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Abstract

The problem of shaping the kinetic and potential energy of a mechanical system
by feedback is cast in a differential geometric framework. The nature of the set of
solutions to the potential energy shaping problem is described. The kinetic energy
shaping problem is posed in (1) an affine differential geometric framework and (2) a
manner where the geometric integrability theory for partial differential equations can
be applied.

1. Introduction

In recent years, there has appeared in the literature a significant number of publications
on the subject of energy shaping. The procedure is, roughly, one wherein one alters by
feedback a mechanical system in such a way that the closed-loop system is also mechanical.
The principal advantage in doing this is that the stability of equilibria for simple mechanical
systems, i.e., those with kinetic minus potential Lagrangians, is quite well understood. One
can, in principle, use this understanding to design the closed-loop system to stabilise an
equilibrium configuration, hopefully with a larger basin of attraction than would be possible
via, for example, linearisation.

The first paper to consider the problem seems to be that of Takegaki and Arimoto [1981],
where potential shaping was considered for systems with integrable input codistributions.
A geometric treatment of potential shaping for systems with possibly nonintegrable input
codistributions was given by van der Schaft [1986]. Other early work, in a Hamiltonian
setting, is [Bloch, Krishnaprasad, Marsden, and Sánchez de Alvarez 1992]. Various groups
have made recent contributions to this problem, notably by additionally considering kinetic
energy shaping. The “method of controlled Lagrangians” is described in the papers [Bloch,
Chang, Leonard, and Marsden 2001, Bloch, Leonard, and Marsden 2000]. The “intercon-
nection and damping assignment-passivity based control (IDA-PBC) method” is described
in [Ortega, Spong, Gómez-Estern, and Blankenstein 2002]. The two methods are (essen-
tially) shown to be equivalent in the papers [Blankenstein, Ortega, and van der Schaft
2002, Chang, Bloch, Leonard, Marsden, and Woolsey 2002]. Both of the methods produce
systems of nonlinear partial differential equations. An approach to possibly solving these
equations, the “λ-method,” is described in [Auckly and Kapitanski 2002, Auckly, Kapitan-
ski, and White 2000]. Energy shaping for linear systems is considered in [Zenkov 2002].
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Additional contributions, in the setting of general rather than simple Lagrangians, have
been made in the papers [Hamberg 1999, Hamberg 2000].

In this paper, we take an affine differential geometric approach to energy shaping. Of
the work cited above, the approach we give here is closest in spirit to [Auckly, Kapitan-
ski, and White 2000]. We see that what appears as a gyroscopic force in the method of
controlled Lagrangians, and a change of interconnection in the IDA-PBC method, can also
be thought of as a modification of the Levi-Civita affine connection to an affine connection
that preserves energy in a sense that we make precise. Our allowing the closed-loop affine
connection to possibly not be Levi-Civita captures the same sort of behaviour allowed in the
IDA-PBC method by allowing the closed-loop Hamiltonian structure to be presymplectic
rather than symplectic (i.e., the two-form may not be closed).

Our principal objective is to initiate a more systematic geometric exploration of the
issues surrounding energy shaping. Page length restrictions make it impossible to report
on all of the progress we have made here.

Notation. The identity map on a set S is denoted idS . If f : S → T is a map of sets and
if A ⊆ S, then f |A denotes the restriction of f to A.

The set of (r, s)-tensors on a R-vector space V is denoted by Tr
s(V). Given a (0, 2)-

tensor A on V, we define A♭ : V → V∗ by ⟨A♭(v);u⟩ = A(u, v) for u, v ∈ V. If A♭ is an
isomorphism, its inverse is denoted by A♯ : V∗ → V. The set of symmetric (resp. skew-
symmetric) (0, 2)-tensors on V is denoted by TS2(V) (resp. T

∧2(V)). We shall be dealing
with multiple inner products, so it is necessary to reflect which inner product is being used
to define notions such as symmetry of linear maps and orthogonality. We shall therefore
write M-symmetric or M-orthogonal in such cases, where M is an inner product. For
S ⊆ V and T ⊆ V∗, we denote

ann(S) = {α ∈ V∗ | α(v) = 0 for all v ∈ S},
coann(T ) = {v ∈ V | α(v) = 0 for all α ∈ T}.

All manifolds and maps will be assumed to be C∞, unless otherwise stated. The tan-
gent bundle of a manifold M is denoted by πTM : TM → M and the cotangent bundle by
πT∗Q : T∗Q → Q. The zero vector in the tangent space at x ∈ M is denoted by 0x. The
derivative of a map f : M → N between manifolds is denoted by Tf : TM → TN, and the
restriction of Tf to TxM is denoted by Txf . The set of smooth functions on M is denoted
by C∞(M). The exterior derivative of a k-form α is denoted by dα. If π : E → M is a vector
bundle, Γ∞(E) denotes the set of C∞-sections of E. The zero section of a vector bundle
E is denoted by Z(E). The vector bundle of vector bundle mappings over idM of a vector
bundle π : E → M to itself are denoted by End(E).

2. Problem formulation

In this section, we define precisely the systems we study, and the problems we consider
for these systems.

2.1. System definitions. Let us first define the control systems we are primarily interested
in.
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2.1 Definition: A simple mechanical control system is a quadruple (Q,G, V,F =
{F 1, . . . , Fm}) where
(i) Q is an n-dimensional Hausdorff manifold,

(ii) G is a Riemannian metric on Q,

(iii) V is a function on Q, and

(iv) F 1, . . . , Fm are one-forms on Q, generating a subbundle of T∗Q which we denote by
F. •

The governing equations for a simple mechanical control system are

G

∇γ′(t)γ
′(t) = −G♯ ◦ dV (γ(t)) +

m∑
a=1

ua(t)G
♯ ◦ F a(γ(t)),

where
G

∇ is the Levi-Civita connection associated with G. It is possible that one might
have additional external forces on the system. However, since this does not change the
design problem (it does change the analysis problem for the closed-loop system), we do not
complicate the problem by considering this.

Next we define the objective closed-loop system we seek. To discuss the character of the
closed-loop systems we consider, we introduce some notation associated with a (0, 3)-tensor
field A on Q. We denote by A♭ the fibre-quadratic map from TQ to T∗Q given by

⟨A♭(vq);uq⟩ = A(uq, vq, vq).

This notation is a natural adaptation of the usual flat map associated with a (0, 2)-tensor
field.

2.2 Definition: A forced simple mechanical system is a quadruple (Q,G, V, F ) where

(i) Q is an n-dimensional Hausdorff manifold,

(ii) G is a Riemannian metric on Q,

(iii) V is a function on Q, and

(iv) F : TQ → T∗Q is a bundle map over idQ called the external force .

An external force F is quadratically gyroscopic if F (vq) = −B♭(vq), where B is a
(0, 3)-tensor field, called the quadratic gyroscopic tensor , satisfying B(uq, vq, wq) =
−B(vq, uq, wq), for all uq, vq, wq ∈ TQ. •

The equations of motion for a forced simple mechanical system are

G

∇γ′(t)γ
′(t) = −G♯ ◦ dV (γ(t)) +G♯ ◦ F (γ′(t)),

for a smooth curve γ : I → Q. In this paper, we shall not consider gyroscopic forces that
are not quadratic, so we shall adopt the convention that a “quadratic gyroscopic” force is
simply “gyroscopic.”
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2.2. The energy shaping problem. We seek a closed-loop system that is a simple mechan-
ical system with an external force that is a gyroscopic force. Thus the closed-loop system
has the form (Q,Gcl, Vcl,−B♭

cl), where B is a gyroscopic tensor. The reason for seeking this
as a closed-loop system is that the stability of equilibria for such systems is well understood.
The objective, therefore, is to design the control force F (vq) =

∑m
a=1 ua(vq)F

a(q) so that

G

∇γ′(t)γ
′(t) +G♯ ◦ dV (γ(t))−G♯ ◦ F (γ′(t))

=
Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ dVcl(γ(t)) +G

♯
cl

◦ B♭
cl(γ

′(t)),

for any smooth curve γ : I → Q.
Let Λcl = G

♭ ◦ G♯
cl, noting that this is a vector bundle automorphism of T∗Q over idQ.

The strategy we use to construct F is as follows.

2.3 Definition: An energy shaping feedback for a simple mechanical control system
Σ = (Q,G, V,F ) with closed-loop system Σcl = (Q,Gcl, Vcl,−B♭

cl) is given by F : TQ → F

with F = −Fkin − Fpot, where

(i) Fkin : TQ → F has the property that

G♯ ◦ Fkin(γ
′(t)) =

Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ B♭

cl(γ
′(t))−

G

∇γ′(t)γ
′(t)

for any smooth curve γ, and

(ii) Fpot : Q → F has the property that

Fpot(γ(t)) = Λcl ◦ dVcl(γ(t))− dV (γ(t))

for any smooth curve γ. •

2.4 Remarks: 1. Note that we ask that the feedback be regarded as an F-valued bundle
map, rather than an Rm-valued function on TQ. The latter certainly gives rise to the
former. Indeed, given u : TQ → Rm, we define a F-valued bundle map on TQ by

Fu(vq) =

m∑
a=1

ua(vq)F
a(q),

where F 1, . . . , Fm are the one-forms comprising F . The problem of inferring the exis-
tence of a Rm-valued function on TQ given a F-valued bundle map is not so straight-
forward. It is possible to do this in the case that F has constant rank, and is globally
finitely generated. The latter condition is satisfied by our definition of a simple mechan-
ical control system. However, the constant rank assumption will not generally hold,
and this complicates the notion of feedback as we define it compared to feedback in the
more usual sense.

2. Of course, one will generally include dissipative forces in the closed-loop system as well.
We do not include this here, since our focus is principally on the shaping of the closed-
loop energy. However, there are some interesting issues to be considered for the addition
of dissipative forces. •
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3. The geometry of potential energy shaping

In this section, we describe feedback that shapes the potential energy. This seems to
have first been considered in a general way in [van der Schaft 1986], although the geometric
flavour of that work appears to have been lost in some of the recent literature on energy
shaping.

We let Σ = (Q,G, V,F ,Rm) be a simple mechanical control system. While in practice
one will typically design the closed-loop kinetic and potential energy together, for our
purposes in this section it is convenient to suppose that the closed-loop kinetic energy Gcl

has already been defined. This will allow us to identify the important issues regarding
potential shaping that must be considered when shaping the kinetic energy. Recall that the
closed-loop kinetic energy metric gives rise to the bundle automorphism Λcl = G

♭ ◦ G♯
cl of

T∗Q.
We need some notation concerning the nature of the one-forms defining the inputs for

a simple mechanical control system. We suppose that q0 is a regular point for F. This

implies that q0 is also a regular point for Fcl ≜ Λ−1
cl (F). We denote by F

(∞)
cl the largest

integrable codistribution in Fcl. We suppose this codistribution to have constant rank near
q0, in which case we say that F is totally regular at q0. We let C∞(Q)Fcl

be the set of
smooth functions f on Q having the property that df ∈ Γ∞(Fcl). The following lemma
follows essentially from Frobenius’s Theorem (see [Bullo and Lewis 2004, Lemma 10.36]).

3.1 Lemma: If F is totally regular at q0, then, for f ∈ C∞(Q), the following statements
are equivalent:

(i) there exists a neighbourhood U of q0 for which f |U ∈ C∞(U)Fcl|U;

(ii) there exists a neighbourhood U of q0 for which d(f |U) ∈ Γ∞(F
(∞)
cl |U).

Next we define

PSq0(Q) = {Vcl ⊕ Fcl ∈ C∞(Q)⊕ Γ∞(Fcl) | dVcl = Fcl + Λ−1
cl

◦ dV, Vcl(q0) = 0}.

Clearly, up to the normalisation of being zero at q0, PSq0(Q) consists of solutions to the
potential shaping problem, in the sense that, if Vcl ⊕ Fcl ∈ PSq0(Q), then the closed-loop
potential Vcl is achieved using the control force Fcl. Next we define

L(PSq0(Q)) = {f ⊕ α ∈ C∞(Q)Fcl
⊕ Γ∞(F

(∞)
cl ) | df = α}

With this notation as backdrop, we state the following result, which tells us how many
solutions the potential shaping problem has, and the form of those solutions, if it has one
solution.

3.2 Proposition: If (Q,G, V,F ) is a simple mechanical control system, if PSq0(Q) is
nonempty, and if F is totally regular at all points in Q, then

(i) PSq0(Q) is an affine subspace of C∞(Q)⊕ Γ∞(Fcl) modelled on L(PSq0(Q)).

Furthermore, if the codistribution Fcl is totally regular only at q0, then

(ii) there exists a neighbourhood U of q0 with the property that L(PSq0(U)) is naturally

isomorphic to the closed sections of F
(∞)
cl |U.
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Proof: (i) Let Vcl,1⊕Fcl,1, Vcl,2⊕Fcl,2 ∈ PSq0(U) and note that d(Vcl,1 − Vcl,2) = Fcl,1−Fcl,2.
Thus

Vcl,1 ⊕ Fcl,1 − Vcl,2 ⊕ Fcl,2 ∈ L(PSq0(U)).

Also note that if f ⊕ α ∈ L(PSq0(Q)) and if Vcl ⊕ Fcl ∈ PSq0(Q) then

d(Vcl + f) = (Fcl + α) + Λ−1
cl

◦ dV,

so that (Vcl+f)⊕(Fcl+α) ∈ PSq0(U). One can easily verify that these computations suffice
for this part of the result.

(ii) We choose U to be connected and such that F is totally regular at each point in

U. Consider the map from L(PSq0(Q)) to Γ∞(F
(∞)
cl ) defined by f ⊕ α 7→ α. Given that

f(q0) = 0 and that df = α, it follows that this map is injective into the closed sections

of F
(∞)
cl |U. Regularity of F

(∞)
cl on U, and possibly shrinking U so that one can choose

coordinates for which dq1, . . . ,dqk are generators for F, also establishes surjectivity of this

projection onto the set of closed sections of F
(∞)
cl |U. ■

We shall not comment on this paper on conditions for PSq0(Q) to be nonempty, but refer
to Section 5.1 for a formulation of this question as a geometric partial differential equation.

3.3 Remarks: Note that a general input codistribution F will have the property that F(∞) =
Z(T∗Q). It does turn out that in many examples it actually holds that F(∞) = F, i.e., the
input codistribution is integrable. Indeed, it is not uncommon to see this assumption made
without comment. However, what Proposition 3.2 indicates is that, even in these cases, it

might still be the case that F
(∞)
cl = Z(T∗Q), and this severely limits the sort of potential

shaping that can be achieved. •
The special case where F is regular and codimension one has been singled out as being

special in (at least) the papers [Auckly and Kapitanski 2002, Ortega, Spong, Gómez-Estern,
and Blankenstein 2002]. The following simple result illustrates one reason why this case is
of particular interest.

3.4 Lemma: Let (Q,G, V,F ) be a simple mechanical control system, suppose that q0 is a
regular point for F, and suppose that codim(Fq0) = 1. Then there exists a neighbourhood
U of q0 such that

(i) F(∞)|U = F|U and

(ii) F
(∞)
cl |U = Fcl|U.

Proof: This follows simply because if q0 is a regular point for a codimension one codis-
tribution, then the codistribution is integrable in a neighbourhood of q0 by Frobenius’s
Theorem. ■

3.5 Remark: Many of the examples worked out in the literature have had the property that
dim(Q) = 2 and rank(F) = 1. The preceding lemma illustrates why, in these examples, the
authors were able to disregard the issues raised in Remark 3.3. •
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4. An affine connection formulation of kinetic energy shaping

In this section we consider the shaping of the closed-loop kinetic energy metric. We recall
from Definition 2.3 that the objective is to find a Riemannian metric Gcl and a gyroscopic
force Bcl for which

Gcl

∇γ′(t)γ
′(t) +G♯

cl
◦ B♭

cl(γ
′(t))−

G

∇γ′(t)γ
′(t) ∈ G♯(F)γ(t) (4.1)

for any smooth curve γ. The point of view we take here is that we design a closed-loop
affine connection with certain properties relative to the desired closed-loop kinetic energy.
In order to do this, it is convenient to first say some things about (0, 3)-tensor fields.

4.1. Decompositions of (0, 3)-tensors. We let (Q,G) be a Riemannian manifold. Note
that, if ∇ is any other affine connection on Q, then we have

G(∇XY, Z) = G(
G

∇XY,Z) +D∇,G(Z,X, Y ), (4.2)

for some uniquely defined (0, 3)-tensor field D∇,G. If we decompose D∇,G into its symmetric
and skew-symmetric parts with respect to the last two entries, we have

D∇,G(X,Y, Z) = 1
2(D∇,G(X,Y, Z) +D∇,G(X,Z, Y ))︸ ︷︷ ︸

S∇,G(X,Y,Z)

+ 1
2(D∇,G(X,Y, Z)−D∇,G(X,Z, Y ))︸ ︷︷ ︸

T∇,G(X,Y,Z)

, (4.3)

so defining two (0, 3)-tensor fields S∇,G and T∇,G. Note that, if T is the torsion tensor for
∇, then we have

2T∇,G(X,Y, Z) = G(Z, T (X,Y )).

Also note that the geodesics of ∇ depend only on S∇,G and not on T∇,G. More precisely,
geodesics γ of ∇ satisfy

∇γ′(t)γ
′(t) =

G

∇γ′(t)γ
′(t) +G♯ ◦ S♭

∇,G(γ
′(t)).

The preceding discussion motivates the following definitions.

4.1 Definition: A (0, 3)-tensor field A on Q is

(i) gyroscopic if A(X,Y, Z) = −A(Y,X,Z) for allX,Y, Z ∈ Γ∞(TQ) (this is a repetition
of our former definition of a gyroscopic tensor field), is

(ii) geodesic if if A(X,Y, Z) = A(X,Z, Y ) for all X,Y, Z ∈ Γ∞(TQ), is

(iii) torsional if A(X,Y, Z) = −A(X,Z, Y ) for all X,Y, Z ∈ Γ∞(TQ), and is

(iv) skew if A ∈ Γ∞(T
∧3(TQ)). •

The discussion preceding the definition can now be summarised as follows.
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4.2 Lemma: If (Q,G) is a Riemannian manifold and if ∇ is an affine connection on Q,
then there exists a unique geodesic tensor field S∇,G and a unique torsional tensor field

T∇,G satisfying G(∇XY, Z) = G(
G

∇XY,Z) + S∇,G(Z,X, Y ) + T∇,G(Z,X, Y ), for X,Y, Z ∈
Γ∞(TQ).

Now we wish to decompose an arbitrary (0, 3)-tensor in a particular way. It is convenient
now to simply work with a R-vector space V, adapting in the obvious way the definitions
for gyroscopic, geodesic, torsional, and skew tensors. Let us denote by Gyr(V) and Tor(V)
the set of gyroscopic and torsional tensors on V. We shall also require the symmetrising
and skew-symmetrising maps. Thus, for A ∈ T0

k(V), we define

Sym(A)(v1, . . . , vk) =
1
k!

∑
σ∈Sk

A(vσ(1), . . . , vσ(k))

and

Alt(A)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(−1)sgn(σ)A(vσ(1), . . . , vσ(k)).

Here Sk is the permutation group on k symbols, and sgn(σ) is the parity of the permutation
σ.

The following decomposition result will be useful. There are natural extensions of this
result to higher-degree tensors, but we shall only need what we present here.

4.3 Lemma: For a finite-dimensional R-vector space V, the following statements hold:

(i) T0
3(V) = TS3(V)⊕ T

∧3(V)⊕ (Gyr(V) ∩ ker(Alt))⊕ (Tor(V) ∩ ker(Alt));

(ii) in particular, ker(Sym) = T
∧3(V)⊕ (Gyr(V) ∩ ker(Alt))⊕ (Tor(V) ∩ ker(Alt));

(iii) for A ∈ ker(Sym), the decomposition A = SA + ΩA + BA + TA, SA ∈ TS3(V),
ΩA ∈ T

∧3(V), BA ∈ Gyr(V) ∩ ker(Alt), TA ∈ Tor(V ∩ ker(Alt), is given explicitly by

SA(u, v, w) =
1
6(A(u, v, w) +A(u,w, v) +A(v, w, u)

+A(v, u, w) +A(w, u, v) +A(w, v, u)),

ΩA(u, v, w) =
1
6(A(u, v, w)−A(u,w, v) +A(v, w, u)

−A(v, u, w) +A(w, u, v)−A(w, v, u)),

BA(u, v, w) =
1
3(A(u, v, w) +A(u,w, v)

−A(v, u, w)−A(v, w, u)),

TA(u, v, w) =
1
3(A(u, v, w) +A(v, u, w)

−A(u,w, v)−A(w, u, v)).

Proof: Note that Sym: T0
3(V) → TS3(V) is a projection, so that we have T0

3(V) =
TS3(V) ⊕ ker(Sym). Thus part (i) will follow if part (ii) is proved. It is readily checked
that T

∧3(V),Gyr(V),Tor(V) ⊆ ker(Sym). Furthermore, the explicit expressions for ΩA,
BA, and TA are verified by direct computation to satisfy A = ΩA + BA + TA, provided
that A ∈ ker(Sym). Since Ω is torsional (and gyroscopic), it follows that ker(Sym) =
Gyr(V) + Tor(V). Next note that Alt : ker(Sym) → T

∧3(V) is a projection, so that
ker(Sym) = T

∧3(V)⊕ (ker(Alt) ∩ ker(Sym)). It therefore follows that

ker(Sym) = T
∧3(V)⊕ ((Gyr(V) + Tor(V)) ∩ ker(Alt)).
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Next, suppose that A ∈ Gyr(V) ∩ Tor(V) ∩ ker(Alt). Since A is gyroscopic and torsional,
we have

A(u, v, w) = −A(v, u, w) = A(w, u, v) = −A(w, v, u),

so showing thatA is skew-symmetric in all entries i.e., thatA ∈ T
∧3(V). SinceA ∈ ker(Alt),

we have A = 0. Part (ii), and therefore part (i), now follows.
The proof of part (iii) is merely a matter of directly checking that SA, ΩA, BA, and TA

have the stated properties. ■

The following (now) simple result will also be helpful in shedding some light on the
methodology of this section.

4.4 Corollary: If V is a finite-dimensional R-vector space and if A ∈ Gyr(V), then there
is a unique decomposition BA = GA +ΩA where GA is gyroscopic and geodesic and ΩA is
skew.

Proof: Every (0, 3)-tensor may be uniquely decomposed as A = GA + TA where GA is
geodesic and TA is torsional. Explicitly

GA(X,Y, Z) = 1
2(A(X,Y, Z) +A(X,Z, Y )),

TA(X,Y, Z) = 1
2(A(X,Y, Z)−A(X,Z, Y )).

Since A ∈ Gyr(V) ⊆ ker(Sym), by Lemma 4.3 we have A = BA + TA where BA ∈ Gyr(V)∩
ker(Alt) and TA is torsional. From the uniqueness of the torsional part of the decomposition
A = GA + TA, we conclude that BA = GA. Thus GA is gyroscopic and geodesic. It follows
that TA is gyroscopic and torsional, and therefore skew. ■

4.2. Energy preserving affine connections. In this section, we extend the definitions of Alt
and Sym to being defined as vectors bundle maps. We also extend the previous notation for
gyroscopic and torsional tensors to tensor bundles by Gyr(TQ) and Tor(TQ). Thus these
are both now subbundles of T0

3(TQ).
Let G be a Riemannian metric on Q. Define the kinetic energy associated to G by

KEG(vq) =
1
2G(vq, vq). An affine connection ∇ on Q is G-energy preserving if, for every

geodesic γ : I → Q for ∇, it holds that Lγ′′(t)(KEG(γ
′(t))) = 0.

The following result now characterises energy preserving affine connections, recalling the
definition of D∇,G from (4.2), and extending the definition of Sym from tensors to tensor
fields in the obvious way.

4.5 Proposition: For a Riemannian manifold (Q,G) and an affine connection ∇ on Q, the
following statements are equivalent:

(i) ∇ is G-energy preserving;

(ii) ∇G ∈ Γ∞(ker(Sym));

(iii) D∇,G ∈ Γ∞(ker(Sym)).

(iv) there exists tensor fields Ω∇,G ∈ Γ∞(T
∧3(TQ)), B∇,G ∈ Γ∞((Gyr(TQ) ∩ ker(Alt))),

and T̂∇,G ∈ Γ∞((Tor(TQ) ∩ ker(Alt))) such that

G(∇XY,Z) = G(
G

∇XY,Z) +B∇,G(Z,X, Y ) + T̂∇,G(Z,X, Y ) + Ω∇,G(Z,X, Y ),

for all X,Y, Z ∈ Γ∞(TQ).
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Proof: (i) =⇒ (ii) Let vq ∈ TqQ and let γ be a geodesic satisfying γ′(0) = vq. We then have

Lγ′′(t)(KEG(γ
′(t))) = 1

2∇γ′(t)G(γ
′(t),G′(t))

+G(∇γ′(t)γ
′(t), γ′(t))

= 1
2∇γ′(t)G(γ

′(t),G′(t)).

Evaluating at t = 0 gives ∇G(vq, vq, vq) = 0. By polarisation, the equalities

∇G(vq, vq, vq) = 0, for all vq ∈ TqQ,

Sym(∇G)(q) = 0

are equivalent. Therefore, (ii) follows.
(ii) =⇒ (iii) A straightforward calculation (see [Lewis 1998, Lemma 6.10]) gives

(∇G)(X,Y, Z) = (∇XG)(Y,Z)

= −D∇,G(Z,X, Y )−D∇,G(Y,X,Z).

A direct calculation using the definition of Sym(∇G) yields

Sym(∇G)(X,Y, Z) = −1
3 Sym(D∇,G)(X,Y, Z) (4.4)

for X,Y, Z ∈ Γ∞(TQ). This gives this part of the proof.
(iii) =⇒ (iv) This follows directly from Lemma 4.3, defining B∇,G by

B∇,G(X,Y, Z) = 1
3

(
D∇,G(X,Y, Z) +D∇,G(X,Z, Y )

−D∇,G(Y,X,Z)−D∇,G(Y,Z,X)
)
, (4.5)

defining T̂∇,G by

T̂∇,G(X,Y, Z) = 1
3

(
D∇,G(X,Y, Z) +D∇,G(Y,X,Z)

)
−D∇,G(X,Z, Y )−D∇,G(Z,X, Y )

)
, (4.6)

and defining Ω∇,G by

Ω∇,G(X,Y, Z) = 1
6

(
D∇,G(X,Y, Z)−D∇,G(X,Z, Y )

+D∇,G(Y, Z,X)−D∇,G(Y,X,Z)

+D∇,G(Z,X, Y )−D∇,G(Z, Y,X). (4.7)

(iv) =⇒ (i) Since T̂∇,G and Ω∇,G are torsional, the geodesics γ for ∇ satisfy the equation

G♭
(
∇γ′(t)γ

′(t)
)
= G♭

( G

∇γ′(t)γ
′(t)

)
+B♭

∇,G(γ
′(t)) = 0.

Therefore, for a solution γ to this equation, we have

Lγ′′(t)(KEG(γ
′(t))) = 1

2(
G

∇γ′(t)G)(γ
′(t), γ′(t))

+G(
G

∇γ′(t)γ
′(t), γ′(t))

= −B∇,G(γ
′(t), γ′(t), γ′(t)) = 0,

using the fact that B∇,G is skew-symmetric in the first two arguments. Thus ∇ is G-energy
preserving. ■
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It is useful to pull from the proof the exact relationship between the concepts of an
energy preserving connection and of a gyroscopic tensor field. Note that a gyroscopic tensor
determines the corresponding energy preserving affine connection only up to torsion.

4.6 Corollary: If (Q,G) is a Riemannian manifold, then the following statements hold:

(i) if ∇ is a G-energy preserving affine connection, then the gyroscopic tensor B∇,G and
the torsional tensor T∇,G defined by (4.5) and (4.6) are the unique such tensor fields
satisfying the conditions specified in part (iv) of Proposition 4.5;

(ii) if B is a gyroscopic tensor field, then there exists a unique torsion-free G-energy
preserving affine connection ∇ satisfying

G(∇XX,Y ) = G(
G

∇XX,Y ) +B(Y,X,X),

X, Y ∈ Γ∞(TQ);

(iii) with B and ∇ as in part (ii), we have

G(∇XY, Z) = G(
G

∇XY,Z) +B0(Z,X, Y ),

X, Y, Z ∈ Γ∞(TQ), where B0 = B −Alt(B) is gyroscopic and geodesic.

Proof: Only (ii) is potentially not obvious. To prove this part of the result, let B∇,G =
B − Alt(B) be the projection of B onto ker(Alt), so that B = B∇,G ⊕ Alt(B) is the

decomposition of B as a section of T
∧3(TQ)⊕ (Gyr(TQ)∩ ker(Alt)). Then we define ∇ by

G(∇XY,Z) = G(
G

∇XY, Z) +B∇,G(Z,X, Y ).

Note that our use of the notation B∇,G is consistent with that in Proposition 4.5. Also
note that Lemmas 4.2 and 4.3 imply that ∇ is torsion free. Furthermore, since Alt(B) is
torsional,

G(∇XY, Z) = G(
G

∇XY,Z) +B(Z,X, Y ).

Any other affine connection satisfying this relationship can only differ from ∇ by torsion,
giving the uniqueness asserted. ■

4.3. A reformulation of the kinetic energy shaping problem. The above results allow the
following reformulation of the kinetic energy part of the energy shaping problem.

4.7 Problem: Given a Riemannian manifold (Q,G), find

(i) a Riemannian metric Gcl and

(ii) a Gcl-energy preserving affine connection
cl

∇

with the property that
cl

∇γ′(t)γ
′(t)−

G

∇γ′(t)γ
′(t) ∈ G♯(F)γ(t). for any smooth curve γ. •

In papers on energy shaping, it appears to be de rigeur to ensure that one’s approach is
at least as general as others’. Here we briefly indicate the relationship between our approach
and that of the method of controlled Lagrangians, and the IDA-PBC method. Indeed, we
merely state the following result, whose proof is rather evident, given some familiarity with
the papers of [Blankenstein, Ortega, and van der Schaft 2002, Chang, Bloch, Leonard,
Marsden, and Woolsey 2002].
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4.8 Proposition: Problem 4.7 is equivalent to the kinetic energy shaping of the method of
controlled Lagrangians and the IDA-PBC method, provided that

(i) in the method of controlled Lagrangians one restricts consideration to gyroscopic forces
as we define them, and that

(ii) in the IDA-PBC method, one restricts the closed-loop symplectic structure Ωcl to be
of the form

Ωcl,αq(X,Y ) = Ω0(X,Y )

+B(TπT∗Q(X), TπT∗Q(Y ),Λ∗
cl(αq)),

where αq ∈ T∗
qQ, X,Y ∈ TαqT

∗Q, where Ω0 is the canonical cotangent bundle sym-
plectic structure, where B is a gyroscopic tensor on Q, and where πT∗Q is the cotan-
gent bundle projection.

To the best of our knowledge, there have appeared no examples in the literature, using
the method of controlled Lagrangians or the IDA-PBC method, and which do not fit into
the affine connection framework for kinetic energy shaping that we have formulated.

5. Partial differential equation formulations

In this section it will be convenient to think of Riemannian metrics as inde-
pendent variables. For this reason, we shall write the Riemannian metric for
the open-loop system as Gol, reserving the symbol G for a generic Riemannian
metric. In like manner, V will denote a generic potential function, with Vol

standing for the open-loop potential.

The determination of a closed-loop Riemannian metric Gcl and a closed-loop potential
Vcl is difficult, since the conditions restricting the available closed-loop data come in the
form of nonlinear partial differential equations. One way to study the integrability of these
equations is to use the methodology initiated by Spencer [1962a] and Spencer [1962b],
developed further by many authors, including Goldschmidt [1967], and reported on in the
monograph [Bryant, Chern, Gardner, Goldschmidt, and Griffiths 1991]. While this method
is nontrivial to apply, it has proven useful in getting insights into exactly the sorts of
geometric problems such as are posed for energy shaping. Therefore, in this section we put
the energy shaping problem into a framework where this theory can be applied, assuming
the reader to be familiar with the treatment in [Bryant, Chern, Gardner, Goldschmidt,
and Griffiths 1991]. Subsequent work will be directed to gaining insights into the sorts of
closed-loop energies that are available using energy shaping.

5.1. The partial differential equation of potential energy shaping. In Section 3 we ad-
dressed the question of the number of solutions to the potential shaping problem, once one
has performed kinetic energy shaping. In the section, we give a geometric formulation of the
partial differential equation describing the existence of a solution to the potential shaping
problem. We recall the definition Λcl = G

♭ ◦G♯
cl.

We adopt the point of view that a kth-order partial differential equation is a fibred
submanifold of the k-jet bundle of a fibre bundle. We need, therefore, to indicate what
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the fibre bundle is for our problem, and what the submanifold is of the jet bundle. The
space of variables for the problem we take to be the vector bundle Fcl = Λcl(F), which
we assume to have constant rank. The exact relationship between this space of variables
and the set of achievable closed-loop potentials is given in Proposition 5.1 below. We let
J1(Fcl) denote the bundle of 1-jets of sections of Fcl. A point in J1(Fcl) we shall denote by
j1Fcl(q). We note that the exterior derivative of an Fcl-valued one-form can be thought of
as a mapping from J1(Fcl) to T

∧2(TQ). Explicitly, in coordinates, this mapping is given
by (qi, Fcl,j , Fcl,k,ℓ) 7→ (qi, Fcl,j,k − Fcl,k,j), where Fcl,k,ℓ means the partial derivative of Fcl,k

with respect to qℓ, thinking of this as a coordinate for J1(Fcl). This map from J1(Fcl) to
T
∧2(TQ) we denote by d1. We then define a fibred submanifold of J1(Fcl) by

PPS(Vol)q = {j1Fcl(q) | d1(j
1Fcl(q)) = −d(Λcl ◦ dVol)(q)}.

The following result gives the formulation of the potential shaping problem as a geometric
partial differential equation.

5.1 Proposition: Suppose that the first cohomology group of Q is zero. Then a function
Vcl is a possible closed-loop potential function if and only if dVcl = Fcl + Λcl ◦ dVol where
Fcl is a section of Fcl having the property that j1Fcl takes values in PPS(Vol).

Proof: A closed-loop potential Vcl has the property that there is a section F of F satisfying
F (q) = Λcl◦dVcl(q)−dVol(q). Since the first cohomology group of Q is zero, this is equivalent
to asserting the existence of a section Fcl of Fcl having the property that Fcl + Λ−1

cl
◦ dVol

is closed. This, however, exactly describes what it means for the 1-jet of Fcl to take values
in PPS(Vol). ■

5.2. Affine connections as sections of a bundle. In this section, we come to an under-
standing of what is meant by an affine connection, but in a very particular way. Namely,
we realise an affine connection as a section of a bundle. In coordinates, this section should
be defined by assigning to a point q the Christoffel symbols at the point q in the given
chart. Note that this precludes the bundle whose sections are affine connections from be-
ing a vector bundle. We shall not carefully justify the assertions we make concerning the
constructions in this section. However, they are fairly easily seen to make sense by simply
considering the coordinate representations. The general constructions are described, for
example, in [Kolář, Michor, and Slovák 1993].

The bundle of 1-jets of sections of πTQ : TQ → Q is denoted by J1(TQ). This bundle
is a vector bundle over TQ. We shall write a typical point in J1(TQ) in coordinates as
(qi, Xj , Xk

,ℓ). The notation Xk
,ℓ denotes the derivative of Xk with respect to qℓ. We denote

by τ1 : J
1(TQ) → TQ the projection. In coordinates, τ1 has the form (qi, Xj , Xk

,ℓ) 7→ (qi, Xj).

Next we have a canonical inclusion ιQ of End(TQ) into J1(TQ) by asking that we assign
to A ∈ End(TqQ) the 1-jet of any vector field with q as an equilibrium point, and whose
linearisation at q is A. In coordinates, this inclusion looks like (qi, Ak

ℓ ) 7→ (qi, 0, Ak
ℓ ). If we

use the natural identification End(TQ) ≃ T∗Q⊗TQ, then this inclusion maps df(q)⊗X(q)
to the 1-jet at q of the vector field fX, where f is a function vanishing at q. This charac-
terisation extends to higher-order jet bundles. An affine connection ∇ uniquely specifies,
and is uniquely specified by, a splitting S∇ : TQ → J1(TQ) of the exact sequence

0 // End(TQ)
ιQ // J1(TQ)

τ1 // TQ // 0 (5.1)
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of vector bundles (it is clear from our coordinate expressions that image(ιQ) = ker(τ1)).
Thus S∇ is a vector bundle map that has the property that τ1 ◦S∇ = idTQ. In coordinates,
if Γi

jk, i, j, k ∈ {1, . . . , n}, are the Christoffel symbols for the affine connection ∇, then S∇
is given by

(qi, Xj) 7→ (qi, Xj ,Γk
ℓmXm).

One readily verifies from our coordinate expressions that this map indeed splits the se-
quence (5.1).

Motivated by the preceding discussion, we let Aff(Q) be the set of vector bundle maps
from TQ to J1(TQ). By Aff0(Q) we denote the subbundle defined by the torsion-free
affine connections. If we fix an affine connection ∇0, then the vector bundle map from
TQ to J1(TQ) defined by vq 7→ S∇(vq) − S∇0(vq) is then uniquely defined by D∇,∇0 ∈
Γ∞(T∗Q ⊗ TS2(TQ)) satisfying ∇XY − ∇0

XY = D∇,∇0(X,Y ). In coordinates we shall

denote a point in Aff(Q) by (qi,Γj
kℓ).

5.3. The partial differential equation of kinetic energy shaping. As we did with the
potential shaping formulation, we must define a submanifold of the jet bundle of a suitable
fibre bundle. We let Σ+

2 (TQ) denote the set of Riemannian metrics on Q. Note that
Σ+
2 (TQ) is an open submanifold of the vector bundle T0

2(TQ). The space of variables for
our problem is the fibre bundle ES(Q) ≜ Σ+

2 (TQ)× (Gyr(TQ)∩ker(Alt)) over Q. Following
our declaration at the beginning of this section, we denote a typical point in the fibre
of ES(Q) over q ∈ Q by (G(q), B(q)). Note that the open-loop system defines a section
q 7→ Gol(q) of Σ+

2 (TQ). We next let J1(ES(Q)) denote the bundle of 1-jets of sections of
ES(Q). A typical point in J1(ES(Q)) will be denoted by (j1G(q), j1B(q)). In coordinates we
shall write a typical point in J1(ES(Q)) as (qi,Gjk, Blmr,Gps,a), where Gps,a represents the
derivative of Gps with respect to qa. The Levi-Civita connection associated to a Riemannian
metric G can be thought of as being defined by a map from J1(Σ+

2 (TQ)) to Aff0(Q). Let
us denote this map by LC. In coordinates LC is given by

(qi,Gjk,Gℓm,r) 7→
(
qi,Gjr

(
Grk,ℓ +Grℓ,k −Gkℓ,r

))
To define the partial differential equation, we need some vector bundles adapted to

the problem. To simplify the problem, we make the assumption that the codistribution F

generated by the input one-forms is regular, so implying that the distribution G♯
ol(F) is also

regular. This implies that the right ideal (with respect to the tensor product) in Γ∞(T(TQ))
generated by Γ∞(F) is actually the set of sections of a subbundle of T(TQ). If A is a (0, k)-
tensor field and if G is a Riemannian metric, we denote by G♯A the (1, k − 1)-tensor field
defined by

G♯A(α,X1, . . . , Xk) = A(G♯(α), X1, . . . , Xk)

where α ∈ Γ∞(T∗Q) and X1, . . . , Xk ∈ Γ∞(TQ). In like fashion, if S ⊆ T(TQ), then we
write G(S ) =

{
G♯A

∣∣ A ∈ S
}
.

Now we are ready to define the fibred subset of J1(ES(Q)) that will serve as our partial
differential equation. We define

PKS(Gol)q =
{
(j1G(q), j1B(q)) ∈ J1(ES(Q))

∣∣
(LC(j1G(q))− LC(j1Gol(q)) +G

♯B ∈ G♯
ol(F ⊗ TS2(TQ))}.
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Note that LC(j1G(q))−LC(j1Gol(q)) is to be thought of as being a section of T∗Q⊗TS2(TQ).
With all of this notation, we may now state the form of the partial differential equation

associated with Problem 4.7.

5.2 Proposition: A Riemannian metric Gcl and a gyroscopic tensor field Bcl solve Prob-
lem 4.7 if and only if the 1-jet of the section q 7→ (Gcl(q), Bcl(q)) takes values in PKS(Gol).

Proof: Note that the definitions, once parsed, assert that (j1Gcl, j
1Bcl) takes values in

PKS(Gol) if and only if there exists sections F of F⊗TS2(V) and Bcl of Gyr(TQ)∩ ker(Alt)
such that

Gcl

∇XX(q)−
Gol

∇XX(q) = G♯
olF (X(q), X(q))−G♯

clB(X(q), X(q))

for every X ∈ Γ∞(TQ). This, however, exactly characterises a solution to Problem 4.7. ■

In coordinates, the partial differential equation is given by

P a
r

(
Grℓ

cl

(
Gcl,ℓj,k +Gcl,ℓk,j −Gcl,jj,ℓ

)
−Grℓ

ol

(
Gol,ℓj,k +Gol,ℓk,j −Gol,jj,ℓ

)
+Grℓ

clBℓjj

)
= 0,

where P a
r , a ∈ {1, . . . , n − rank(F)}, r ∈ {1, . . . ,m}, are the components of the canonical

projection

πF : G
♯
ol(T

∗Q⊗ TS2(TQ)) → G♯
ol(T

∗Q⊗ TS2(TQ))/G♯
ol(F ⊗ TS2(TQ)).

The advantage to the formulation of the problem as in Proposition 5.2 is that one can now
apply the full power of the integrability theory of Goldschmidt [1967] for such systems.
This is not to trivialise this process. However, it does give one a starting point.
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