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Abstract

Using a suitable locally convex topology for the space of real analytic vector fields, we
give a characterization of real analytic control systems. Among other things, this class
of real analytic control systems has the property that, upon substitution of an open-loop
control, the resulting time-varying vector field has a flow depending on initial condition
in a real analytic manner. To give context to the real analytic case, we also consider
the cases of finitely differentiable and smooth control systems.

1. Introduction

In geometric control theory there has been for a long time an understanding that real
analytic systems are distinguished from smooth systems [Sussmann 1990]. There are both
physical and mathematical reasons for this. Physically, any smooth model one encounters
will certainly also be real analytic, i.e., real analyticity, not smoothness, is what nature de-
mands. Mathematically, real analyticity typically allows one to weaken hypotheses, e.g., hy-
potheses of finite generation [Agrachev and Sachkov 2004, Lemma 5.2], and/or strengthen
conclusions, e.g., the tangent spaces to orbits in the real analytic orbit theorem [Nagano
1966, Sussmann 1974].

In this paper we address the problem of what is the “correct” definition of a real analytic
control system of the form

d

dt
x(t) = F (u(t), x(t)), (1.1)

where U is a topological space, u : T → U is an appropriate control, and F : U×M → TM is
a parametrized vector field, i.e., for every u ∈ U and every x ∈ M , we have F (u, x) ∈ TxM .
In fact, we shall simultaneously develop the definitions in the finitely differentiable and
smooth cases.

For ν ∈ Z≥0 ∪ {∞}, fundamental properties of solutions of (1.1), such as existence,
uniqueness, and Cν-dependence of solutions on initial conditions have been studied in lit-
erature. In studying these properties, the dependence of the parametrized vector field F
on x and u plays a significant role. In considering these matters, one usually works with
the time-varying vector field F u that is obtained by substituting a (say, bounded mea-
surable) open-loop control t 7→ u(t) in the parametrized vector field F . As is classically
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known, e.g., [Sontag 1998, Theorem 45], if F u is measurable in t when x is fixed, Lipschitz
in x when t is fixed, and if the Lipschitz constant is bounded by a locally integrable function
of t, then there exists a unique solution to (1.1) and the solution is C0 with respect to the
initial condition. The idea of this proof can be extended to the finitely differentiable case.
In [Agrachev and Sachkov 2004], it is stated that, if the time-varying vector field F u is
measurable in t when x is fixed, C∞ in x when t is fixed, and all its partial derivatives with
respect to x are locally integrable functions, then the solutions of (1.1) are C∞ with respect
to the initial conditions. In our presentation below we will give conditions on F that ensure
that the preceding hypotheses for F u are met for all bounded measurable controls.

Corresponding results are, until now, not known in the real analytic case. One can,
however, find some stronger conditions in the literature to guarantee the Cω-dependence
of solutions on the initial condition. For instance, in [Sontag 1998, Proposition C.3.12] it
is shown that joint Cω with respect to x and t gives a flow that is Cω with respect to
initial condition. It bears pointing out that this is a strong condition, since it requires the
dependence on time to be real analytic. This circumstance will not often arise in control
theory.

In this paper, we present a unified approach to the study of regularity in control theoretic
models in the case of finitely differentiable, smooth, and, most significantly, real analytic
models. For the first time in the literature we provide a means of dealing with real analytic
systems in a manner that (i) gives useful results such as real analytic dependence on initial
conditions and (ii) provides tools for real analytic systems on a par with those available for
finitely differentiable or smooth systems. The main idea is to consider a control system of
the form (1.1) as a mapping from the control set to the the space of Cν-vector fields, i.e., we
consider the map F̂ : U → Γν(TM) defined by

F̂ (u)(x) = F (u, x). (1.2)

By introducing a family of seminorms, we define a topology on Γν(TM). Using this topology,
we find a joint regularity condition for Cν-systems that ensures the Cν-dependence of the
solutions of (1.1) with respect to the initial condition.

2. Notation, conventions, and mathematical background

In this section we provide the mathematical background that is needed to read the paper.
Although we state all the mathematical definitions and results rigorously, our treatment
is far from comprehensive. We refer to [Jafarpour and Lewis 2013] for the comprehensive
treatment.

In this paper, when we say “class Cν” we assume that ν ∈ Z≥0 ∪ {∞, ω}. We shall
write ν+1 a few times, and this shall have the obvious meaning, i.e., normal addition when
ν ∈ Z≥0 and ∞+1 = ∞ and ω+1 = ω. Manifolds will be of class Cr, r ∈ {∞, ω} and will be
Hausdorff and second countable. We shall often use the terminology, “let ν ∈ Z≥0∪{∞, ω}
and let r ∈ {∞, ω}, as required.” This has the more or less obvious meaning that r = ω
if ν = ω and r = ∞ otherwise. Manifolds of class C∞ are called smooth manifolds and
manifolds of class Cω are called real analytic manifolds.

Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Let M be a Cr-manifold.
The set of Cν-vector fields is denoted by Γν(TM). This is a R-vector space with the
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usual pointwise operations of addition and scalar multiplication. If X ∈ Γν(TM), then, for
m ∈ Z≥0 satisfying m ≤ ν, the m-jet of X at a point x ∈ M is denoted by jmX(x). The
set of m-jets of all Cν-vector fields is denoted by JmTM . One can give JmTM a natural
Cr-vector bundle structure where the projection map πm is defined by

πm : JmTM → M,

jmX(x) 7→ x

[Kolář, Michor, and Slovák 1993, §12.17].
Let X be a topological space and let T ⊆ R be an interval. A function f : T → X

is measurable if f−1(O) is Lebesgue measurable for every open O ⊆ X and is locally
essentially bounded if, for every compact subinterval T′ ⊆ T, there exists a compact set
K ⊆ X such that

λ{t ∈ T | f(t) ̸∈ K} = 0, (2.1)

where λ is Lebesgue measure on R. The space of all locally essentially bounded functions
defined in X with domain T is denoted by L∞

loc(T;X).
We will denote by c0(Z≥0;R>0) the set of all sequences (ai)i∈Z≥0

of positive numbers
such that limi→∞ ai = 0.

We will make extensive use of recent work on topologies for spaces of sections of vector
bundles [Jafarpour and Lewis 2013]. This work, especially as concerns real analytic vec-
tor bundles, really makes possible the general and unified setting we provide for handling
regularity in geometric control theory. For the purposes of reading what is written in the
paper, we simply say that we shall suppose the reader to be familiar with locally convex
topologies. We refer to [Conway 1990], for example, as a reference. In particular, we will
make use of the fact that the topology of a locally convex space is defined by a family (pi)i∈I
of seminorms. A set B in a topological vector space V is von Neumann bounded if, for
every neighborhood O ⊆ V of zero, there exists λ ∈ R>0 such that B ⊆ λO.

3. Topologies on spaces of sections

In this section we will define a locally convex topological vector space structure on
Γν(TM) for ν ∈ Z≥0 ∪ {∞, ω}. We separate the discussion into three cases, ν ∈ Z≥0,
ν = ∞, and ν = ω.

3.1. Fibre norms for jet bundles. An important part is played in our unified treatment
of various degrees of regularity by appropriate fibre norms for jet bundles of the tangent
bundle. We suppose that the Cr-manifold M has a Cr-Riemannian metric G and a Cr-
affine connection ∇. The existence of these for r = ∞ is classical and for r = ω is proved
in [Jafarpour and Lewis 2013, Lemma 2.3]. Let Tm(T ∗M) denote the m-fold tensor product
of T ∗M and let Sm(T ∗M) denote the symmetric tensor bundle. First note that ∇ defines
a connection on T ∗M by duality. Then ∇ defines a connection ∇m on Tm(T ∗M)⊗ TM by
asking that the Leibniz Rule be satisfied for the tensor product. Then, for a smooth vector
field X, we denote

∇(m)X = ∇m · · · ∇1∇X,
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which is a smooth section of Tm+1(T ∗M) ⊗ TM . By convention we take ∇0X = ∇X and
∇(−1)X = X. (The funny numbering makes this agree with the constructions in [Jafarpour
and Lewis 2013, §2.1].)

We then have a map

Sm
∇ : JmTM → ⊕m

j=0(S
j(T ∗M) ⊗ TM)

jmX(x) 7→ (X(x), Sym1 ⊗ idTM (∇X)(x), . . . ,

Symm ⊗ idTM (∇(m−1)X)(x)),

(3.1)

which can be verified to be an isomorphism of vector bundles [Jafarpour and Lewis 2013,
Lemma 2.1]. Here Symm : Tm(V ) → Sm(V ) is defined by

Symm(v1 ⊗ · · · ⊗ vm) =
1

m!

∑
σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

Now we note that inner products on the components of a tensor product induce in a
natural way an inner product on the tensor product [Jafarpour and Lewis 2013, Lemma 2.2].
Thus, if we suppose that we have a Riemannian metric G on M , there is induced a natural
fibre metric Gm on Tm(T ∗M) ⊗ TM for each m ∈ Z≥0. We then define a fibre metric Gm

on JmTM by

Gm(jmX(x), jmY (x))

=
m∑
j=0

Gj

( 1

j!
Symj ⊗ idTM (∇(j−1)X)(x),

1

j!
Symj ⊗ idTM (∇(j−1)Y )(x)

)
.

(The factorials are required to make things work out with the real analytic topology.) The
corresponding fibre norm we denote by ∥ · ∥Gm

.

3.2. Topology on space of finitely differentiable sections. In this section we assume that
ν = m ∈ Z≥0. The locally convex topology on the space Γm(TM) is defined using a family
of seminorms.

3.1 Definition: Let m ∈ Z≥0. For a compact set K ⊆ M , we define the seminorm pmK on
Γm(TM) as

pmK(X) = sup{∥jmX(x)∥Gm
| x ∈ K}.

Then the family of seminorms pmK , K ⊆ M compact, defines a locally convex topology on
Γm(TM). We call this topology the Cm-topology .

The locally convex topological vector space Γm(TM) is complete, Hausdorff, separable,
and metrizable [Jafarpour and Lewis 2013, §3.4].

3.3. Topology on space of smooth sections. In the smooth case, i.e., when ν = ∞,
the topology we describe has been completely developed in the literature. It is described,
for example in [Kriegl and Michor 1997, §41.13]. In [Agrachev and Sachkov 2004] the
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space of smooth vector fields is topologized by thinking of smooth vector fields as deriva-
tions on the algebra C∞(M) of smooth functions. The smooth compact-open topology of
C∞(M), i.e., the topology of uniform convergence of all derivatives on compacts, is used
to induce a sort of “weak” topology on the space of smooth vector fields [Agrachev and
Sachkov 2004, §2.2]. One can show that this weak topology is the same as C∞-topology on
Γ∞(TM) that we define now [Jafarpour and Lewis 2013, Theorem 3.5].

3.2 Definition: Suppose that M is a smooth manifold. For m ∈ Z≥0 and for a compact
set K ⊆ M , we define the seminorm p∞K,m on Γ∞(TM) by

p∞K,m(X) = sup{∥jmX(x)∥Gm
| x ∈ K}.

Then the family of seminorms p∞K,m, K ⊆ M compact, m ∈ Z≥0, defines a locally convex
topology on Γ∞(TM). We call this topology the C∞-topology .

It can be shown that Γ∞(TM) with C∞-topology is a Hausdorff, separable, and com-
pletely metrizable space [Jafarpour and Lewis 2013, §3.2].

3.4. Topology on space of real analytic sections. Now we define a topology on the space
of real analytic vector fields. The first observation we make is that Γω(TM) is not a closed
subspace of Γ∞(TM) with the C∞-topology. Thus the C∞-topology for Γω(TM) is not
complete [Jafarpour and Lewis 2013, §5], and so it not a suitable topology for analysis.

In this section we describe a suitable topology for Γω(TM). There is a bit of history to
this topology. For the space of real analytic functions, there are two quite natural topologies.
One arises as a direct limit of the compact-open topologies for the holomorphic functions
defined on a neighborhood of a complexification of M . Another arises as an inverse limit of
holomorphic extensions—again defined in some complexification of M—on a neighborhood
of compact subsets of M . It is a hard theorem that these are two descriptions of the same
topology [Martineau 1966]. In [Vogt 2013] seminorms for this topology are given in the case
of Cω-functions on Rn.

The description of the topology we give is a nontrivial extension of the seminorm con-
struction of [Vogt 2013] to sections of a real analytic vector bundle [Jafarpour and Lewis
2013, §5.2.4].

3.3 Definition: Suppose that M is a real analytic manifold. For every a ∈ c0(Z≥0;R>0)
and every compact set K ⊆ M , we define the seminorm pωK,a on Γω(TM) by

pωK,a(X) = sup{a0a1 . . . am∥jmX(x)∥Gm
| x ∈ K, m ∈ Z≥0}.

Then the family of seminorms pωK,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0), define a locally
convex vector space structure on Γω(TM). We denote this topology by Cω-topology .

It can be shown that Γω(TM) endowed with Cω-topology is complete, Hausdorff, sep-
arable, and nonmetrizable [Jafarpour and Lewis 2013, §5.3].

3.5. Notation. Now that we have defined locally convex topologies on the vector space
Γν(TM) for ν ∈ Z≥0 ∪ {∞, ω}, to make the notation simpler we make the following con-
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vention. For K ⊆ M be compact, for k ∈ Z≥0, and for a ∈ c0(Z≥0;R>0), denote

pK =


p∞K,k, ν = ∞,

pmK , ν = m,

pωK,a, ν = ω.

(3.2)

The convenience and brevity more than make up for the slight loss of preciseness by using
this abbreviated notation.

4. Time-varying vector fields

As we have seen, time-varying vector fields arise naturally by substituting an appropriate
control into the equation defining the trajectories for a system. In this section, we first define
a special class of time-varying vector fields that we call Carathéodory vector fields of class
Cν . Then using the Cν-topology on Γν(TM) introduced in Definitions 3.1, 3.2, and 3.3, we
give a regularity condition for Carathéodory vector fields of class Cν so that their flows are
Cν with respect to the initial condition.

4.1 Definition: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that M is
a Cr-manifold and T ⊆ R is an interval. A map X : T ×M → TM is a Carathéodory
vector field of class Cν if

(i) for every t ∈ T, the map Xt : M → TM defined by Xt(x) = X(t, x) is a Cν-vector
field and

(ii) for every x ∈ M , the map Xx : T → TM defined by Xx(t) = X(t, x) is Lebesgue
measurable.

The set of all Carathéodory vector fields of class Cν for the time interval T is denoted by
CFΓν(T;TM).

4.2 Definition: A Carathéodory vector field X : T × M → TM of class Cν is locally
essentially bounded if, for every every compact set K ⊆ M and every corresponding
seminorm pK of the form (3.2), there exists g ∈ L∞

loc(T;R>0) such that

pK(Xt) ≤ g(t), t ∈ T.

The set of all locally essentially bounded Carathéodory vector fields of class Cν is denoted
by LBΓν(TM).

It is obvious that local essential boundedness for Carathéodory vector fields of class Cν

is a joint regularity condition on time and state. Using the Cν-topology defined on Γν(TM),
one can characterize locally essentially bounded Carathéodory vector fields of class Cν as
curves in Γν(TM).

Before stating the theorem characterizing this, suppose that X : T × M → TM is a
map such that, for every t ∈ T, the map Xt : M → TM defined by Xt(x) = X(t, x) is a
vector field of class Cν . Then we can define a map X̂ : T → Γν(TM) by X̂(t)(x) = X(t, x).
Using this definition, one can prove the following theorem.
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4.3 Theorem: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that M is
a Cr-manifold and T ⊆ R is an interval. Suppose that X : T ×M → TM is a map such
that, for every t ∈ T, the map Xt : M → TM defined by Xt(x) = X(t, x) is a vector field
of class Cν . Then

(i) X ∈ CFΓν(T;TM) if and only if X̂ : T → Γν(TM) is Lebesgue measurable, and
(ii) X ∈ LBΓν(T;TM) if and only if X̂ : T → Γν(TM) is locally essentially von Neumann

bounded.

Proof: This is the content of Theorems 6.3, 6.9, and 6.21 in [Jafarpour and Lewis 2013].
In all cases, a very good understanding of the locally convex topology plays an important
part. ■

Now we want to study the flows of Carathéodory vector fields of class Cν . As mentioned
in the introduction, without imposing any additional condition on these time-varying vector
fields, even the local existence of flows and uniqueness of trajectories is not guaranteed. So
it is natural to impose some condition on Carathéodory vector fields of class Cν to ensure
that their flows have specific properties. By assuming that the Carathéodory vector field
of class Cν is locally essentially bound, one has the following fundamental result that is
proved in [Jafarpour and Lewis 2013] as Theorems 6.6, 6.11, and 6.26. This result in the
real analytic case is new, and requires a deep understanding of the Cω-topology.

4.4 Theorem: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Let M be a Cr-
manifold, let T ⊆ R be an interval, and let X ∈ LBΓν+1(T;TM). Then there exist a
nonempty set DX ⊆ T × T ×M and a map ΦX : DX → M such that

(i) for every (t0, x0) ∈ T ×M , the set

Tt0,x0 = {t ∈ T | (t, t0, x0) ∈ DX} (4.1 )

is an open interval;
(ii) the curve γt0,x0 : Tt0,x0 → M defined by

γt0,x0(t) = ΦX(t, t0, x0) (4.2 )

is the unique maximal absolutely continuous solution of the initial value problem

γ′(t) = X(t, γ(t)), a.e. t ∈ Tt0,x0 ,

γ(t0) = x0;

(iii) for every x0 ∈ M and for every t, t0 ∈ T such that (t, t0, x0) ∈ DX , there exists a
neighborhood U ⊆ M around x0 such that the map ηt,t0 : U → M

ηt,t0(x) = ΦX(t, t0, x) (4.3 )

is defined and of class Cν .

The first two parts of Theorem 4.4 show that the integral curve of locally essentially
bounded Carathéodory vector fields of class Cν+1 passing through a fixed point, exists
locally and is unique. The last part shows that the flows of a locally essentially bounded
Carathéodory vector field of class Cν+1 is of class Cν in initial condition. In particular,
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flows of vector fields in LBΓν(T;TM) for r ∈ {∞, ω} depend on initial condition in a Cν

manner. We comment that the theorems in [Jafarpour and Lewis 2013] are stated for a
slightly larger class of vector fields than locally essentially bounded, namely those that are
termed “locally integrally bounded.” Also, in [Jafarpour and Lewis 2013] regularity of class
“ν + 1” is replaced with the slightly weaker regularity of class “ν + lip.”

5. Control systems

In this section we define a class of control systems that are called Cν-control systems.
We consider a control system as a parametrized family of vector fields, parametrized by
elements of control set. Therefore, in order to define this class of control systems, we need
a notion of parametrized vector fields of class Cν , where the parameter take its value in a
control set.

5.1 Definition: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that M is
a Cr-manifold and P is a topological space.

(i) A map F : P×M → TM is a separately parametrized vector field of class Cν

if
(a) for every p ∈ P, the map F p : M → TM defined by F p(x) = F (p, x) is a

Cν-vector field and
(b) for every x ∈ M , the map Fx : P → TM defined by Fx(p) = F (p, x) is continuous.

The set of all separately parametrized vector fields of class Cν is denoted by
SPΓν(P;TM).

(ii) A map F : P×M → TM is jointly parametrized vector field of class Cν if
(a) it is separately parametrized of class Cν and
(b) for every (p0, x0) ∈ P × M and for every ϵ > 0, there exist a relatively com-

pact neighborhood U ⊆ M of x0, a seminorm pcl(U) of the form (3.2), and a
neighborhood O ⊆ P of p0 such that

pcl(U)(F
p − F p0) < ϵ, p ∈ O.

The set of all jointly parametrized vector fields of class Cν with the topological vector
space P is denoted by JPΓν(P, TM).

A jointly parametrized vector field of class Cν has the nice property that, upon replacing
the parameter by a locally essentially bounded control, one gets a locally essentially bounded
Carathéodory vector field of class Cν . Before proving this result, we state an obvious
characterization of jointly parametrized vector fields of class Cν .

5.2 Theorem: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that M is a
Cr-manifold and P is a topological space. Suppose that the map F : P×M → TM is such
that

F p ∈ Γν(TM), p ∈ P.

We define the map F̂ : P → Γν(TM) as F̂ (p) = F p. Then F ∈ JPΓν(P, TM) if and only if
F̂ is a continuous map, considering the Cν-topology on Γν(TM).

We comment that in [Jafarpour and Lewis 2013, §7.1] more concrete descriptions of
jointly parameterized vector fields of class Cν are given.

We now have the following useful result.



Real analytic control systems 9

5.3 Theorem: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that M is
a Cr-manifold and P is a topological space. Suppose that F : P × M → TM is a jointly
parametrized vector field of class Cν and µ ∈ L∞

loc(T;P). Then the map Fµ : T×M → TM
defined by

Fµ(t, x) = F (µ(t), x)

has the property that Fµ ∈ LBΓν(T;TM).

Proof: We prove this theorem for the case ν = ω. The proof for the case ν = Z≥0 ∪ {∞} is
similar.

By Theorem 4.3, it suffices to show that F̂µ : T → Γω(TM) is a measurable and locally
essentially bounded map. Note that we have

F̂µ(t)(x) = F̂ ◦ µ(t)(x), x ∈ M, t ∈ T.

So we have F̂µ = F̂ ◦ µ.
By Theorem 5.2, since F : P×M → TM is a jointly parametrized vector field of class

Cω, the map F̂ : P → Γω(TM) is continuous. Since µ is measurable and F̂ is continuous,
the map F̂ ◦µ = F̂µ is measurable. Also, since µ ∈ L∞

loc(T;P), for every compact subinterval
T′ ⊆ T there exists a compact set K ⊆ P such that

λ{t ∈ T′ | µ(t) ̸∈ K} = 0.

Since F̂ is continuous, F̂ (K) is compact. We denote K ′ = F̂ (K). Note that, if t ∈ T′ is
such that µ(t) ∈ K, then F̂ ◦ µ(t) ∈ K ′. Since we have F̂ ◦ µ = F̂µ, we can write

{t ∈ T′ | F̂µ ̸∈ K ′} ⊆ {t ∈ T′ | µ(t) ̸∈ K}.

This means that

λ{t ∈ T′ | F̂µ ̸∈ K ′} ≤ λ{t ∈ T′ | µ(t) ̸∈ K} = 0.

So we have
λ{t ∈ T′ | F̂µ(t) ̸∈ K ′} = 0.

This shows that F̂µ is locally essentially bounded. ■

Using the notion of jointly parametrized vector fields of class Cν in Definition 5.1, one
can define a Cν-control system.

5.4 Definition: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. A Cν-control
system is a triple Σ = (M,C, F ) such that

(i) M is a Cr-manifold called state manifold ,
(ii) C is a topological space called control space , and

(iii) F : C×M → TM is a jointly parametrized vector field of class Cν .

When a new class of control systems is introduced, it is interesting to see how large this
class is, comparing to the other classes of control systems. One may expect that the class
of Cν-control systems contains most of the interesting real analytic control systems that we
know. The following example shows that control-affine systems are Cν-control systems.
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5.5 Example: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that M is a
Cr-manifold, f0, f1, f2, . . . , fk ∈ Γν(TM), and C ⊆ Rk. We define the map F : C×M → TM
by

F (u, x) = f0(x) +
n∑

i=1

uifi(x).

To show that F is a jointly parametrized vector field of class Cν , according to Theorem 5.2
we must show that the map F̂ is continuous. This, however, follows easily. We first consider
the map

ΛF : Rk+1 → Γν(TM)

(u0, u1, . . . , uk) 7→
n∑

i=0

uifi(x).

This being a linear map from a finite-dimensional vector space, it is continuous [Horváth
1966, Proposition 2.10.2]. It follows immediately that F̂ is continuous.

Using Theorems 4.4 and 5.3, one has the following result for trajectories of Cν-control
systems. We draw attention to the fact that this is the first such result that has been
obtained for real analytic systems.

5.6 Corollary: Let ν ∈ Z≥0 ∪ {∞, ω} and let r ∈ {∞, ω}, as required. Suppose that Σ =
(M,C, F ) is a Cν+1-control system and µ ∈ L∞

loc(T;C) is a control. Then, for each (t0, x0) ∈
T ×M , the open-loop vector field Fµ possesses a unique maximal absolutely integral curve
γ satisfying γ(t0) = x0. Moreover, the resulting flow is Cν in initial condition.

6. Discussion

What we have provided in the preceding development is a unified framework for handling
regularity in geometric control theory, significantly including real analytic systems in this
framework. In order to provide some context for what we have done, in this section we
overview the manner in which regularity has been treated in the literature. As we shall see,
the treatment of this, especially in the geometric control literature, is a little helter-skelter,
and we hope that the framework we give here can provide a little organization to how this
is typically done.

First of all, we mention that the treatment of regularity in the literature on stabilization
is typically presented in a coherent manner, with minimal regularity hypotheses. (This
minimality is both a strength and a limitation.) In this area, the state space is typically
Rn and the analysis framework is closely connected with the theory of ordinary differential
equations. Thus hypotheses here are closely connected with standard results in the theory
of differential equations. For example, in [Sontag 1998, Page 43] systems are considered
to be (in our terminology) JPΓ1. A common assumption in this literature is for a system
to be JPΓlip, in keeping with the standard Lipschitz condition for uniqueness of solutions
for differential equations, e.g., [Clarke, Ledyaev, Sontag, and Subotin 1997]. (We have not
considered Lipschitz regularity here, but this can be done just as we have done in the finitely
differentiable, smooth, and real analytic cases [Jafarpour and Lewis 2013, §3.5].) We will
mention here that our constructions do not make any assumptions on the nature of the
topology of the control set; often this is assumed to be a metric space, or to have other
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restrictive properties, even being assumed to be a subset of Euclidean space, e.g., [Bressan
and Piccoli 2007], which is a somewhat unnatural condition mathematically for systems
that are not control-affine.

In contrast to the stabilization literature, in the geometric control literature, the treat-
ment of regularity is not at all unified. This is perhaps because of the absence of a framework
(such as we provide here) for treating regularity in a consistent manner. Let us point out a
few of the sorts of conditions we encountered on a quick scan of the literature. We should
say, however, that there are about as many ways of stating regularity hypotheses as there
are papers where these hypotheses are stated clearly.

It is not uncommon for the only assumption to be made is that the parameterized vector
field F : U ×M → TM is regular (say, smooth) when the control value is fixed [Jurdjevic
1997, Page 21]. Such an hypothesis is workable for control-affine systems (cf. Example 5.5)
or if one is dealing only with piecewise constant controls. However, if one works with
measurable controls, it is necessary to specify appropriate joint hypotheses on state and
control.

One way in which regularity is handled is to assume that the control set is an open
subset of Rm and that F is regular in the normal sense, since now one can differentiate
with respect to control. This is done, for example, in [Lee and Markus 1967, Page 31]
and [Bonnard and Chyba 2003, Page 37] in the C1 case, in [Coron 1994] in the smooth
setting, and in [Sontag 1992] in the real analytic setting. The assumption that the control
set is such that it permits differentiation with respect to control is problematic, even when
the control take values in Euclidean space, since control sets typically have boundaries that
make differentiation unclear. Of course, this can be handled by an ad hoc extension to a
neighborhood of the control set.

Mixing of regularity conditions is also common. In [Sussmann 1979] it is pointed out
that, for piecewise constant controls, joint dependence conditions are not required, but for
measurable controls such conditions are required. For real analytic systems, the condition
SPΓω ∩ JPΓlip is suggested as at least giving existence and uniqueness of trajectories for
open-loop controls (it will not give Cω dependence on initial conditions, however). In [Isa-
iah 2011] the hypotheses are, in our language, SPΓω ∩ JPΓ1. In [Grasse 1992] systems are
considered in SPΓr ∩ JPΓ1 for r ∈ {∞, ω}. In [Sussmann 1998] this mixing of regularity is
formulated clearly, and systems are considered that are, in our language, in SPΓk∩JPΓl for
k, l ∈ Z≥0 ∪ {∞} with k ≥ l. (The equivalence of the conditions given in [Sussmann 1998]
and the conditions stated in our notation is proved as Propositions 7.2 and 7.5 in [Jafarpour
and Lewis 2013].) This mixing is also present in [Agrachev and Gamkrelidze 1993] where
real analytic vector fields are treated as derivations on the algebra of smooth functions,
although [Grabowski 1981] proves the equivalence of real analytic vector fields with deriva-
tions on the algebra of real analytic functions. In [Jafarpour and Lewis 2013, §5.4] the
connection between real analytic vector fields and derivations of real analytic functions is
used to provide a “weak” characterization of the Cω-topology, like that for the C∞-topology
in [Agrachev and Sachkov 2004, §2.2].

In general, the treatment of real analyticity in the control literature has been done in
an ad hoc manner. Real analytic time-varying vector fields are studied in [Agrachev and
Gamkrelidze 1978], and topological considerations are given similar in spirit to what we do
here. However, the analysis is carried out only in Euclidean space, and for real analytic
vector fields admitting an holomorphic extension to a neighborhood of fixed width in Rn.
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By contrast, our treatment of real analytic time-varying vector fields in Section 4 is global
and general. As mentioned above, the treatment of the real analytic case in [Agrachev
and Gamkrelidze 1993] is done by working with derivations of smooth functions. In our
framework, we can carry this out within the real analytic setting [Jafarpour and Lewis 2013,
§5.4]. In [Sussmann 1998] a rather stringent definition is provided for a real analytic control
system, involving subanalytic sets.

In contrast to the preceding survey of the literature concerning regularity of control
systems, the approach we provide in this paper is comprehensive and unified across varying
classes of regularity.
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