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Abstract

This paper introduces the novel notion of kinematic reductions for mechanical sys-
tems and studies their controllability properties. We focus on the class of simple me-
chanical control systems with constraints and model them as affine connection control
systems. For these systems, a kinematic reduction is a driftless control system whose
controlled trajectories are also solutions to the full dynamic model under appropriate
controls. We present a comprehensive treatment of local controllability properties of
mechanical systems and their kinematic reductions. Remarkably, a number of interest-
ing reduction and controllability conditions can be characterized in terms of a certain
vector-valued quadratic form. We conclude with a catalog of example systems and their
kinematic reductions.
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1. Introduction

The setting of affine connection control systems can be used to model a large class of
mechanical systems from a Lagrangian point of view. It provides a particularly conve-
nient viewpoint for systems with no external forces other than the applied control forces
(e.g., no potential or dissipation forces). These are difficult control systems since they have
unstabilizable linearizations, and so fail Brockett’s necessary condition for the existence of
continuous stabilizing feedback. What’s more, many of the systems are not known to be
flat, and cannot generally be put into a form where backstepping methods may be applied.
Indeed, existing control methodologies will generally not apply to the class of mechanical
systems we consider in this paper. Thus one must set about understanding these systems
in their own right.
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1.1. Kinematic reductions and hybrid models of motion control systems. An objective
of this paper is to characterize mechanical control systems in terms of equivalent lower-
dimensional kinematic (or driftless) systems. The interest in low-complexity representa-
tions of mechanical control systems can be related to numerous previous efforts, including
work on hybrid models for motion control systems [Brockett 1993], motion description lan-
guages [Manikonda, Krishnaprasad, and Hendler 1999], oscillatory motion primitives [Bullo,
Leonard, and Lewis 2000], consistent control abstractions [Pappas, Lafferriere, and Sastry
2000], hierarchical steering algorithms [McIsaac and Ostrowski 2000], and maneuver au-
tomata [Frazzoli, Daleh, and Feron 2002].

In Section 3, we introduce the notion of kinematic reduction as a model reduction
technique adapted to mechanical control systems. This novel concept extends and unifies
our previous results in [Bullo and Lynch 2001, Lewis 1999]. A kinematic model for a
mechanical system is one such that every controlled trajectory for the kinematic model can
be implemented as a trajectory of the full second-order system under some appropriate
control input.

The key advantage of a low-complexity system representation is the subsequent simpli-
fication of various control problems including planning, stabilization, and optimal control.
In general, a reduced-order representation of the system dynamics will be useful in any hier-
archical control scheme. For example, when considering planning problems, motion along a
kinematic reduction can be regarded as a motion primitive to be used in higher-level motion
scripts. Given a rich family of motion primitives, planning can then be performed via a
variety of analytical or numerical methods; e.g., see [Betts 1998, LaValle and Kuffner 2001,
Manocha and Canny 1994] on inverse kinematics, nonlinear programming, and randomized
algorithms.

1.2. Local controllability and computational tools. An important obvious property to
require of kinematic reductions is controllability. We therefore proceed to characterize
locally controllable kinematic reductions and relate them to the current understanding on
the matter of local controllability for mechanical control systems.

Initial accessibility results and some weak local controllability results for affine connec-
tion control systems were provided by Lewis and Murray [1997]. This work also introduces a
fundamental distinction between controllability and configuration controllability. Recently,
progress has been made on the local controllability problem for such systems by Hirschorn
and Lewis [2001], which provides first-order conditions for local controllability in terms of
a vector-valued quadratic form.

Building on this body of knowledge, it is straightforward to define and characterize
controllability for kinematic reductions. A mechanical system is locally kinematically con-
trollable if it admits a kinematic reduction which is a locally controllable driftless system.
A locally kinematically controllable system is therefore small-time locally configuration
controllable.

One interesting outcome of our conditions for kinematic controllability is that they have
a strong connection to the vector-valued quadratic form condition for local controllability
in [Hirschorn and Lewis 2001]. Indeed, it appears that many (but not all) systems satis-
fying the sufficient condition of Hirschorn and Lewis [2001] are also locally kinematically
controllable. Physical examples of such systems include the planar rigid body with a single,
variable-direction thruster [Bullo, Leonard, and Lewis 2000], the spatial version of the same
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system [Bullo, Leonard, and Lewis 2000], a three-link planar manipulator with various ac-
tuator configurations [Bullo and Lynch 2001], a hopping robot while in flight phase [Li and
Montgomery 1990], and the snakeboard [Lewis, Ostrowski, Murray, and Burdick 1994]. We
present all these systems and summarize their properties in a detailed catalog.

1.3. Organization. The paper is organized as follows. Section 2 presents a modeling
framework for simple mechanical control systems with constraints. Section 3 introduces
and characterizes the notion of a kinematic reduction. Section 4 presents controllability
definitions and tests; Section 4.5 describes a set of inferences, counterexamples, and special
results for low-dimensional systems. Finally, Section 5 presents a catalog of mechanical
control systems.

2. Modeling mechanical control systems via affine connections

In this section we review some ideas on modeling of mechanical control systems. We
consider the class of simple mechanical control systems with constraints. We model them
as affine connection systems, and study their representations in various local bases of vector
fields. In this way, we recover the controlled geodesic, Poincaré and Euler-Lagrange equa-
tions. We refer the reader to the more detailed presentations in [Bullo and Žefran 2002,
Lewis 2000].

2.1. Simple mechanical control systems with constraints. A simple mechanical con-
trol system with constraints is a quintuple (Q,G, V,D ,F ) comprised of the following
objects:

1. an n-dimensional configuration manifold Q,

2. a Riemannian metric G on Q describing the kinetic energy,

3. a function V on Q describing the potential energy,

4. a distribution D of feasible velocities describing the linear velocity constraints, and

5. a collection of m covector fields F = {F 1, . . . , Fm}, linearly independent at each
q ∈ Q, defining the control forces.

Given the metric G and the distribution D , we define the following objects. We let
P : TQ → TQ be the orthogonal projection onto the distribution D with respect to the
metric G. We let G∇ be the Levi-Civita connection on Q induced by the metric G. We
let ∇ be the constrained affine connection defined by the metric G and the constraint
distribution D according to

∇XY = G∇XY −
(
G∇XP

)
(Y ),

for any vector fields X and Y . When the vector field Y takes value in D , we have

∇XY = P (G∇XY ),

as shown in [Lewis 1998].
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Given the Riemannian metric G, we let G : TQ → T ∗Q and G−1 : T ∗Q → TQ denote the
musical isomorphisms associated with G. For a ∈ {1, . . . ,m}, we define the input vector
fields Ya = P (G−1(F a)), the family of input vector fields Y = {Y1, . . . , Ym}, and the
input distribution Y with Yq = spanR(Y1(q), . . . , Ym(q)). Let LXf be the Lie derivative
of a scalar function f with respect to the vector field X. The gradient of the function V
is the vector field gradV defined implicitly by

G(gradV,X) = LXV.

A controlled trajectory for the mechanical control system with constraints
(Q,G, V,D ,F ) is a pair (γ, u) with γ : [0, T ] → Q and u = (u1, . . . , um) : [0, T ] → Rm

satisfying the controlled geodesic equations

∇γ̇(t)γ̇(t) = −P (gradV (γ(t))) +
m∑
a=1

Ya(γ(t))ua(t). (2.1)

Here we assume that γ̇(0) ∈ Dγ(0) and comment that this implies that γ̇(t) ∈ Dγ(t) for all
t ∈ [0, T ]. Furthermore, we assume the input functions u = (u1, . . . , um) : [0, T ] → Rm to
be Lebesgue measurable functions, and we write u ∈ Um

dyn.

2.2. Coordinate representations. On an open subset U ⊂ Q let X = {X1, . . . , Xn} be a
basis of vector fields. We write the covariant derivative of the vector fields in the basis X as

∇XiXj = (XΓ)kijXk, (2.2)

where the n3 functions {(XΓ)kij | i, j, k ∈ {1, . . . , n}} are called the generalized Christoffel

symbols with respect to X. Given vector fields Y and Z on U , we can write Y = Y iXi

and Z = ZiXi. Accordingly, the covariant derivative of the vector field Z with respect to
the vector field Y is

∇Y Z =
((
LXiZ

k
)
Y i + (XΓ)kijZ

iY j
)
Xk.

It is instructive to write the controlled Euler-Lagrange equations with respect to the
basis X. Let the velocity curve γ̇ : I → TU have components (v1, . . . , vn) with respect to
X, i.e.,

γ̇(t) = vi(t)Xi(γ(t)).

The pair (γ, u) is a controlled trajectory for the controlled geodesic equations (2.1) if and
only if it solves the controlled Poincaré equations

v̇k + (XΓ)kij(γ)v
ivj = − (P gradV )k (γ) +

m∑
a=1

Y k
a (γ)ua. (2.3)

2.1 Remark: If the distribution D has rank p < n, it is useful to construct a local basis for
TQ by selecting the first p vector fields to generate D , and the remaining n− p to generate
D⊥. In this case, one can see that vk(t) = 0 for all time t and all k ∈ {p+ 1, . . . , n}.
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2.2 Remark: Assume a Lie group G acts on the manifold Q, and assume the metric G,
and the distribution D are invariant. Then the constrained connection ∇ is invariant,
and, selecting invariant vector fields {X1, . . . , Xn}, the generalized Christoffel symbols are
invariant functions.

Let (q1, . . . , qn) be a coordinate system for the open subset U ⊂ Q. The curve γ : I → U
has therefore components (γ1, . . . , γn). The coordinate system on U induces the natural
coordinate basis { ∂

∂q1
, . . . , ∂

∂qn } for the tangent bundle TU . With respect to this basis, we
write the velocity curve γ̇ : I → TU as

γ̇(t) = γ̇i(t)
∂

∂qi
(γ).

In the coordinate system (q1, . . . , qn), we write γ = (γ1, . . . , γn), γ̇ = (γ̇1, . . . , γ̇n), and the
equations of motion read

γ̈k + Γk
ij γ̇

iγ̇j = − (P gradV )k (γ) +
m∑
a=1

Y k
a ua. (2.4)

Here, the Christoffel symbols {Γk
ij | i, j, k ∈ {1, . . . , n}} and the terms in the right-hand side

are computed with respect to the natural coordinate basis. We refer to these equations as
the controlled Euler-Lagrange equations.

3. Kinematic reductions for mechanical control systems

In this section we relate (i) controlled trajectories for the (second-order) controlled
geodesic equation (2.1) to (ii) controlled trajectories for driftless control systems on Q. The
purpose is to establish relationships between the given mechanical control system and an
appropriate low-complexity kinematic representation.

3.1 Remark: For the remainder of the paper, we restrict our attention to mechanical control
systems subject to no potential energy, i.e., we set V = 0.

Let us start by establishing some nomenclature. We refer to second-order differential
equations on Q of the form (2.1) as dynamic models of mechanical systems. In dynamic
models the control inputs are accelerations. In contrast to this, we refer to first-order
differential equations on Q as kinematic models of mechanical systems. In kinematic
models the control inputs are velocity variables. Let V = {V1, . . . , Vℓ} be a family of vector
fields linearly independent at each q ∈ Q. For curves γ : [0, T ] → Q and w : [0, T ] → Rℓ,
consider the differential equation

γ̇(t) =
ℓ∑

b=1

Vb(γ(t))wb(t). (3.1)

We shall assume that the control inputs to kinematic systems are absolutely continuous,
and we write w ∈ U ℓ

kin. We shall refer to the system as the kinematic model (or kinematic
system) induced by V.

Next, we establish relationships between controlled trajectories of kinematic and dy-
namic systems.
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3.1. Kinematic reductions and decoupling vector fields. The kinematic model induced
by V = {V1, . . . , Vℓ} is said to be a kinematic reduction of the second-order system (2.1)
if, for any control input w ∈ U ℓ

kin and corresponding controlled trajectory (γ,w) for equa-
tion (3.1), there exists a control input u ∈ Um

dyn such that (γ, u) is a controlled trajectory
for the second-order system (2.1). In other words, for any curve γ : I → Q solving the
equation (3.1) with w ∈ U ℓ

kin, there exists a control u ∈ Um
dyn such that (γ, u) is a con-

trolled trajectory for the second-order system (2.1). Roughly speaking, the curve γ : I → Q
solving (3.1) can be lifted to a solution to the second-order system (2.1).

The rank of a kinematic reduction is the rank of the distribution generated by the
vector fields V. Rank-one kinematic reductions are particularly interesting. We shall call
a vector field V decoupling if the rank-one kinematic system induced by V = {V } is a
kinematic reduction. Hence, the second-order control system (2.1) can be steered along any
time-scaled integral curve of a decoupling vector field. For a dynamic control system with
a rank-m input distribution, there are at most m rank-one kinematic reductions linearly
independent at each q ∈ Q.

Before proceeding, we define the symmetric product of two vector fields X and Y as the
vector field

⟨X : Y ⟩ = ∇XY +∇Y X.

The following theorem characterizes kinematic reductions in terms of the affine connection
and the input distribution of the given dynamic model. A simplified version of this result
is proved in [Bullo and Lynch 2001].

3.2 Theorem: A kinematic model induced by {V1, . . . , Vℓ} is a kinematic reduction of the
second-order system (2.1) if and only if the distribution generated by the vector fields
{Vi, ⟨Vj : Vk⟩| i, j, k ∈ {1, . . . , ℓ}} is a constant rank subbundle of the input distribution
Y .

3.2. Mechanical systems fully reducible to kinematic systems. We are here interested
in characterizing when is a mechanical system kinematic? That is, we are interested in
when the largest possible kinematic reduction will be attained. By Theorem 3.2, any
kinematic reduction must be contained in Y , so one can do no better than have Y itself as
a kinematic reduction. Formally, we say that the dynamic model (2.1) is fully reducible
to the kinematic system induced by V if, V is a kinematic reduction of (2.1) and if,
for any control input u ∈ Um

dyn, initial condition γ̇(0) ∈ V , and corresponding controlled

trajectory (γ, u) for equation (2.1), there exists a control input w ∈ U ℓ
kin such that (γ,w) is a

controlled trajectory for the kinematic system (3.1) induced by V. A dynamic system (2.1)
is fully reducible to a kinematic system is there exists one such collection of vector
fields V.

Before proceeding, we introduce a useful notion. A distribution X is said to be geodesi-
cally invariant if it is closed under operation of symmetric product, i.e., if for all vector
fields X and Y taking values in X , the vector field ⟨X : Y ⟩ also takes value in X . The sym-
metric closure of the distribution X is the smallest geodesically invariant distribution
containing X . The motivation for the term “geodesically invariant” is explained in [Lewis
1998].

The following theorem characterizes dynamic systems which are fully reducible to kine-
matic systems; it is proved in [Lewis 1999].



Controllable kinematic reductions for mechanical systems 7

3.3 Theorem: A mechanical control system (2.1) is fully reducible to a kinematic system if
and only if

(i) the kinematic system is induced by the input distribution Y and

(ii) the input distribution Y is geodesically invariant.

3.3. Bases of decoupling vector fields for the input distribution. According to The-
orem 3.3, testing if a mechanical system is fully reducible to a kinematic system is a
straightforward test. For such a mechanical control system, any vector field taking val-
ues in the input distribution is decoupling. For mechanical control systems which are not
fully reducible to a kinematic system, we continue our investigation into kinematic reduc-
tions, and in particular into rank-one reductions, i.e., decoupling vector fields. When is
there a basis of decoupling vector fields for the input distribution?

The material in this section, and some of that in the next, relies on the notion of a
vector-valued bilinear map. For R-vector spaces E and F , let B : E×E → F be symmetric
and bilinear. For λ ∈ F ∗ we denote by λB : E×E → R the map defined by λB(m1,m2) =
λ · B(m1,m2). B is definite if there exists λ ∈ F ∗ so that λB is positive-definite. B
is indefinite if for each λ ∈ F ∗ \ ann(image(B)), λB is neither positive nor negative
semidefinite (ann(S) ⊂ F ∗ is the annihilator of S ⊂ F ). The following result is proved by
Bullo and Lewis [2005].

3.4 Proposition: For a symmetric bilinear map B : E × E → F and for λ ∈ F ∗ \
ann(image(B)), the following statements are equivalent:

(i) λB is indefinite;

(ii) there exists a basis for E so that the diagonal entries for the matrix of λB sum to
zero;

(iii) there exists a basis for E so that all diagonal entries in the matrix for λB are zero.

Now define BY : Y × Y → TQ/Y as the TQ/Y -valued symmetric, bilinear bundle
mapping given by

BY (q)(v1, v2) = πY (⟨X1 : X2⟩(q)),

where πY is the canonical projection onto TQ/Y , and where X1 and X2 are vector fields
extending v1 and v2, respectively (one readily shows that BY (q) is independent of these
extensions). If V is a decoupling vector field, then BY (V, V ) = 0. If V1, . . . , Vm are
decoupling, and if we write the vector-valued bilinear form with respect to this basis, then
its matrix representation has zeros along the diagonal. Vice-versa, assume we can find a
basis such that all elements in the diagonal are zero, then that basis would be a basis of
decoupling vector fields.

From Proposition 3.4 we immediately have the following result which summarizes the
relationship between BY and the existence of a basis for the input distribution of decoupling
vector fields.

3.5 Proposition: If the input distribution Y for a simple mechanical system admits a (local)
basis of decoupling vector fields, then BY (q) is indefinite for each q ∈ Q. Furthermore, if
Y is codimension one, then Y admits a (local) basis of decoupling vector fields if and only
if BY (q) is indefinite for each q ∈ Q.
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4. Accessibility and controllability notions

Let [X,Y ] be the Lie bracket between the vector fields X and Y . Given a collection
of vector fields X = {X1, . . . , Xℓ}, consider the associated distribution X defined by Xq =
spanR(X1(q), . . . , Xℓ(q)). The distribution X is said to be involutive if it is closed under
operation of Lie bracket, i.e., if for all vector fields X and Y taking values in X , the vector
field [X,Y ] also takes value in X . The involutive closure of the distribution X is the
smallest involutive distribution containing X , and is denoted Lie{X }.

4.1. Controllable kinematic systems. We start by defining accessibility and controlla-
bility for general kinematic systems. Here we let Q be an analytic manifold and we let
V = {V1, . . . , Vℓ} be analytic vector fields giving rise to the driftless nonlinear control sys-
tem (3.1). For q0 ∈ Q we denote

RV(q0, T ) = {γ(T ) | (γ, u) is a controlled trajectory for (3.1) defined on [0, T ] with γ(0) = q0},

and RV(q0,≤ T ) =
⋃

t∈[0,T ]R
V(q0, t). We make the basic controllability definitions.

4.1 Definition: The system (3.1) is

(i) locally accessible from q0 if there exists T > 0 so that int(RV(q0,≤ t)) ̸= ∅ for
t ∈ (0, T ], is

(ii) small-time locally controllable (STLC ) from q0 if there exists T > 0 so that
q0 ∈ int(RV(q0,≤ t)) for t ∈ (0, T ], and is

(iii) controllable if for every q1, q2 ∈ Q there exists a controlled trajectory (γ, u) defined
on [0, T ] for some T > 0 with the property that γ(0) = q1 and γ(T ) = q2.

Let us state some well-known results concerning the various types of controllability
of (3.1).

4.2 Theorem: The system (3.1) is STLC (and therefore accessible) from q0 if and only if
Lie{V }q0 = Tq0Q. Furthermore, if Q is connected and if Lie{V }q = TqQ for each q ∈ Q,
then (3.1) is controllable.

4.2. Kinematically controllable dynamic systems. A dynamic mechanical system (2.1)
described by (Q,G, V,D ,F ) is kinematically controllable if there exists a sequence
of kinematic reductions {Vi| i ∈ {1, . . . , k}, rankVi = ℓi} so that for every q1, q2 ∈ Q
there are corresponding controlled trajectories {(γi, wi)| γi : [Ti−1, Ti] → Q,wi : [Ti−1, Ti] →
Rℓi , i ∈ {1, . . . , k}} such that γ1(T0) = q1, γk(Tk) = q2, and γi(Ti) = γi+1(Ti) for all
i ∈ {1, . . . , k−1}. In other words, any q2 ∈ Q is reachable from any q1 ∈ Q by concatenating
motions on Q corresponding to kinematic reductions of (2.1). The dynamic system (2.1)
is locally kinematically controllable from q0 if, for any neighborhood of q0 on Q, the
set of reachable configurations by trajectories remaining in the neighborhood and following
motions of its kinematic reductions contains q0 in its interior.

By assembling the discussion from the preceding section, and surrounding Proposi-
tion 3.5, we arrive at the following conditions for local kinematic controllability.
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4.3 Proposition: Consider a dynamic mechanical system (2.1).

(i) The system is locally kinematically controllable if and only if it possesses a collection of
decoupling vector fields (i.e., rank-one kinematic reductions) whose involutive closure
has maximal rank everywhere in Q.

(ii) If the system is locally kinematically controllable then there is a subbundle Ỹ of Y

with the property that BY (q)|Ỹ is indefinite and Lie{Ỹ }q = TqQ for each q ∈ Q.

(iii) If the input distribution Y is codimension one, BY (q) is indefinite and Lie{Y }q =
TqQ for each q ∈ Q, then the system is locally kinematically controllable.

4.3. Controllable dynamic systems. We consider again a dynamic mechanical system (2.1)
derived from (Q,G, V,D ,F ). For q0 ∈ Q we denote

RTQ(q0, T ) = {γ̇(T ) | (γ, u) is a controlled trajectory

of (2.1) defined on [0, T ] and satisfying γ̇(0) = 0q0}.

Here 0q0 ∈ Tq0Q is the zero vector. We also define RTQ(q0,≤ T ) =
⋃

t∈[0,T ]RTQ(q0, t). With
these notions of reachable sets, we have the following definitions of controllability.

4.4 Definition: Consider a dynamic mechanical system (2.1) described by (Q,G, V,D ,F )
and let q0 ∈ Q. Suppose that the controls for (2.1) are restricted to take their values in a
compact set of Rm which contains 0 in the interior of its convex hull. The system (2.1) is

(i) locally accessible from q0 if there exists T > 0 so that int(RTQ(q0,≤ t)) ̸= ∅ for
t ∈ (0, T ], and is

(ii) small-time locally controllable (STLC ) from q0 if there exists T > 0 so that
0q0 ∈ int(RTQ(q0,≤ t)) for all t ∈ (0, T ].

To present the results in [Lewis and Murray 1997] we need some notation concerning
iterated symmetric products in the vector fields {Y1, . . . , Ym}. Such a symmetric product
is bad if it contains an even number of each of the vector fields Y1, . . . , Ym, and otherwise
is good . Thus, for example, ⟨⟨Ya : Yb⟩ : ⟨Ya : Yb⟩⟩ is bad for all a, b ∈ {1, . . . ,m} and
⟨Ya : ⟨Yb : Yc⟩⟩ is good for any a, b, c ∈ {1, . . . ,m}. The degree of a symmetric product is
the total number of input vector fields comprising the symmetric product. For example,
our given bad symmetric product has degree 4 and the given good symmetric product has
degree 3. If P is a symmetric product in the vector fields {Y1, . . . , Ym} and if σ ∈ Sm is
an element of the permutation group on {1, . . . ,m}, σ(P ) denotes the symmetric product
obtained by replacing each occurrence of Ya with Yσ(a).

We now state the main result concerning controllability in state space of dynamic me-
chanical systems.

4.5 Theorem: Consider an analytic dynamic mechanical system (2.1) described by
(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system (2.1) is

(i) locally accessible from q0 if and only if Sym{Y }q0 = Tq0Q, and is

(ii) STLC from q0 if Sym{Y }q0 = Tq0Q and if for every bad symmetric product P we
have ∑

σ∈Sm

σ(P )(q0) ∈ spanR(P1(q0), . . . , Pk(q0)),

where P1, . . . , Pk are good symmetric products of degree less than P .
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The condition stated for STLC is derived from a result of Sussmann [1987]. Hirschorn and
Lewis [2001] state the following low-order condition for controllability that is related to
kinematic controllability.

4.6 Theorem: Consider an analytic dynamic mechanical system (2.1) described by
(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system (2.1) is

(i) STLC from q0 if

(a) Sym{Y }q0 = Tq0Q with Sym{Y }q0 being spanned by at most degree 2 symmetric
products and

(b) BY (q0) is indefinite, and is

(ii) not STLC from q0 if BY (q0) is definite.

4.4. Configuration controllable dynamic systems. The preceding discussion concerned the
set of reachable states for a dynamic mechanical system. Let us now restrict, as in [Lewis
and Murray 1997], to descriptions of the set of reachable configurations. We define

RQ(q0, T ) = τ(RTQ(q0, T )), RQ(q0,≤ T ) =
⋃

t∈[0,T ]

RQ(q0, t).

This gives the following notions of controllability relative to configurations.

4.7 Definition: Consider a dynamic mechanical system (2.1) described by (Q,G, V,D ,F )
and let q0 ∈ Q. The dynamic mechanical system (2.1) is

(i) locally configuration accessible from q0 if there exists T > 0 so that int(RQ(q0,≤
t)) ̸= ∅ for all t ∈ (0, T ], and is

(ii) small-time locally configuration controllable (STLCC ) from q0 if there exists
T > 0 so that q0 ∈ int(RQ(q0,≤ t)) for all t ∈ (0, T ] with the controls restricted to
take their values in a compact subset of Rm that contains the origin in its convex
hull.

The following results were proved by Lewis and Murray [1997].

4.8 Theorem: Consider an analytic dynamic mechanical system (2.1) described by
(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system (2.1) is

(i) locally configuration accessible from q0 if and only if Lie{Sym{Y }}q0 = Tq0Q, and is

(ii) STLCC from q0 if Lie{Sym{Y }}q0 = Tq0Q and if for every bad symmetric product
P we have ∑

σ∈Sm

σ(P )(q0) ∈ spanR(P1(q0), . . . , Pk(q0)),

where P1, . . . , Pk are good symmetric products of degree less than P .

We also have the following minor extension of Theorem 4.6.
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4.9 Theorem: Consider an analytic dynamic mechanical system (2.1) described by
(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system (2.1) is

(i) STLCC from q0 if

(a) Lie{Sym{Y }}q0 = Tq0Q with Sym{Y }q0 being spanned by at most degree 2
symmetric products and

(b) BY (q0) is indefinite, and is

(ii) not STLCC from q0 if BY (q0) is definite.

From part ii follows the single-input result of Lewis [1997].

4.10 Corollary: If m = 1 and if dim(Q) > 1 then (2.1) is not STLCC from q0.

4.5. Controllability inferences and counter-examples. In this subsection we summarize
the relationships between the various controllability concepts described previously. In
particular, Figure 1 illustrates the relationships between small-time locally controllable
(STLC), small-time locally configuration controllable (STLCC), locally kinematically con-
trollable (LKC), and fully reducible, locally kinematically controllable (FR-LKC) systems.
All implications in figure are clear from the theoretical treatment. Without further as-

STLCC

STLC LKC FR-LKC

Figure 1: Inference between controllability notions for mechanical control systems.

sumptions on the dimension of the configuration space n and on the dimension of the input
distribution m, no further implications can be added to Figure 1. To prove this statement,
we present the following counter-examples.

(i) STLC does not imply LKC nor FR-LKC — Consider the example system:

q̈1 = u1

q̈2 = u2

q̈3 = q̇1q̇2.

The input vector fields are Y1 = ∂
∂q1

, Y2 = ∂
∂q2

. This system is STLC since ⟨Y1 :

Y2⟩ = 2 ∂
∂q3

. It is not LKC since Y1 and Y2 are the only decoupling vector fields (note

⟨Y1 : Y1⟩ = 0 = ⟨Y2 : Y2⟩) but their Lie bracket vanishes identically. Additionally, the
system is not fully reducible since the input distribution is not geodesically invariant.

(ii) FR-LKC does not imply STLC — Consider the example system in Poincaré for-
mat:

q̇1 = v1 v̇1 = u1

q̇2 = cos(q1)v2 − sin(q1)v3, v̇2 = u2

q̇3 = sin(q1)v2 + cos(q1)v3 v̇3 = 0.
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The input vector fields are Y1 = ∂
∂q1

and Y2 = cos(q1) ∂
∂q2

+ sin(q1) ∂
∂q3

. This system

is not STLC, since Sym{Y1, Y2}q = spanR(Y1(q), Y2(q)) for each q ∈ Q. In particular,
along any solution of this mechanical control system starting from rest, v3(t) = 0
for all time t. However, both input vector fields are decoupling and Lie{Y1, Y2} is
full rank. Hence the system is fully reducible and locally kinematically controllable
(FR-LKC), but not STLC.

(iii) LKC does not imply FR-LKC nor STLC — Consider the example system in
Poincaré format:

q̇ =

4∑
i=1

Xivi,

v̇1 = u1

v̇2 = u2

v̇3 = v1v2

v̇4 = a(v3)2,

(4.1)

where X = {X1, . . . , X4} is a basis for TR4. These equations are controlled Poincaré
equations with respect to the basis X. All generalized Christoffel symbols vanish
except for (XΓ)312 = (XΓ)321 = 1, and (XΓ)433 = a. According to equation (2.2) the input
vector fields X1 and X2 are decoupling. If the basis X is chosen so that Lie{X1, X2} is
full rank, then the system is locally kinematically controllable. It is not fully reducible
to a kinematic system, since Sym{X1, X2} is at least dimension 3. If a = 0, the system
is not locally accessible. If a = 1, the system is locally accessible but not STLC.

(iv) STLCC does not imply STLC nor LKC nor FR-LKC — Consider the exam-
ple system in Poincaré format:

q̇ =

4∑
i=1

Xivi,

v̇1 = u1

v̇2 = u2

v̇3 = v1v2

v̇4 = 0.

As previously, these equations are controlled Poincaré equations. As previously, the
input vector fields X1 and X2 are decoupling. We now suppose the basis {X1, . . . , X4}
is chosen so that Lie{X1, X2}q = spanR(X1(q), X2(q)) for each q ∈ Q and so that
Lie{X1, X2, X3} is full rank. Note that the system is not LKC since the Lie closure
of the input distribution is not full rank. Note that ⟨X1 : X2⟩ = X3, and that
Sym{X1, X2}q = spanR(X1(q), X2(q), X3(q)) for each q ∈ Q; therefore the system is
neither fully reducible, nor STLC. It is STLCC, since Lie{Sym{X1, X2}} is full rank.

4.6. Analysis of low-dimensional systems. We here study how the dimensions of the
configuration space n and of the input distribution m affect the modeling and controllability
analysis in the previous sections. If n = m, the system is STLC because one control input
is available for each degree of freedom. Hence, we restrict our following analysis to the
underactuated setting m < n.

• Assume m = 1 and n ≥ 2, and let Y be the single input vector field. If
Sym{Y }q = spanR(Y (q)) for each q ∈ Q, then the system has one decoupling vector
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field, and since Lie{Sym{Y }} = Sym{Y }, the system will not be locally accessible,
nor locally configuration accessible. If Sym{Y } has rank 2, then the system is pos-
sibly accessible or configuration accessible, but never STLC nor STLCC. In terms of
the quadratic form BY , note that its domain and codomain have dimension 1. Ac-
cordingly, BY is either identically vanishing (fully reducible system) or sign definite
(possibly accessible, but never STLC).

• If m = 2, n = 3, then LKC implies either the system is fully reducible, or the system is
STLC. To prove it, consider the input distribution: either it is geodesically invariant
(rank Sym{Y } = 2) or not (rank Sym{Y } = 3). In the first case, the system is fully
reducible to a kinematic system. In the second case, the dynamic system is locally
accessible and, because of the good properties of decoupling vector fields, the system
satisfies the bad symmetric product test and it is STLC. This statement does not hold
anymore at m = 2 n = 4 as proved by example system (4.1). In terms of the quadratic
form BY , note that its domain has dimension 2 and its codomain has dimension 1.
Accordingly, BY is either identically vanishing (fully reducible system), or indefinite
(STLC system) or sign definite (accessible, but never STLC dynamic system).

5. A catalog of affine connection control systems

In this section we consider a number of instructive examples and present a detailed
description of their kinematic reductions and of their controllability properties. The catalog
is presented in tabular form on page 14. To read the table, the following key for citations
is required:

1. [Lynch, Shiroma, Arai, and Tanie
2000]

2. [Bullo and Lynch 2001]

3. [Lewis 2000]

4. [Bullo and Žefran 2002]

5. [Bullo, Leonard, and Lewis 2000]

6. [Lewis 1999]

7. [Bullo and Lewis 2003]
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System Picture Reducibility & Controllability Ref

planar 2R robot
single torque at either
joint: (1, 0), (0, 1)
n = 2,m = 1

(1, 0): no reductions, accessible

(0, 1): decoupling v.f., fully
reducible, not accessible or
STLCC

1, 2

roller racer
single torque at joint
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no kinematic reductions, acces-
sible, not STLCC

3, 4

planar body with sin-
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planar body with two
forces
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robotic leg
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6

planar 3R robot, two
torques:
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rolling penny
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snakeboard
n = 5,m = 2
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3, 7

3D vehicle with 3 gen-
eralized forces
n = 6,m = 3

three decoupling v.f., LKC,
STLC

5, 2
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