
∥Dj

∇M,∇πF⊗πE
L(x)∥GM,πF⊗πE

∥Dk−j
∇M,∇πE

ξ(x)∥GM,πE
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for k ∈ Z>0. By (1.3) (twice) we have

∥jm(L ◦ ξ)(x)∥GM,πF,m
≤

m∑
k=0

1

k!
∥Dk

∇M,∇πF (L ◦ ξ(x))∥GM,πF

≤
m∑
k=0

1

k!

k∑
j=0

(
k

j

)
∥Dj

∇M,∇πF⊗πE
L(x)∥GM,πF⊗πE

∥Dk−j
∇M,∇πE

ξ(x)∥GM,πE

=
m∑
k=0

k∑
j=0

∥Dj

∇M,∇πF⊗πE
L(x)∥GM,πF⊗πE

j!

∥Dk−j
∇M,∇πE

ξ(x)∥GM,πE

(k − j)!

≤ (m+ 1)2 sup

∥Dj

∇M,∇πF⊗πE
L(x)∥GM,πF⊗πE

j!

∣∣∣∣∣∣ j ≤ m


× sup

∥Dk−j
∇M,∇πE

ξ(x)∥GM,πE

(k − j)!

∣∣∣∣∣∣ j ≤ m


≤ (m+ 1)5/2∥jmL(x)∥GM,πF⊗πE,m

∥jmξ(x)∥GM,πE,m
.

Noting that (m+ 1)5/2 ≤ 3m+1, m ∈ Z>0, we finally get

∥jm(L ◦ ξ)(x)∥GM,πF,m
≤ 3m+1∥jmL(x)∥GM,πF⊗πE,m

∥jmξ(x)∥GM,πE,m
. (9.2)

Let K ⊆ M be compact and let a ∈ c0(Z≥0;R>0). Define define a′ ∈ c0(Z≥0;R>0) by
a′j =

√
3aj , j ∈ Z≥0. We then have

qωK,a(L ◦ ξ) ≤ CqωK,a′ ⊗ pωK,a′(L)pωK,a′(ξ) = C(qωK,a′ ⊗ pωK,a′)⊗ pωK,a′(L⊗ ξ).

By [Jarchow 1981, Theorem 15.1.2], this gives continuity of the bilinear map (L, ξ) 7→ L ◦ ξ.
(iii) We first prove a couple of technical lemmata.

1 Lemma: Let U and V be locally convex topological vector spaces, and let L ∈ L(U;V). If,
for every continuous seminorm q for U, there exists a continuous seminorm p for V such
that

q(u) ≤ p(L(u)), u ∈ U,

then L is an open mapping onto its image.

Proof: First we prove that there are 0-bases BU for U and BV for V such that, for each
B ∈BU, there exists C ∈BV such that

C ∩ image(L) ⊆ L(B).

To see this, first let q be a continuous seminorm for U and let p be a continuous seminorm
for V satisfying

q(u) ≤ p(L(u)), u ∈ U.

Then
p(L(u)) < 1 =⇒ q(u) < 1 =⇒ L(u) ∈ L(q−1([0, 1)).
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Thus
p−1([0, 1)) ∩ image(L) ⊆ L(q−1([0, 1))).

Now let BU be the collection of all 0-neighbourhoods of the form

B = ∩kj=1q
−1
j ([0, 1)), k ∈ Z>0, qj a continuous seminorm, j ∈ {1, . . . , k}.

This is a 0-base for U. For each such B, we let pj be continuous seminorm for V corre-
sponding to qj by

qj(u) ≤ pj(L(u)), u ∈ U, j ∈ {1, . . . , k}.

Then, by our above computations,(
∩kj=1p

−1
j ([0, 1))

)
∩ image(L) ⊆ L

(
∩kj=1q

−1
j ([0, 1))

)
.

Thus, the 0-base

∩kj=1p
−1
j ([0, 1)), k ∈ Z>0, pj a continuous seminorm, j ∈ {1, . . . , k},

for V has the desired property.
Now let O ⊆ V be open and let u ∈ O. Let B ∈ BU be such that u + B ⊆ O and let

C ∈BV be such that C ∩ image(L) ⊆ L(B). Then

L(u) + C ∩ image(L) ⊆ L(u) + L(B) = L(u+B) ⊆ L(O).

Thus L(u) + C ∩ image(L) is a neighbourhood of L(u) in L(O) which shows that L(O) is
open in image(L). ▼

2 Lemma: If L is injective, then there exists a left-inverse L′ ∈ Γω(E⊗ F∗).

Proof: First we note that image(L) is a Cω-subbundle of F and that L is a Cω-vector bundle
isomorphism onto image(L). Let G ⊆ F be the GπE-orthogonal complement to image(L)
which is then itself a Cω-subbundle of F. Clearly, F = image(L)⊕ G. Let

L′ : image(L)⊕ G → E

(L(e), g) 7→ e,

and note that L′ is obviously a left-inverse of L. It is also of class Cω since the projection
from F to the summand image(L) is of class Cω. ▼

By Lemma 2 we suppose that there is a Cω-vector bundle mapping L′ that is a left-
inverse for L. Then, from the first part of the proof, for a compact K ⊆ M and for
a ∈ c0(Z≥0;R>0), let C ∈ R>0 be such that

pωK,a(L
′ ◦ η) ≤ CqωK,a(η), η ∈ Γω(F).

We then have, for ξ ∈ Γω(E),

pωK,a(ξ) = pωK,a(L
′ ◦ L ◦ ξ) ≤ CqωK,a(L ◦ ξ).

By Lemma 1, this suffices to establish that L is open onto its image. ■



130 A. D. Lewis

9.2 Remark: (Adaptation to the smooth case) The preceding proof works equally well
in the smooth case. Indeed, the proof is a little easier since one does not need to carefully
keep track of the growth in m of the coefficient of the norm of the m-jet. •

The following result is an important one, and is very much nontrivial in the real analytic
case. It is established during the course of the proof of their Lemma 2.5 by Jafarpour and
Lewis [2014] using a local description of the real analytic topology. Here we use an intrinsic
proof.

9.3 Theorem: (Composition induces a continuous map between function spaces)
Let M and N be Cω-manifolds. If Φ ∈ Cω(M;N), then the mapping

Φ∗ : Cω(N) → Cω(M)

f 7→ f ◦ Φ

is continuous. Moreover, if Φ is a proper surjective submersion or a proper embedding,
then Φ∗ is open onto its image. In case Φ is a proper embedding, for any compact K ⊆ M
and any a ∈ c0(Z≥0;R>0), there exists a′ ∈ c0(Z≥0;R>0) such that

qωΦ(K),a(f) ≤ pωK,a′(Φ∗f), f ∈ Cω(N).

Proof: We let ∇M and ∇N be Cω-affine connections on M and N, respectively, and let GM

and GN be Cω-Riemannian metrics on M and N, respectively. For K ⊆ M and L ⊆ N
compact, and for a ∈ c0(Z≥0;R>0), we denote by pωK,a and qωL,a the associated seminorms
for Cω(M) and Cω(N), respectively.

From Lemma 5.40 we have the formula

Symm ◦∇M,mΦ∗f =

m∑
s=0

Âms (Syms ◦Φ
∗∇N,sf). (9.3)

By Lemma 7.3, we have
∥Ams (βs)∥GM

≤ ∥Ams ∥GM,GN
∥βs∥GN

for βs ∈ Ts(T∗
xM), m ∈ Z>0, and s ∈ {0, 1, . . . ,m}. By Lemma 7.5,

∥Syms(A)∥GM,GN
≤ ∥A∥GM,GN

for A ∈ Ts(T∗N) and s ∈ Z>0. Thus, recalling (5.3) (and its analogue that would arise in
a spelled out proof of Lemma 5.40),

∥Âms (Syms(βs))∥GM
= ∥Symm ◦Ams (βs)∥GM

≤ ∥Ams ∥GM,GN
∥βs∥GM

,

for βs ∈ Ts(Φ∗T∗N), m ∈ Z≥0, s ∈ {1, . . . ,m}.
LetK ⊆ M be compact. By Lemmata 7.8 and 7.9 with r = 0, there exist C1, σ1, ρ1 ∈ R>0

such that

∥Aks(x)∥GM,GN
≤ C1σ

−k
1 ρ

−(k−s)
1 (k − s)!, k ∈ Z≥0, s ∈ {0, 1, . . . , k}, x ∈ K.

By Lemma 6.8, let C2 ∈ R>0 be such that

∥Φ∗∇N,mf(x)∥GM
≤ Cm2 ∥∇N,mf(Φ(x))∥GN

, x ∈ K, m ∈ Z≥0.
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Without loss of generality, we assume that C1, C2 ≥ 1 and σ1, ρ1 ≤ 1. Thus, abbreviating
σ2 = σ1ρ1, we have

∥Âks(Φ∗ Syms ◦∇N,sf(x))∥GM
≤ C1C

s
2σ

−k
2 (k − s)!∥Syms ◦∇N,sf(Φ(x))∥GN

for k ∈ Z≥0, s ∈ {0, 1, . . . , k}, x ∈ K. Thus, by (1.3) and (9.3),

∥jm(Φ∗f)(x)∥GM,m
≤

m∑
k=0

1

k!
∥Symk ◦∇M,kΦ∗f(x)∥GM

=
m∑
k=0

1

k!

∥∥∥∥∥
k∑
s=0

Âks(Φ
∗ Syms ◦∇N,sf(Φ(x)))

∥∥∥∥∥
GM

≤
m∑
k=0

k∑
s=0

C1σ
−k
2

s!(k − s)!

k!

Cs2
s!

∥Syms ◦∇N,sf(Φ(x))∥GN

for x ∈ K and m ∈ Z≥0. Now note that

s!(k − s)!

k!
≤ 1, C1σ

−k
2 Cs2 ≤ C1C

m
2 σ

−m
2 ,

for s ∈ {0, 1, . . . ,m}, k ∈ {0, 1, . . . , s}, since σ2 ≤ 1. Then

∥jm(Φ∗f)(x)∥GM,m
≤ C1C

m
2 σ

−m
2

m∑
k=0

k∑
s=0

1

s!
∥Syms ◦∇N,sf(Φ(x))∥GN

≤ C1C
m
2 σ

−m
2

m∑
k=0

m∑
s=0

1

s!
∥Syms ◦∇N,sf(Φ(x))∥GN

= (m+ 1)C1C
m
2 σ

−m
2

m∑
s=0

1

s!
∥Syms ◦∇N,sf(Φ(x))∥GN

.

Now let σ < C−1
2 σ2 and note that

lim
m→∞

(m+ 1)
Cm2 σ

−m
2

σ−m
= 0.

Thus there exists N ∈ Z>0 such that

(m+ 1)C1C
m
2 σ

−m
2 ≤ C1σ

−m, m ≥ N.

Let

C = max

{
C1, 2C1C2

σ

σ2
, 3C1C

2
2

(
σ

σ2

)2

, . . . , (N + 1)C1C
N
2

(
σ

σ2

)N}
.

We then immediately have (m + 1)C1C
m
2 σ

−m
2 ≤ Cσ−m for all m ∈ Z≥0. We then have,

using (1.3),

∥jm(Φ∗f)(x)∥GM,m
≤ Cσ−m

(
m∑
s=0

1

s!
∥Syms ◦∇N,sf(Φ(x))∥GN

)
= C

√
m+ 1σ−m∥jmf(Φ(x))∥GN,m

.
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By modifying C and σ guided by what we did just preceding, we get

∥jm(Φ∗f)(x)∥GM,m
≤ Cσ−m∥jmf(Φ(x))∥GN,m

.

Now, for a ∈ c0(Z≥0;R>0), let a
′ ∈ c0(Z≥0;R>0) be defined by a′0 = Ca0 and a′j = ajσ

−1,
j ∈ Z>0. Then we have

pωK,a(Φ
∗f) ≤ qωΦ(K),a′(f),

and this gives continuity of Φ∗.
Now we turn to the final assertion concerning the openness of Φ∗ in particular cases.

First we note that, by Lemma 5.41, we have

Symm ◦Φ∗∇N,mf(x) =

m∑
s=0

B̂m
s (Syms ◦∇M,sΦ∗f(x)).

First consider the case where Φ is a proper surjective submersion. For L ⊆ N compact
and for y ∈ L, since Φ is surjective, there exists x ∈ M such that Φ(x) = y. Also, since Φ
is proper, Φ−1(L) is compact. We can now reproduce the steps from the proof above, now
making use of the second part of Lemma 6.8, to prove that

qωL,a(f) ≤ pωΦ−1(L),a′(Φ
∗f),

which suffices to prove the openness of Φ∗ by Lemma 1 from the proof of Theorem 9.1.
Finally consider the case where Φ is a proper embedding. Here we make use of a lemma.

1 Lemma: Let M be a Cω-manifold and let S ⊆ M be a Cω-embedded submanifold with
ιS : S → M the inclusion. Then

ι∗S : C
ω(M) → Cω(S)

is an epimorphism, i.e., continuous, surjective, and open.

Proof: First note that we can use Sublemma 2 from the proof of Lemma 4.5 to show that
ι∗S : C

ω(M) → Cω(S) is surjective. It, therefore, remains to show that ι∗S is continuous and
open. Continuity follows from Theorem 9.3. Since Cω(S) and Cω(M) are ultrabornolog-
ical webbed spaces, the De Wilde Open Mapping Theorem [Meise and Vogt 1997, Theo-
rem 24.30] implies that ι∗S is open. ▼

The lemma immediately gives openness of Φ∗ in the case that Φ is a proper embedding.
For the final assertion, we can follow the same argument as was sketched for the openness
of Φ∗ when Φ is a proper surjective submersion to give

qωΦ(K),a(f) ≤ pωK,a′(Φ∗f),

as desired. ■

The matter of determining general conditions under which Φ∗ is an homeomorphism
onto its image or has closed image are taken up by Domański and Langenbruch [2003,
2006]. The linear operator f 7→ Φ∗f is often called a composition operator. Also of interest
is the nonlinear operator Φ 7→ f ◦ Φ, which is variously called a “superposition operator,”
a “nonlinear composition operator,” or the “Nemytskii operator.” Both operators are of
substantial interest in various areas of mathematics.
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9.4 Remark: (Adaptation to the smooth case) The preceding proof can be adapted
to the smooth case. Indeed, much of the elaborate work of the proof can be simplified by
not having to pay attention to the exponential growth of m-jet norms as m → ∞. In the
smooth case, one works with fixed orders of derivatives. This comment applies to all of our
subsequent proofs in this section. •

9.2. Continuity of operations involving differentiation. Next we consider a general version
of the assertion that “differentiation is continuous.”

9.5 Theorem: (Prolongation of sections is continuous map) Let πE : E → M be a
Cω-vector bundle. If k ∈ Z≥0, then the map

Jωk : Γω(E) → Γω(JkE)

ξ 7→ jkξ

is continuous.

Proof: We let ∇M be a Cω-affine connection on M, ∇π be a Cω-vector bundle connection in
E, GM be a Cω-Riemannian metric on M, and Gπ be a Cω-vector bundle connection in E.
We denote the associated seminorms for Γω(E) by pωK,a and for Γω(JkE) by pk,ωK,a, for K ⊆ M
compact and a ∈ c0(Z≥0;R>0).

We recall from Section 4.4 that we have the vector bundle mapping πm,k : J
k+mE →

JmJkE defined by the requirement that πm,k ◦ jk+mξ = jmjkξ. We begin the proof by doing
some computations that give norm estimates for this vector bundle map. To do this, we
use the representation ∆̂m,k of πm,k relative to our decompositions of jet bundles, as in
Lemma 4.8. We let x ∈ M and let Aj ∈ Sj(T∗

xM)⊗ Ex, j ∈ {0, 1, . . . , k+m}, and compute,
using Lemmata 4.7 and 7.5, (4.15), and (1.3),

∥∆̂m,kπE(A0, A1, . . . , Am+k)∥GM,πE
≤

m∑
l=0

1

l!

k∑
j=0

∥∆j,l(Aj+l)∥GM,πE

≤
m∑
l=0

(k + l)!

l!

k∑
j=0

1

(j + l)!
∥Aj+l∥GM,πE

≤ (k +m)!

m!

m∑
l=0

k∑
j=0

1

(j + l)!
∥Aj+l∥GM,πE

≤ (m+ k)k(m+ 1)

k+m∑
j=0

1

j!
∥Aj∥GM,πE

.

For σ ∈ (0, 1),
lim
m→0

σ−m(m+ k)k(m+ 1) = 0.

Thus let N ∈ Z>0 be such that

σ−m(m+ k)k(m+ 1) < 0, m ≥ N.

Next let

C = max

{
kk,

2(1 + k)k

σ
, . . . ,

(N + 1)(N + k)k

σN

}
.
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Then, for any m ∈ Z≥0,
(m+ k)k(m+ 1) ≤ Cσ−m,

and so, using (1.3),

∥∆̂m,kπE(A0, A1, . . . , Am+k)∥GM,πE
≤

√
k +m+ 1Cσ−m∥(A0, A1, . . . , Am+k)∥GM,πE

.

Modifying C and σ similarly to our constructions above shows that

∥jmjkξ(x)∥GM,πk,m
≤ Cσ−m∥jk+mξ(x)∥GM,πE,k+m

, x ∈ M.

Let K ⊆ M be compact and let a ∈ c0(Z≥0;R>0). Define a′ ∈ c0(Z≥0;R>0) by a
′
0 = a0,

a′j = C, j ∈ {1, . . . , k}, and a′j = σ−1aj−k, j ∈ {k + 1, k + 2, . . . }. The computations from
the beginning of the proof then give

a0a1 · · · am∥jmjkξ(x)∥ ≤ Cσ−ma0a1 · · · am∥jk+mξ(x)∥
≤ a0C

k(σ−1a1) · · · (σ−1am)∥jk+mξ(x)∥
= a′0a

′
1 · · · a′k+m∥jk+mξ(x)∥,

since C ≥ 1. We then immediately have

pk,ωK,a(jkξ) ≤ pωK,a′(ξ),

which gives the theorem. ■

We can now prove a collection of results regarding standard operations of differentiation,
derived from the preceding result about basic prolongation.

9.6 Corollary: (Continuity of differential) Let M be a Cω-manifold. Then the mapping

d: Cω(M) → Γω(T∗M)

f 7→ df

is continuous.

Proof: Note that J1(M;R) ≃ RM ⊕ T∗M and that, under this identification, j1f = f ⊕ df .
Thus df = pr2 ◦j1f , where pr2 : J

1(M;R) → T∗M is the Cω-vector bundle mapping of
projection onto the second factor. The result then immediately follows from Theorem 9.1(ii)
and Theorem 9.5. ■

9.7 Corollary: (Continuity of Lie derivative) Let M be a Cω-manifold. Then the map

L : Γω(TM)× Cω(M) → Cω(M)

(X, f) 7→ LXf
is continuous.

Proof: We think of X as being a Cω-vector bundle mapping via

X : T∗M → RM

αx 7→ ⟨αx;X(x)⟩.
Then the bilinear mapping of the lemma is given by the composition

(X, f) 7→ (X,df) 7→ X(df).

The left mapping is continuous since it is the product of the continuous mappings id and
d. The right mapping is continuous by Theorem 9.1(ii), and so the corollary follows. ■



Geometric analysis on real analytic manifolds 135

9.8 Corollary: (Continuity of covariant derivative) Let πE : E → M be a Cω-vector
bundle with a Cω-vector bundle connection ∇πE. Then the map

∇πE : Γω(TM)× Γω(E) → Γω(E)

(X, ξ) 7→ ∇πE
X ξ

is continuous.

Proof: As in the proof of Lemma 2.1, we have a Cω-vector bundle mapping S∇πE : E → J1E
over idM that determines the connection ∇πE by

∇πEξ(x) = j1ξ(x)− S∇πE (ξ(x)).

The mapping ξ 7→ ∇πEξ is continuous by Theorems 9.5 and 9.1. We note that ∇πEξ is to
be thought of as a Cω-vector bundle mapping by

∇πEξ : TM → E

X 7→ ∇πE
X ξ.

The bilinear mapping of the lemma is then given by the composition

(X, ξ) 7→ (X,∇πEξ) 7→ ∇πEξ(X).

The left mapping is continuous since it is the product of the continuous mappings id and
ξ 7→ ∇πEξ. The right mapping is continuous by Theorem 9.1(ii), and so the lemma follows.

■

9.9 Corollary: (Continuity of Lie bracket) Let M be a Cω-manifold. Then the map

[·, ·] : Γω(TM)× Γω(TM) → Γω(TM)

(X,Y ) 7→ [X,Y ]

is continuous.

Proof: Let GM be a real analytic Riemannian metric on M and let ∇M be the associated
Levi-Civita connection. Since

[X,Y ] = ∇M
XY −∇M

XY,

the result follows from Corollary 9.8. ■

9.10 Corollary: (Continuity of linear partial differential operators) Let πE : E → M
and πF : F → M be Cω-vector bundles and let Φ ∈ VBω(JkE;F). Then the kth-order linear
partial differential operator DΦ : Γω(E) → Γω(F) defined by DΦ(ξ)(x) = Φ(jkξ(x)), x ∈ M,
is continuous.

Proof: The operator DΦ is the composition of the continuous mappings ξ 7→ jkξ Γω(E) to
Γω(JkE) and Ξ 7→ Φ ◦ Ξ from Γω(JkE) to Γω(F). ■

The reader can no doubt imagine many extensions of results such as the ones we give,
and we leave these for the reader to figure out as they need them.
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9.3. Continuity of lifting operations. In Sections 3.1–3.4 we introduced a variety of con-
structions for lifting objects from the base space of a vector bundle to the total space. In
Section 5 we considered how to differentiate these constructions in multiple ways, and how
relate these multiple differentiations. In Sections 6.1–6.7 we described fibre norms to give
norms for these lifted objects. In this section, we put this all together to prove results that
are the entire raison d’être for all of these constructions, some of them quite elaborate.
That is, we show that these lift operations are homeomorphisms onto their images. Many
of the proofs are similar to one another, so we only give representative proofs.

We begin by considering horizontal lifts of functions. We note that continuity of the
mapping in the next theorem follows from Theorem 9.3, but openness does not since the
vector bundle projection is not proper. In any case, we give an independent proof of
continuity, as it is a model for the proof of subsequent statements for which we will not give
detailed proofs.

9.11 Theorem: (Horizontal lift of functions is an homeomorphism onto its image)
Let πE : E → M be a Cω-vector bundle. Then the mapping

Cω(M) ∋ f 7→ π∗f ∈ Cω(E)

is an homeomorphism onto its image.

Proof: It is clear that the asserted map is injective, so we focus on its topological attributes.
We let GM be a Cω-Riemannian metric on M, Gπ be a Cω-vector bundle connection in

E, ∇M be the Levi-Civita connection for GM, and ∇π be a Cω-vector bundle connection
in E. Corresponding to this, we have a Riemannian metric GE on E with its Levi-Civita
connection ∇E, as in Section 4.1. We denote the associated seminorms for Cω(M) and Cω(E)
by pωK,a and qωL,a for K ⊆ M and L ⊆ E compact, and for a ∈ c0(Z≥0;R>0).

Let us make some preliminary computations.
By Lemma 5.3, we have

Symm ◦∇E,mπ∗Ef(e) =
m∑
s=0

Âms (Syms+1 ◦π∗E∇M,sf(e)). (9.4)

By Lemma 7.3, we have
∥Ams (βs)∥GE

≤ ∥Ams ∥GE
∥βs∥GE

for βs ∈ Ts(T∗
eE), m ∈ Z>0, and s ∈ {0, 1, . . . ,m}. By Lemma 7.5,

∥Syms(A)∥GE
≤ ∥A∥GE

for A ∈ Ts(T∗N) and s ∈ Z>0. Thus, recalling (5.3),

∥Âms (Syms(βs))∥GE
= ∥Symm ◦Ams (βs)∥GE

≤ ∥Ams ∥GE
∥βs∥GE

,

for βs ∈ Ts(π∗ET
∗M), m ∈ Z>0, s ∈ {1, . . . ,m}.

Let L ⊆ E be compact. By Lemmata 7.8 and 7.9 with r = 0, there exist C1, σ1, ρ1 ∈ R>0

such that

∥Aks(e)∥GE
≤ C1σ

−k
1 ρ

−(k−s)
1 (k − s)!, k ∈ Z>0, s ∈ {0, 1, . . . , k − 1}, e ∈ L.
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Without loss of generality, we assume that C1 ≥ 1 and σ1, ρ1 ≤ 1. Thus, using Lemma 6.1
and abbreviating σ2 = σ1ρ1, we have

∥Âks(π∗E Syms ◦∇M,sf(e))∥GE
≤ C1σ

−k
2 (k − s)!∥Syms ◦∇M,sdf(πE(e))∥GM

for k ∈ Z≥0, s ∈ {0, 1, . . . , k}, e ∈ L. Thus, by (1.3), (9.4), and Lemma 6.8,

∥jm(π∗Ef)(e)∥GE,m
≤

m∑
k=0

1

k!
∥Symk ◦∇E,kπ∗Ef(e)∥GE

=
m∑
k=0

1

k!

∥∥∥∥∥
k∑
s=0

Âks(π
∗
E Syms ◦∇M,sf(e))

∥∥∥∥∥
GE

≤
m∑
k=0

k∑
s=0

C1σ
−k
2

s!(k − s)!

k!

1

s!
∥Syms ◦∇M,sf(πE(e))∥GM

for e ∈ L and m ∈ Z≥0. Now note that

s!(k − s)!

k!
≤ 1, C1σ

−k
2 ≤ C1σ

−m
2 ,

for s ∈ {0, 1, . . . ,m}, k ∈ {0, 1, . . . , s}, since σ2 ≤ 1. Then

∥jm(π∗Ef)(e)∥GE,m
≤ C1σ

−m
2

m∑
k=0

k∑
s=0

1

s!
∥Syms ◦∇M,sf(πE(e))∥GM

≤ C1σ
−m
2

m∑
k=0

m∑
s=0

1

s!
∥Syms ◦∇M,sf(πE(e))∥GM

= (m+ 1)C1σ
−m
2

m∑
s=0

1

s!
∥Syms ◦∇M,sf(πE(e))∥GM

.

Now let σ < σ2 and note that

lim
m→∞

(m+ 1)
σ−m2

σ−m
= 0.

Thus there exists N ∈ Z>0 such that

(m+ 1)C1σ
−m
2 ≤ C1σ

−m, m ≥ N.

Let

C = max

{
C1, C1

σ

σ2
, 2C1

(
σ

σ2

)2

, . . . , NC1

(
σ

σ2

)N}
.

We then immediately have (m+1)C1σ
−m
2 ≤ Cσ−m for allm ∈ Z≥0. We then have, by (1.3),

∥jm(π∗Ef)(e)∥GE,m
≤ Cσ−m

m∑
s=0

1

s!
∥Syms ◦∇M,sf(πE(e))∥GM

≤ C
√
m+ 1σ−m∥jmf(πE(e))∥GM,m

.
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By modifying C and σ guided by what we did just preceding, we get

∥jm(π∗Ef)(e)∥GE,m
≤ Cσ−m∥jmf(πE(e))∥GM,m

.

Now let a ∈ c0(Z≥0;R>0) and define a′ ∈ c0(Z≥0;R>0) be defined by a′0 = Ca0 and
a′j = ajσ

−1, j ∈ Z>0. Then we have

qωL,a(π
∗
Ef) ≤ pωπE(L),a′(f),

giving continuity in this case.
Now we show that π∗E is open onto its image. The idea here is to make some preliminary

observations to put ourselves in a position to be able to say, “Now proceed as above.”
By Lemma 5.4, we have

Symm ◦π∗E∇M,mf(e) =
m∑
s=0

B̂m
s (Syms ◦∇E,sπ∗Ef(e)). (9.5)

For a compact L ⊆ E we can proceed as above to give a bound

∥jmf(πE(e))∥GM,m
≤ Cσ−m∥jm(π∗Ef)(e)∥GE,m

, e ∈ L.

We need to choose the compact set L in a specific way. We let K ⊆ M be compact and
choose a continuous section ξ ∈ Γ0(E), and then take L = ξ(K). Then we have the estimate

∥jmf(x)∥GM,m
≤ Cσ−m∥jm(π∗Ef)(ξ(x))∥GE,m

, x ∈ K.

Now we can mirror the arguments above for continuity to give the bound

pωK,a(f) ≤ qωξ(K),a′(π∗Ef),

and from this we conclude that f 7→ π∗Ef is indeed open onto its image by Lemma 1 from
the proof of Theorem 9.1. ■

Now we consider vertical lifts of sections.

9.12 Theorem: (Vertical lift of sections is an homeomorphism onto its image) Let
πE : E → M be a Cω-vector bundle. Then the mapping

Γω(E) ∋ ξ 7→ ξv ∈ Γω(TE)

is an homeomorphism onto its image.

Proof: This follows in the same manner as Theorem 9.11, using Lemmata 5.8, 5.9, and 6.2.
■

One has the similar result for vertical lifts of endomorphisms.

9.13 Theorem: (Vertical lift of endomorphisms is an homeomorphism onto its
image) Let πE : E → M be a Cω-vector bundle. Then the mapping

Γω(End(E)) ∋ L 7→ Lv ∈ Γω(End(TE))

is an homeomorphism onto its image.

Proof: This follows in the same manner as Theorem 9.11, using Lemmata 5.23, 5.24, and 6.5.
■

Now we consider horizontal lifts of vector fields.
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9.14 Theorem: (Horizontal lift of vector fields is an homeomorphism onto its
image) Let πE : E → M be a Cω-vector bundle. Then the mapping

Γω(TM) ∋ X 7→ Xh ∈ Γω(TE)

is an homeomorphism onto its image.

Proof: This follows in the same manner as Theorem 9.11, using Lemmata 5.13, 5.14, and 6.3.
■

Now we consider vertical lifts of sections of the dual bundle.

9.15 Theorem: (Vertical lift of one-forms is an homeomorphism onto its image)
Let πE : E → M be a Cω-vector bundle. Then the mapping

Γω(E∗) ∋ λ 7→ λv ∈ Γω(T∗E)

is an homeomorphism onto its image.

Proof: This follows in the same manner as Theorem 9.11, using Lemmata 5.18, 5.19, and 6.4.
■

Next we consider vertical evaluations of sections of the dual bundle.

9.16 Theorem: (Vertical evaluations of one-forms is an homeomorphism onto its
image) Let πE : E → M be a Cω-vector bundle. Then the mapping

Γω(E∗) ∋ λ 7→ λe ∈ Cω(E)

is an homeomorphism onto its image.

Proof: Since the given map is clearly injective, we focus on its topological properties.
We let GM be a Cω-Riemannian metric on M, Gπ be a Cω-vector bundle connection in

E, ∇M be the Levi-Civita connection for GM, and ∇π be a Cω-vector bundle connection
in E. Corresponding to this, we have a Riemannian metric GE on E with its Levi-Civita
connection ∇E, as in Section 4.1. We denote the associated seminorms for Γω(E∗) and
Cω(E) by pωK,a and qωL,a for K ⊆ M and L ⊆ E compact, and for a ∈ c0(Z≥0;R>0).

Let us make some preliminary computations.
By Lemma 5.28, we have

λe(e) = λe(e),

∇Eλe(e) = Â1
1((∇πEλ)e(e)) + Â1

0(λ
e(e)) + Ĉ1

0(λ
v(e)),

...

(Symm⊗ idT∗E) ◦ ∇E,mλe(e) =

m∑
s=0

Âms ((Syms⊗ idT∗E) ◦ (∇M,πE,sλ)e(e))

+

m−1∑
s=0

Ĉms ((Syms⊗ idT∗E) ◦ (∇M,πE,sλ)v(e)).

(9.6)
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Just as in the proof of Theorem 9.11, by Lemmata 7.3 and 7.5, and the appropriate analogue
of equation (5.6) that would appear in a fully fleshed out proof of Lemma 5.26, we have
bounds

∥Âms (Syms(βs))∥GE
= ∥Symm ◦Ams (βs)∥GE

≤ ∥Ams ∥GE
∥βs∥GE

and
∥Ĉms (Syms(γs))∥GE

= ∥Symm ◦Cms (γs)∥GE
≤ ∥Cms ∥GE

∥γs∥GE
.

Let L ⊆ E be compact. By Lemmata 7.8 and 7.9 with r = 0, there exist C1, σ1, ρ1 ∈ R>0

such that

∥Aks(e)∥GE
≤ C1σ

−k
1 ρ

−(k−s)
1 (k − s)!, k ∈ Z≥0, s ∈ {0, 1, . . . , k}, e ∈ L,

and

∥Cks (e)∥GE
≤ C1σ

−k
1 ρ

−(k−s)
1 (k − s)!, k ∈ Z≥0, s ∈ {0, 1, . . . , k − 1}, e ∈ L,

Without loss of generality, we assume that C1 ≥ 1 and σ1, ρ1 ≤ 1. Thus, using Lemma 6.6
and abbreviating σ2 = σ1ρ1, we have

∥Âks((Syms⊗ idT∗E) ◦ (∇M,πE,sλ)e(e))∥GM,πE

≤ C1σ
−k
2 (k − s)!∥(Syms⊗ idT∗E) ◦ (∇M,πE,sλ)e(e)∥GM,πE

for k ∈ Z≥0, s ∈ {0, 1, . . . , k}, e ∈ L, and

∥Ĉks((Syms⊗ idT∗E) ◦ (∇M,πE,sλ)e(e))∥GM,πE

≤ C1σ
−k
2 (k − s)!∥(Syms⊗ idT∗E) ◦ (∇M,πE,sλ)e(e)∥GM,πE

for k ∈ Z≥0, s ∈ {0, 1, . . . , k − 1}, e ∈ L. Thus, by (1.3) and (9.6),

∥jmλe(e)∥GE,m
≤

m∑
k=0

1

k!
∥Symk ◦∇E,kλe(e)∥GE

≤
m∑
k=0

1

k!

∥∥∥∥∥
k∑
s=0

Âks((Syms ◦ idT∗E) ◦ (∇M,πE,sλ)e(e))

∥∥∥∥∥
GM,πE

+

m−1∑
k=0

1

k!

∥∥∥∥∥
k∑
s=0

Ĉks((Syms ◦ idT∗E) ◦ (∇M,πE,sλ)v(e))

∥∥∥∥∥
GM,πE

≤
m∑
k=0

C1σ
−k
2

s!(k − s)!

k!

1

s!

∥∥∥∥∥
k∑
s=0

(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)e(e)

∥∥∥∥∥
GM,πE

+
m−1∑
k=0

C1σ
−k
2

s!(k − s)!

k!

1

s!

∥∥∥∥∥
k∑
s=0

(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)v(e)

∥∥∥∥∥
GM,πE

for e ∈ L and m ∈ Z≥0. Now note that

s!(k − s)!

k!
≤ 1, C1σ

−k
2 ≤ C1σ

−m
2 ,
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for s ∈ {0, 1, . . . ,m− 1}, k ∈ {0, 1, . . . , s}, since σ2 ≤ 1. Then

∥jmλe(e)∥GE,m
≤ C1σ

−m
2

m∑
k=0

m∑
s=0

1

s!

∥∥∥(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)e(e)
∥∥∥
GM,πE

+ C1σ
−m
2

m−1∑
k=0

m−1∑
s=0

1

s!

∥∥∥(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)v(e)
∥∥∥
GM,πE

= (m+ 1)C1σ
−m
2

m∑
s=0

1

s!

∥∥∥(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)e(e)
∥∥∥
GM,πE

+ (m+ 1)C1σ
−m
2

m−1∑
s=0

1

s!

∥∥∥(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)v(e)
∥∥∥
GM,πE

.

Now let σ < σ2 and note that

lim
m→∞

(m+ 1)
σ−m2

σ−m
= 0.

Thus there exists N ∈ Z>0 such that

(m+ 1)C1σ
−m
2 ≤ C1σ

−m, m ≥ N.

Let

C = max

{
C1, 2C1

σ

σ2
, 3C1

(
σ

σ2

)2

, . . . , (N + 1)C1

(
σ

σ2

)N}
.

We then immediately have (m + 1)C1σ
−m
2 ≤ Cσ−m for all m ∈ Z≥0. We then have,

using (1.3),

∥jmλe(e)∥GE,m
≤ Cσ−m

(
m∑
s=0

1

s!

∥∥∥(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)e(e)
∥∥∥
GM,πE

+

m−1∑
s=0

1

s!

∥∥∥(Syms ◦ idT∗E) ◦ (∇M,πE,sλ)v(e)
∥∥∥
GM,πE

)
≤ C

√
m+ 1σ−m(∥jmλ(πE(e))(e)∥GM,πE,m

+ ∥jm−1λ(πE(e))∥GM,πE,m−1
).

By modifying C and σ just as we did in the preceding, we get

∥jmλe(e)∥GE,m
≤ Cσ−m(∥jmλ(πE(e))(e)∥GM,πE,m

+ ∥jm−1λ(πE(e))∥GM,πE,m−1
).

We take
α = max{1, sup{∥e∥GπE

| e ∈ L}

and then use Lemma 7.3 to arrive at

∥jmλe(e)∥GE,m
≤ 2αCσ−m∥jmλ(πE(e))(e)∥GM,πE,m

Now, given a ∈ c0(Z≥0;R>0), we define a
′ ∈ c0(Z≥0;R>0) by a

′
0 = 2αCa0 and a

′
j = ajσ

−1,
j ∈ Z>0, we then have

qωL,a(λ
e) ≤ pωπE(L),a′(λ),
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and this gives this part of the result.
Now we turn to showing that the mapping of the lemma is open onto its image. By

Lemma 5.29, we have

λe(e) = λe(e),

(∇πEλ)e(e) = B̂1
1(∇Eλe(e)) + B̂1

0(λ
e(e)) + D̂1

0(λ
v(e)),

(Sym2⊗ idTE) ◦ (∇M,πE,2λ)e(e) = B̂2
2(∇E,2λe(e)) + B̂2

1(∇Eλe(e)) + B̂2
0(λ

e(e))

+ D̂2
1((∇M,πEλ)v(e)) + D̂1

0(λ
v(e)),

...

(Symm⊗ idT∗E) ◦ (∇M,πE,mλ)e(e) =
m∑
s=0

B̂m
s ((Syms⊗ idT∗E) ◦ ∇E,sλe(e))

+
m−1∑
s=0

D̂m
s ((Syms⊗ idT∗E) ◦ ∇E,sλv(e)).

(9.7)

Just as in the proof of Theorem 9.11, by Lemmata 7.3 and 7.5, and the appropriate analogue
of equation (5.6) that would appear in a fully fleshed out proof of Lemma 5.27, we have
bounds

∥B̂m
s (Syms(βs))∥GE

= ∥Symm ◦Bm
s (βs)∥GE

≤ ∥Bm
s ∥GE

∥βs∥GE
,

∥D̂m
s (Syms(γs))∥GE

= ∥Symm ◦Dm
s (γs)∥GE

≤ ∥Dm
s ∥GE

∥γs∥GE
.

Proceeding analogously to the continuity proof above and using Lemma 6.6, we deduce that
there exist C1, σ1 ∈ R>0 such that

∥jmλ(πE(e))(e)∥GM,πE,m
≤ C1σ

−m
1 (∥jmλe(e)∥GE,m

+ ∥jm−1λ
v(e)∥GE,m−1

), e ∈ L. (9.8)

Now let K ⊆ M be compact and let a ∈ c0(Z≥0,R>0). Define

L = π−1
E (K) ∩ {e ∈ E | ∥e∥GπE

= 1},

noting that L is compact. Let n = dim(M) and let k be the fibre dimension of E.
By Lemma 7.4, and equations (1.2) and (7.1), we have

∥jmλ(x)∥GM,πE,m
≤

m∑
j=0

√
k

(
n+ j − 1

j

)
sup{∥jmλ(πE(e))(e)∥GM,πE,m

| e ∈ L}

≤
m∑
j=0

k

(
n+ j − 1

j

)
sup{∥jmλ(πE(e))(e)∥GM,πE,m

| e ∈ L}

≤ m22n+m sup{∥jmλ(πE(e))(e)∥GM,πE,m
| e ∈ L}

for x ∈ K. For σ2 <
1
2 ,

lim
m→∞

m2 2m

σ−m2

= 0.
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By by now familiar arguments, one of which the reader can find in the first part of the
proof, we can combine this with (9.8) to arrive at C, σ ∈ R>0 for which

∥jmλ(x)∥GM,πE,m
≤ Cσ−m(sup{∥jmλe(e)∥GM,πE,m

| e ∈ L}+ sup{∥jmλv(e)∥GE,m
| e ∈ L})

for x ∈ K. Taking a′ ∈ c0(Z≥0;R>0) to be defined by a′0 = Ca0, a
′
j = σ−1aj , j ∈ Z>0, we

have
qωK,a(λ) ≤ pωL,a′(λe) + pωL,a′(λv).

By Lemma 1 from the proof of Theorem 9.1, this shows that the mapping

Γω(E∗) ∋ λ 7→ (λe, λv) ∈ Cω(E)⊕ Γω(TE)

is open onto its image. This part of the lemma now follows from the following simple fact.

1 Lemma: Let S, T1, and T2 be topological spaces and let Φ: S → T1 × T2 be an open
mapping onto its image. Then the mappings pr1 ◦Φ and pr2 ◦Φ are open onto their images.

Proof: Let O ⊆ S be open so that Φ(O) is open in image(Φ). Then, for each (y1, y2) ∈
O, there exists a neighbourhood N1 ⊆ image(pr1 ◦Φ) of y1 and a neighbourhood N2 ⊆
image(pr2 ◦Φ) of x2 such that N1 ×N2 ⊆ Φ(O). This immediately gives the lemma. ▼

Thus we arrive at the conclusion that the mapping

Γω(E∗) ∋ λ 7→ λe ∈ Cω(E)

is open onto its image, as desired. ■

Finally, we consider vertical evaluations of sections of the endomorphism bundle.

9.17 Theorem: (Vertical evaluation of endomorphisms is an homeomorphism
onto its image) Let πE : E → M be a Cω-vector bundle. Then the mapping

Γω(End(E)) ∋ L 7→ Le ∈ Γω(TE)

is an homeomorphism onto its image.

Proof: This follows in the same manner as Theorem 9.16, using Lemmata 5.33, 5.34, and 6.7.
■

As an illustration of how continuity of these lifts can be helpful, let us consider the
continuity of the map that assigns to a vector field on a manifold the tangent lift of that
vector field. Precisely, let M be a real analytic manifold and let X ∈ Γω(TM) be a real
analytic vector field. The tangent lift of X is the vector field XT ∈ Γω(TTM) on TM
whose flow is the derivative of the flow for X:

ΦX
T

t (vx) = TxΦ
X
t (vx) =⇒ XT =

d

dt

∣∣∣∣
t=0

TxΦ
X
t (vx). (9.9)

Let us give a formula for the tangent lift that reduces the continuity of the mappingX 7→ XT

to continuity of familiar operations.
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9.18 Lemma: (Decomposition of the tangent lift via an affine connection) Let
r ∈ {∞, ω} and let M be a Cr-manifold with a Cr-affine connection ∇M. Then

XT (vx) = hlft(vx, X(x)) + vlft(vx,∇M
vxX + TM(X(x), vx)),

where TM is the torsion of ∇M.

Proof: Let vx ∈ TM and let Y ∈ Γr(TM) be such that Y (x) = vx. Note that

d

ds

∣∣∣∣
s=0

ΦXt ◦ ΦYs (x) = TxΦ
X
t (Y (x)).

Also compute

d

ds

∣∣∣∣
s=0

ΦXt ◦ ΦYs =
d

ds

∣∣∣∣
s=0

ΦYs ◦ ΦXt ◦ ΦX−tΦ
Y
−s ◦ ΦXt ◦ ΦYs (x)

= Y (ΦXt (x)) + TxΦ
X
t

(
d

ds

∣∣∣∣
s=0

ΦX−t ◦ Φ
Y
−s ◦ ΦXt ◦ ΦYs (Φ

X
t (x))

)
.

Note that, for f ∈ Cr(M),

f ◦ ΦX−t ◦ Φ
Y
−s ◦ ΦXt ◦ ΦYs (x) = f(x) + stL[Y,X]f(x) + o(|st|),

by [Abraham, Marsden, and Ratiu 1988, Proposition 4.2.34]. Therefore,

d

ds

∣∣∣∣
s=0

ΦX−t ◦ Φ
Y
−s ◦ ΦXt ◦ ΦYs (Φ

X
t (x)) = t[Y,X](ΦXt (x)).

Putting the above calculations together gives

TxΦ
X
t (Y (x)) = Y (ΦXt (x))− t[X,Y ](ΦXt (x)).

Thus, making use of (9.9),

ΦX
h

t ◦ ΦX
T

t (Y (x)) = τ (t,0)γ− (Y (ΦXt (x))− t[X,Y ](ΦXt (x))),

where γ− is the integral curve of −X through ΦXt (x) and τγ− is parallel translation along

γ−. If γ is the integral curve of X through x note that τ
(t,0)
γ− = τ

(0,t)
γ . Now we compute

d

dt

∣∣∣∣
t=0

Φ−Xh

t ◦ ΦX
T

t (Y (x)) =
d

dt

∣∣∣∣
t=0

τ (0,t)γ (Y (ΦXt (x))− t[X,Y ](ΦXt (x)))

= ∇XY (x)− [X,Y ](x) = ∇YX(x) + T (X(x), Y (x)).

Note that, since XT and Xh are both vector fields over X, it follows that

t 7→ τ (0,t)γ (Y (ΦXt (x)))

is a curve in TxM. Thus the derivative of this curve at t = 0 is in VY (x)TM. Thus we have
shown that

d

dt

∣∣∣∣
t=0

Φ−Xh

t ◦ ΦX
T

t (vx) = vlft(vx,∇vxX(x) + T (X(x), vx)).

Finally, for f ∈ Cr(M), by the BCH formula, we have

f ◦ Φ−Xh

t ◦ ΦX
T

t (vx) = f ◦ ΦX
T−Xh

t + o(|t|2).

Differentiating with respect to t and evaluating at t = 0 gives the result. ■

Now we can combine Theorems 9.1(i), 9.13, and 9.14, and Corollary 9.8 to give the
following result.
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9.19 Corollary: (Continuity of tangent lift) If M is a Cω-manifold, then the mapping

Γω(TM) ∋ X 7→ XT ∈ Γω(TTM)

is continuous.
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de la Société Mathématique de France, 85, pages 77–99, issn: 0037-9484, url: http:
//www.numdam.org/item?id=BSMF_1957__85__77_0 (visited on 07/10/2014).

Cieliebak, K. and Eliashberg, Y. [2012] From Stein to Weinstein and Back: Symplectic
Geometry of Affine Complex Manifolds, number 59 in American Mathematical Society
Colloquium Publications, American Mathematical Society: Providence, RI, isbn: 978-
0-8218-8533-8.

Conlon, L. [2001] Differentiable Manifolds, 2nd edition, Birkhäuser Advanced Texts,
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