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Abstract

The stability of an equilibrium point of a nonlinear system is typically analyzed in two ways:
(1) stability of its linearization, and (2) Lyapunov stability. An unconstrained simple me-
chanical system is a type of nonlinear system with a special structure, and so the methods
for stability analysis can be specialized for this particular class of nonlinear systems. For a
simple mechanical system subject to velocity constraints, the situation becomes more com-
plicated. If the constraints are holonomic, then the problem can simply be reduced to that
of an unconstrained simple mechanical system by restricting analysis to a certain subman-
ifold of the configuration space. If the constraints are nonholonomic, this approach cannot
be taken. In this report we study the differences and additional complexities that arise in
these nonholonomic mechanical systems, and derive results with regards to linearization
and stability of its equilibria.
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Chapter 1

Introduction

In this report, we study the linearization and stability of nonholonomic mechanical systems
at equilibria. Herein, we will refer to mechanical systems without constraints on velocity
as unconstrained mechanical systems, and those with velocity constraints as constrained
mechanical systems. A nonholonomic mechanical system is a constrained mechanical sys-
tem in which the velocity constraints are not integrable (and so are called “nonholonomic
constraints”). Nonholonomic constraints arise naturally, for example, in the rolling of a
wheel, sliding of skates, or in cases where angular momentum is conserved, such as with a
space robot or satellite in orbit.

Nonholonomic mechanical systems have been explored throughout the literature; see
[12] for a classic overview of the kinematics, dynamics, linearization, and stability of these
systems. Investigations into stability via linearization analysis can be found in [9], [13],
and [5], and studies involving Lyapunov stability include [1] and [8]. With regards to
linearization, there has been much confusion on how to approach the problem due to its
complexity. In the early work of [14], Whittaker tackled the problem by linearizing the
constraint equations in addition to the equations of motion containing unsolved Lagrange
multipliers, i.e. the equations are linearized before the Lagrange multipliers are actually
solved for. In doing so, he claimed that the nonholonomic constraints give rise to holonomic
ones, and therefore concluded that the integrability of constraints plays no role in stability
analysis. Some maintain that this approach is correct while others disagree. The works
of [2] and [12], for example, attempt to fix this approach while other works such as [4]
appear to argue otherwise. In [6], DeMarco presents a thorough approach to the correct
linearization. It turns out that much of what we derive here has already been explored in
[6]. One key difference is that we now incorporate everything into our geometric mechanics
framework, following [3], and use differential geometric methods to obtain the results in a
cleaner and more concise way. We also examine the concept of linearization more closely
and attempt to apply Lyapunov methods for stability.

This report is organized as follows. In Chapter 2, we review the equations of motion,
linearization, and stability of equilibria of unconstrained mechanical systems. Laying down
these results first provides for a useful comparison when we later study constrained me-
chanical systems. In Chapter 3, we start looking at constrained mechanical systems. Our
main interest is in mechanical systems in which the constraints are nonholonomic. We
study the equations of motion and equilibria for these systems before introducing a more
general framework, that of forced affine connection systems. In Chapter 4, we look at how
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to linearize the equations of motion for nonholonomic mechanical systems. We do this
by first looking at the linearization of forced affine connection systems. We later discuss
the alternative linearization approach which early researchers have used and point out its
shortcomings. Finally, in Chapter 5, we attempt to make statements about the stability of
equilibria of nonholonomic systems using the linearization approach as well as Lyapunov
methods. Chapter 6 summarizes the report and discusses possible future work.



Chapter 2

Unconstrained Mechanical Systems

We begin by looking at unconstrained mechanical systems, i.e. simple mechanical systems
without any constraints on velocity. Reviewing the results for linearization and stability of
unconstrained mechanical systems here will be useful for comparison when we later study
the constrained case.

Definition 2.1 (Forced Simple Mechanical System). A C∞-forced simple mechanical
system is a 4-tuple (Q,G, V, F ), where
(i) Q is a C∞-manifold (called the configuration manifold),
(ii) G is a C∞-Riemannian metric on Q (called the kinetic energy metric),
(iii) V ∈ C∞(Q) (called the potential function), and
(iv) F : TQ→ T ∗Q is a C∞-vector bundle map over idQ (called the Lagrangian force).

Note that in our above definition, F is time-independent. We do not consider time-
dependent Lagrangian forces here. Also note that this is our general notion of an uncon-
strained mechanical system; there are no constraints on velocity.

2.1. Equations of Motion and Equilibria

The main proposition in this section (Proposition 2.4) gives us the equations of motion for
a forced simple mechanical system. We refer to [3] for a detailed treatment of the equations
of motion, in particular how they relate to the Euler-Lagrange equations and the motion of
interconnected mechanical systems.

In order to present the equations of motion precisely, we review the Lagrange-d’Alembert
Principle.

Definition 2.2 (Variation of a Curve). Let Q be a C∞-manifold and consider a C2-curve
γ : [a, b] → Q. A variation of γ is a C2-map ν : J × [a, b] → Q such that
(i) J ⊆ R is an interval with 0 ∈ int(J),
(ii) ν(0, t) = γ(t) for all t ∈ [a, b],
(iii) ν(s, a) = γ(a) for all s ∈ J , and
(iv) ν(s, b) = γ(b) for all s ∈ J .
The infinitesimal variation associated with ν is the vector field δν along γ such that
for all t ∈ [a, b], given a local chart (U, ϕ) of Q around γ(t) and the corresponding chart
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(TU, Tϕ) of TQ, we have

Tϕ ◦ δν(t) =
(
ϕ ◦ ν(0, t), d

ds

∣∣∣
s=0

ϕ ◦ ν(s, t)
)
.

Note that this is well-defined. With the use of local charts implied, we can write this in a
compact form

δν(t) =
d

ds

∣∣∣
s=0

ν(s, t).

Definition 2.3 (Lagrange-d’Alembert Principle). Let L be a C∞-Lagrangian on a C∞-
manifold Q, and let F : TQ → T ∗Q be a (time-independent) C∞-force. A C2-curve
γ : [a, b] → Q satisfies the Lagrange-d’Alembert Principle for the force F and
Lagrangian L if, for every variation ν : J × [a, b] → Q of γ, we have

d

ds

∣∣∣
s=0

∫ b

a
L
(
t,
d

dt
ν(s, t)

)
dt+

∫ b

a
⟨F (γ′(t)); δν(t)⟩dt = 0,

where the use of local charts is implied.

The equations of motion can now be summarized as follows.

Proposition 2.4 (Equations of Motion). Let (Q,G, V, F ) be a C∞-forced simple mechanical
system. A curve γ : I → Q satisfies the Lagrange-d’Alembert Principle for the force F and
the Lagrangian L(vq) =

1
2G(vq, vq)− V (q) if and only if γ satisfies the differential equation

G
∇γ′(t)γ

′(t) = −gradV (γ(t)) +G# ◦ F (γ′(t)), (2.1.1)

where gradV
∆
= G# ◦ dV .

Let us recall the coordinate expressions for the equations of motion. Consider a C∞-
forced simple mechanical system (Q,G, V, F ). For a local chart (U, ϕ = (q1, . . . , qn)) of Q,
the equations of motion (2.1.1) in coordinates are

q̈i(t) +
G
Γi
jk(q(t))q̇

j(t)q̇k(t) = −Gij(q(t))
∂V

∂qj
(q(t)) +Gij(q(t))Fj(q(t), q̇(t)),

where ϕ ◦ γ(t) = q(t) = (q1(t), . . . , qn(t)) for admissible t ∈ I,
G
Γi
jk are the Christoffel

symbols for
G
∇ in the local chart (U, ϕ), G(q) = Gij(q)dq

i(q) ⊗ dqj(q),
[
Gij
]
= [Gij ]

−1 and
F (vq) = Fi(vq)dq

i(q). With the time dependence and function arguments implied, this can
be written in a compact form

q̈i +
G
Γi
jkq̇

j q̇k = −Gij ∂V

∂qj
+GijFj .

For studying the equilibria of forced simple mechanical systems, we start with a basic
definition.

Definition 2.5 (Equilibrium Configuration). Let Σ = (Q,G, V, F ) be a C∞-forced simple
mechanical system. A point q0 ∈ Q is an equilibrium configuration for Σ if the trivial
curve γ(t) = q0 satisfies the equations of motion (2.1.1).
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Let Σ = (Q,G, V, F ) be a C∞-forced simple mechanical system and consider a local
chart (U, ϕ = (q1, . . . , qn)) of Q. For a curve γ : I → Q satisfiying the equations of motion
(2.1.1), let ϕ ◦ γ(t) = q(t) = (q1(t), . . . , qn(t)) (again, for admissible t ∈ I; this assumption
will be made throughout). The equations of motion in coordinates are

q̈i +
G
Γi
jkq̇

j q̇k = −Gij ∂V

∂qj
+GijFj ,

or 
q̇i = vi

v̇i = −
G
Γi
jkv

jvk −Gij ∂V

∂qj
+GijFj ,

where v(t) = (v1(t), . . . , vn(t)) = q̇(t). It can be shown that this gives rise to a well-defined
vector field on TQ, i.e. X : TQ→ TTQ defined by

X(vq)
∆
=

G
S(vq)− vlft(gradV )(vq) + vlft(G# ◦ F )(vq), (2.1.2)

where the integral curves ofX, projected onto Q (using the canonical projection), are curves
satisfying the equations of motion (2.1.1). We will call X the associated vector field for
Σ. In coordinates this can be written as

X
∣∣∣
TU

(vq) = vi
∂

∂qi
(vq) +

(
−

G
Γi
jk(q)v

jvk −Gij(q)
∂V

∂qj
(q) +Gij(q)Fj(vq)

)
∂

∂vi
(vq),

where (TU, Tϕ = (q1, . . . , qn, v1, . . . , vn)) is the corresponding local chart of TQ for (U, ϕ).
Now, an equilibrium configuration q0 ∈ Q for Σ gives rise to an equilibrium point 0q0

for the vector field X. Stability notions can be made for the equilibrium configuration q0
by reference to the equilibrium point 0q0 . We will sometimes say “equilibrium” in reference
to either an equilibrium configuration or an equilibrium point; to which should be clear by
context.

The following lemma gives us simple, yet useful characterizations of equilibrium config-
urations. We denote the zero section of a vector bundle by Z(·) (see Appendix D).

Lemma 2.6 (Characterizations of Equilibrium Configurations). Let Σ = (Q,G, V, F ) be a
C∞-forced simple mechanical system. Then,
(i) q0 ∈ Q is an equilibrium configuration for Σ if and only if dV (q0) = F (0q0), and
(ii) if F (Z(TQ)) = Z(T ∗Q), the equilibrium configurations are exactly the critical points

of V .

Proof. The proof is immediate by considering the equations of motion (2.1.1) and setting
G
∇γ′(t)γ

′(t) = 0.

2.2. Linearization about Equilibria

Here we look at how to linearize the equations of motion (2.1.1) about an equilibrium
configuration q0. We do this by linearizing the associated vector field about the equilibrium
point 0q0 . Doing so will give us a forced linear mechanical system, defined as follows. We
refer to [3] for additional details.
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Definition 2.7 (Forced Linear Mechanical System). A forced linear mechanical system
is a 4-tuple (V,M,K, (F1, F2)), where
(i) V is a finite-dimensional R-vector space,
(ii) M is an inner product on V ,
(iii) K ∈ Σ2(V ), and
(iv) F1, F2 ∈ L(V ;V ∗).

Let (V,M,K, (F1, F2)) be a forced linear mechanical system. The state space of the
system is V ⊕ V and the equations of motion are(

q̇(t)
v̇(t)

)
=

(
0 idV

−M ♯ ◦K♭ +M# ◦ F1 M# ◦ F2

)(
q(t)
v(t)

)
,

or equivalently,

q̈(t) +M ♯ ◦K♭(q(t)) =M# ◦ F1(q(t)) +M# ◦ F2(q̇(t)).

Now we review a useful lemma for decomposing the state space of the linearization to
a form matching that of a forced linear mechanical system.

Lemma 2.8 (Natural Isomorphism of T0q0TQ). There is a natural isomorphism of T0q0TQ
with Tq0Q⊕ Tq0Q.

Proof. Passing through 0q0 are two submanifolds of TQ: Z(TQ) and Tq0Q. We have
T0q0 (Z(TQ)) ∼= Tq0Q since q 7→ 0q is a diffeomorphism of Q with Z(TQ). Also,
note that v 7→ vlft0q0 (v) is an isomorphism of Tq0Q with T0q0 (Tq0Q). Now, since
T0q0 (Z(TQ))∩T0q0 (Tq0Q) = {0q0}, we conclude that T0q0TQ ∼= T0q0 (Z(TQ))⊕T0q0 (Tq0Q) ∼=
Tq0Q⊕ Tq0Q.

The tangent lift of a vector field is reviewed in Appendix C, but it will be useful to recall
the coordinate expressions here as we will use it extensively. Let M be a C∞-manifold and
X ∈ Γ∞(TM). Consider a local chart (U, ϕ = (x1, . . . , xn)) of M and the corresponding

local chart (TU, Tϕ = (x1, . . . , xn, v1, . . . , vn)) of TM . Let X
∣∣∣
U
(x) = Xi(x) ∂

∂xi (x). Then

the tangent lift XT : TM → TTM can be written locally as

XT
∣∣∣
TU

(vx) = Xi(x)
∂

∂xi
(vx) +

∂Xi

∂xj
(x)vj

∂

∂vi
(vx).

Essentially, the tangent lift gives us the desired linearization. We shall apply the tangent
lift to (2.1.2) by splitting the calculation into various lemmas.

Lemma 2.9 (Tangent Lift of the Geodesic Spray). Let Σ = (Q,G, V, F ) be a C∞-forced
simple mechanical system and consider an equilibrium configuration q0 ∈ Q for Σ. Then,
for all v1 ⊕ v2 ∈ Tq0Q⊕ Tq0Q

∼= T0q0TQ, we have

G
ST (v1 ⊕ v2) = (0⊕ 0⊕ v2 ⊕ 0)v1⊕v2 .
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Proof. Consider (U, ϕ = (q1, . . . , qn)), a local chart of Q around q0. The geodesic spray
G
S : TQ→ TTQ in coordinates (TU, Tϕ = (q1, . . . , qn, v1, . . . , vn)) is

G
S
∣∣∣
TU

(vq) = vi
∂

∂qi
(vq)−

G
Γi
jk(q)v

jvk
∂

∂vi
(vq).

The tangent lift
G
ST : TTQ→ TTTQ in coordinates (TTU, TTϕ = (q1, . . . , qn, v1, . . . , vn,

q̇1, . . . , q̇n, v̇1, . . . , v̇n)) is

G
ST
∣∣∣
TTU

(wvq) = vi
∂

∂qi
(wvq)−

G
Γi
jk(q)v

jvk
∂

∂vi
(wvq) +

∂Xi

∂qj
(vq)q̇

j ∂

∂q̇i
(wvq)

+
∂Xi

∂vj
(vq)v̇

j ∂

∂q̇i
(wvq) +

∂Y i

∂qj
(vq)q̇

j ∂

∂v̇i
(wvq) +

∂Y i

∂vj
(vq)v̇

j ∂

∂v̇i
(wvq),

where Xi(vq) = vi and Y i(vq) = −
G
Γi
jk(q)v

jvk. Hence, given v1 ⊕ v2 ∈ Tq0Q ⊕ Tq0Q
∼=

T0q0TQ,

G
ST (v1 ⊕ v2) =

G
ST
∣∣∣
TTU

(v1 ⊕ v2)

= 0− 0 + 0 + vi2
∂

∂q̇i
(v1 ⊕ v2) + 0 + 0

= vi2
∂

∂q̇i
(v1 ⊕ v2)

= (0⊕ 0⊕ v2 ⊕ 0)v1⊕v2 ,

where v1 = vi1
∂
∂qi

(q0) and v2 = vi2
∂
∂qi

(q0).

Lemma 2.10 (Tangent Lift of the Potential Force). Let Σ = (Q,G, V, F ) be a C∞-forced
simple mechanical system and consider an equilibrium configuration q0 ∈ Q for Σ. If q0 is
a critical point for V (i.e. dV (q0) = 0), then, for all v1 ⊕ v2 ∈ Tq0Q⊕ Tq0Q

∼= T0q0TQ, we
have

(vlft(G# ◦ dV ))T (v1 ⊕ v2) = (0⊕ 0⊕ 0⊕ (G(q0)
# ◦HessV (q0)

♭(v1)))v1⊕v2 .

Proof. Consider (U, ϕ = (q1, . . . , qn)), a local chart of Q around q0. The differential of V in
coordinates (U, ϕ = (q1, . . . , qn)) is

dV
∣∣∣
U
(q) =

∂V

∂qi
(q)dqi(q).

The gradient of V in coordinates (U, ϕ = (q1, . . . , qn)) is

G# ◦ dV
∣∣∣
U
(q) = Gij(q)

∂V

∂qj
(q)

∂

∂qi
(q).

The vertical lift vlft(G# ◦ dV ) : TQ → TTQ in coordinates (TU, Tϕ =
(q1, . . . , qn, v1, . . . , vn)) is

vlft(G# ◦ dV )
∣∣∣
TU

(vq) = Gij(q)
∂V

∂qj
(q)

∂

∂vi
(vq).
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The tangent lift (vlft(G#◦dV ))T : TTQ→ TTTQ in coordinates (TTU, TTϕ = (q1, . . . , qn,
v1, . . . , vn, q̇1, . . . , q̇n, v̇1, . . . , v̇n)) is

(vlft(G# ◦ dV ))T
∣∣∣
TTU

(wvq ) = Gij(q)
∂V

∂qj
(q)

∂

∂vi
(wvq ) +

∂Xi

∂qj
(vq)q̇

j ∂

∂q̇i
(wvq )

+
∂Xi

∂vj
(vq)v̇

j ∂

∂q̇i
(wvq ) +

∂Y i

∂qj
(vq)q̇

j ∂

∂v̇i
(wvq ) +

∂Y i

∂vj
(vq)v̇

j ∂

∂v̇i
(wvq )

whereXi(vq) = 0 and Y i(vq) = Gij(q) ∂V
∂qj

(q). Hence, given v1⊕v2 ∈ Tq0Q⊕Tq0Q ∼= T0q0TQ,

(vlft(G# ◦ dV ))T (v1 ⊕ v2)

= (vlft(G# ◦ dV ))T
∣∣∣
TTU

(v1 ⊕ v2)

= 0 + 0 + 0 +

(
∂Gij

∂qk
(q0)

∂V

∂qj
(q0)︸ ︷︷ ︸
0

+Gij(q0)
∂2V

∂qk∂qj
(q0)

)
vk1

∂

∂v̇i
(v1 ⊕ v2) + 0

= Gij(q0)
∂2V

∂qk∂qj
(q0)v

k
1

∂

∂v̇i
(v1 ⊕ v2)

= (0⊕ 0⊕ 0⊕ (G(q0)
# ◦HessV (q0)

♭(v1)))v1⊕v2 ,

where v1 = vi1
∂
∂qi

(q0) and v2 = vi2
∂
∂qi

(q0).

Lemma 2.11 (Tangent Lift of the External Force). Let Σ = (Q,G, V, F ) be a C∞-forced
simple mechanical system and consider an equilibrium configuration q0 ∈ Q for Σ. If
F (Z(TQ)) = Z(T ∗Q), then, for all v1 ⊕ v2 ∈ Tq0Q⊕ Tq0Q

∼= T0q0TQ, we have

(vlft(G# ◦F ))T (v1⊕v2) = (0⊕0⊕0⊕(G(q0)
# ◦d1F (0q0)(v1)+G(q0)

# ◦d2F (0q0)(v2)))v1⊕v2 ,

where we have defined d1F (0q0), d2F (0q0) ∈ L(Tq0Q;T ∗
q0Q) such that given a local chart

(U, ϕ = (q1, . . . , qn)) of Q and corresponding local chart (TU, Tϕ = (q1, . . . , qn, v1, . . . , vn))
of TQ,

[d1F (0q0)] =

[
∂Fi

∂qj
(0q0)

]
, [d2F (0q0)] =

[
∂Fi

∂vj
(0q0)

]
.

Proof. Consider (U, ϕ = (q1, . . . , qn)), a local chart of Q around q0. The external force in
coordinates (U, ϕ = (q1, . . . , qn)) is

F
∣∣∣
TU

(vq) = Fi(vq)dq
i(q),

and so

G# ◦ F
∣∣∣
TU

(vq) = Gij(q)Fj(vq)
∂

∂qi
(q).

The vertical lift
vlft(G# ◦ F ) : TQ → TTQ

vq 7→ vlftvq(G# ◦ F (vq))
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in coordinates (TU, Tϕ = (q1, . . . , qn, v1, . . . , vn)) is

vlft(G# ◦ F )
∣∣∣
TU

(vq) = Gij(q)Fj(vq)
∂

∂vi
(vq).

The tangent lift (vlft(G# ◦F ))T : TTQ→ TTTQ in coordinates (TTU, TTϕ = (q1, . . . , qn,
v1, . . . , vn, q̇1, . . . , q̇n, v̇1, . . . , v̇n)) is

(vlft(G# ◦ F ))T
∣∣∣
TTU

(wvq ) = Gij(q)Fj(vq)
∂

∂vi
(wvq ) +

∂Xi

∂qj
(vq)q̇

j ∂

∂q̇i
(wvq )

+
∂Xi

∂vj
(vq)v̇

j ∂

∂q̇i
(wvq ) +

∂Y i

∂qj
(vq)q̇

j ∂

∂v̇i
(wvq ) +

∂Y i

∂vj
(vq)v̇

j ∂

∂v̇i
(wvq )

whereXi(vq) = 0 and Y i(vq) = Gij(q)Fj(vq). Hence, given v1⊕v2 ∈ Tq0Q⊕Tq0Q ∼= T0q0TQ,

(vlft(G# ◦ F ))T (v1 ⊕ v2) = (vlft(G# ◦ F ))T
∣∣∣
TTU

(v1 ⊕ v2)

= 0 + 0 + 0 +

(
∂Gij

∂qk
(q0)Fj(0q0)︸ ︷︷ ︸

0

+Gij(q0)
∂Fj

∂qk
(0q0)

)
vk1

∂

∂v̇i
(v1 ⊕ v2)

+Gij(q0)
∂Fj

∂vk
(0q0)v

k
2

∂

∂v̇i
(v1 ⊕ v2)

= Gij(q0)
∂Fj

∂qk
(0q0)v

k
1

∂

∂v̇i
(v1 ⊕ v2) +Gij(q0)

∂Fj

∂vk
(0q0)v

k
2

∂

∂v̇i
(v1 ⊕ v2)

= (0⊕ 0⊕ 0⊕ (G(q0)
# ◦ d1F (0q0)(v1) +G(q0)

# ◦ d2F (0q0)(v2)))v1⊕v2
,

where v1 = vi1
∂
∂qi

(q0) and v2 = vi2
∂
∂qi

(q0).

Now, putting everything together, we get the following.

Proposition 2.12 (Linearization of a Forced Simple Mechanical System). Let Σ =
(Q,G, V, F ) be a C∞-forced simple mechanical system such that F (Z(TQ)) = Z(T ∗Q) and
consider an equilibrium configuration q0 ∈ Q for Σ (i.e. we have dV (q0) = 0). Then the
linearization of (2.1.2) at 0q0 in the decomposition T0q0TQ

∼= Tq0Q⊕ Tq0Q is given by

AΣ(q0) =

(
0 idTq0Q

−G# ◦HessV (q0)
♭ +G# ◦ d1F (0q0) G# ◦ d2F (0q0)

)
,

and the linearized equations of motion are(
q̇(t)
v̇(t)

)
=

(
0 idTq0Q

−G# ◦HessV (q0)
♭ +G# ◦ d1F (0q0) G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
.

In other words, the linearization is given by the forced linear mechanical system
(Tq0Q,G(q0),
HessV (q0), (d1F (q0), d2F (q0))).

Proof. This follows from combining the results of Lemmas 2.8, 2.9, 2.10 and 2.11.
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2.3. Stability of Equilibria

In this section, we look at the stability of equilibria. For a nonlinear system, the stability of
an equilibrium point is typically analyzed in one of two ways: (1) stability of its linearization,
or (2) Lyapunov stability. For unconstrained mechanical systems, the same two approaches
can be applied for an equilibrium configuration q0 by considering the associated vector field
and its equilibrium point 0q0 . Due to the nature of mechanical systems and the structure
of its linearizations, we can obtain specialized results. In particular, for the unconstrained
mechanical systems that we study here, i.e. those subject to dissipative forces, we can
examine more closely the spectrum of the linearization, and for Lyapunov stability, use the
energy function as a Lyapunov function.

Definition 2.13 (Dissipative Force). Consider a time-independent force F : TQ→ T ∗Q.
(i) F is dissipative if, for all vq ∈ TQ, we have ⟨F (vq); vq⟩ ≤ 0.
(ii) F is strictly dissipative if F is dissipative and ⟨F (vq); vq⟩ = 0 only when vq ∈

Z(TQ).

Definition 2.14 (Rayleigh Dissipation). A (0, 2)-tensor field Rdiss on Q is a Rayleigh
dissipation function if Rdiss is C∞, symmetric, and positive-semidefinite. If Rdiss is
positive-definite, then it is strict. The dissipative force associated with Rdiss is −R♭

diss :

TQ→ T ∗Q.

Let us compile some basic results regarding the stability of equilibria via linearization.
We refer to [3] for the proofs and additional details.

Theorem 2.15 (Normal Form for a Symmetric Bilinear Map). Consider a finite-
dimensional R-vector space V . Given B ∈ Σ2(V ), there exists a basis {e1, . . . , en} for
V such that

[B] =

Ip×p 0 0
0 −Iq×q 0
0 0 0

 .

Definition 2.16 (Rank, Index and Signature). Referring to Theorem 2.15, we define the
following.
(i) The rank of B is the number of nonzero elements on the diagonal, i.e. rank(B) =

p+ q.
(ii) The index of B is the number of −1’s on the diagonal, i.e. ind(B) = q.
(iii) The signature of B is the number of 1’s on the diagonal minus the number of −1’s

on the diagonal, i.e. sig(B) = p− q.

Proposition 2.17 (Eigenvalues of an Unforced Linear Mechanical System). Let (V,M,K,

(0, 0)) be an unforced linear mechanical system and consider A =

(
0 idV

−M ♯ ◦K♭ 0

)
.

(i) The eigenvalues of M ♯ ◦K♭ are real.
(ii) l ∈ R is an eigenvalue of M# ◦K♭ if and only if λ = ±

√
−l are eigenvalues of A.

Proposition 2.18 (Stability of an Unforced Linear Mechanical System). Let
(V,M,K, (0, 0)) be an unforced linear mechanical system.
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(i) The equilibrium point 0 is spectrally stable (see Definition A.9) if and only if ind(K) =
0.

(ii) The equilibrium point 0 is stable if and only if rank(K) = n and ind(K) = 0.
(iii) If ind(K) > 0, then the equilibrium point 0 is unstable.

Theorem 2.19 (Stability of a Linear Mechanical System with Linear Dissipation). Let
Σ = (V,M,K, (0,−R♭)) be a forced linear mechanical system, where R ∈ Σ2(V ) and R is
positive-semidefinite. (We call R a linear Rayleigh dissipation function and we say
that Σ is a linear mechanical system subject to a linear dissipative force.)
(i) If K is not positive-semidefinite, then the equilibrium point 0 is unstable.
(ii) The equilibrium point 0 is stable if and only if K is positive-semidefinite and Ker(K♭)∩

Ker(R♭) = {0}.
(iii) The equilibrium point 0 is asymptotically stable if and only if K is positive-definite

and ⟨M# ◦K♭, Im(M# ◦R♭)⟩ = V .

Note that for an F-vector space V , a subset L ⊆ L(V ;V ), and a subspace U ⊆ V , ⟨L, U⟩
is defined as the smallest subspace of V containing U that is also an invariant subspace for
each A ∈ L.

Theorem 2.20 (Stability of a Rayleigh Dissipative Unconstrained Mechanical System via
Linearization). Let Σ = (Q,G, V,−R♭

diss) be a C∞-forced simple mechanical system subject
to the force associated with a Rayleigh dissipation function Rdiss and suppose q0 ∈ Q is an
equilibrium configuration for Σ.
(i) If HessV (q0) is not positive-semidefinite, then q0 is unstable.
(ii) If HessV (q0) is positive-definite and ⟨G(q0)

# ◦HessV (q0)
♭, Im(G(q0)

# ◦Rdiss(q0)
♭)⟩ =

Tq0Q, then q0 is locally asymptotically stable.

Now, let us examine the stability of equilibria via Lyapunov methods.

Proposition 2.21 (Time Derivative of Energy for Unconstrained Mechanical Systems). Let
Σ = (Q,G, V, F ) be a C∞-forced simple mechanical system, and consider a curve γ : I → Q
satisfying the equations of motion (2.1.1). Then,

dE(γ′(t))

dt
= ⟨F (γ′(t)); γ′(t)⟩.

Equivalently, let X be the associated vector field for Σ. Then,

LXE(vq) = ⟨F (vq); vq⟩.

Proof. We know that the total energy is

E(vq) =
1

2
G(q)(vq, vq) + V (q),

hence

E(γ′(t)) =
1

2
G(γ(t))(γ′(t), γ′(t)) + V (γ(t)),
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and so taking the time derivative we get

dE(γ′(t))

dt

=
d

dt

(
1

2
G(γ(t))(γ′(t), γ′(t)) + V (γ(t))

)
=

1

2
(
G
∇γ′(t)G︸ ︷︷ ︸

0

)(γ(t))(γ′(t), γ′(t)) +
1

2
G(γ(t))(

G
∇γ′(t)γ

′(t), γ′(t))

+
1

2
G(γ(t))(γ′(t),

G
∇γ′(t)γ

′(t))︸ ︷︷ ︸
G(γ(t))(

G
∇γ′(t)γ

′(t),γ′(t))

+(
G
∇γ′(t)V )(γ(t))

= G(γ(t))(
G
∇γ′(t)γ

′(t), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩
= G(γ(t))(−G# ◦ dV (γ(t)) +G# ◦ F (γ′(t)), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩
= −G(γ(t))(G# ◦ dV (γ(t)), γ′(t)) +G(γ(t))(G# ◦ F (γ′(t)), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩
= −⟨G♭(G# ◦ dV (γ(t))); γ′(t)⟩+ ⟨G♭(G# ◦ F (γ′(t))); γ′(t)⟩+ ⟨dV (γ(t)); γ′(t)⟩
= −⟨dV (γ(t)); γ′(t)⟩+ ⟨F (γ′(t)); γ′(t)⟩+ ⟨dV (γ(t)); γ′(t)⟩
= ⟨F (γ′(t)); γ′(t)⟩.

The equivalence of the time derivative and Lie derivative expressions is Proposition A.11.

Proposition 2.22 (Dissipative Forces Decrease Energy). Let Σ = (Q,G, V, Fdiss) be a C∞-
forced simple mechanical system where Fdiss is dissipative, and consider a curve γ : I → Q
satisfying the equations of motion (2.1.1). Then, the energy E(γ′(t)) is non-increasing.
Equivalently, considering the associated vector field X for Σ, we have that LXE(vq) ≤ 0
for all vq ∈ TQ.

Proof. This follows directly from Proposition 2.21.

Theorem 2.23 (Stability of a Dissipative Unconstrained Mechanical System via Lyapunov
Methods). Let Σ = (Q,G, V, Fdiss) be a C∞-forced simple mechanical system where Fdiss is
dissipative, and consider an equilibrium configuration q0 ∈ Q for Σ, i.e. we have dV (q0) = 0
since F (Z(TQ)) = Z(T ∗Q).
(i) If V is locally positive-definite about q0, then q0 is stable.
(ii) If q0 is an isolated local minimum for V and Fdiss is strictly dissipative, then q0 is

locally asymptotically stable.

Note that q0 being an isolated local minimum for V implies that V is locally positive-
definite about q0. The converse is only true for analytic functions.

Proof. (i) Consider the energy function E : TQ → R, E(vq) = 1
2G(q)(vq, vq) + V (q).

Without loss of generality, assume V (q0) = 0.
Claim: E is a Lyapunov function for the associated vector field X for Σ at the point
0q0 .
Proof of claim:
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1. We have E(0q0) = 0.
2. E(γ′(t)) is non-increasing by Proposition 2.22. In other words, LXE is negative-

semidefinite about 0q0 .
3. We need to show that there exists a neighbourhood TU ⊆ TQ of 0q0 such that

for all vq ∈ TU \ {0q0}, we have E(vq) > 0. Since V is locally positive-definite
about q0, there exists a neighbourhood U ⊆ Q of q0 such that for all q ∈ U \{q0},
we have V (q) > 0. Now, for all vq ∈ TU \ Z(TU), we have G(q)(vq, vq) > 0.
Hence, for all vq ∈ TU \ {0q0}, we have E(vq) > 0. Hence E is a Lyapunov
function for the associated vector field at the point 0q0 as claimed.

Hence, by the Lyapunov stability criteria (Theorem A.16), q0 is stable.
(ii) Since q0 is an isolated local minimum for V , V is locally positive-definite about q0 and

so (i) applies. E is a Lyapunov function. Also, since q0 is an isolated local minimum
for V , there exists a neighbourhood W ⊆ Q of q0 such that for all q ∈ W \ {q0}, we
have V (q) > V (q0), and W contains no critical points other than q0. We have that
E is positive-definite on TW and E(γ′(t)) is non-increasing. Let A = {vq ∈ TW |
⟨Fdiss(vq); vq⟩ = 0} = Z(TW ).
Claim: {0q0} is the only positively invariant set in A.
Proof of claim: Suppose 0q1 ̸= 0q0 is another point. Then q1 ̸= q0 implies that
gradV (q1) ̸= 0. Hence the solution will leave A, proving the claim.
Hence the corollary to LaSalle Invariance Principle (Corollary A.22) implies that q0
is locally asymptotically stable.



Chapter 3

Nonholonomic Mechanical
Systems: Equations of Motion and
Equilibria

In this chapter, we begin to study constrained mechanical systems, i.e. simple mechanical
systems subject to velocity constraints. Velocity constraints are modeled as a distribution
on the configuration manifold, and can either be holonomic or nonholonomic. Note that we
only consider linear velocity constraints which are regular C∞-distributions. Afterwards,
we look at how the equations of motion and equilibria change when these constraints are
added.

3.1. Velocity Constraints

Definition 3.1 (Annihilator). Let V be a finite-dimensional R-vector space and S ⊆ V .
We define the annihilator of S by

ann(S) = {α ∈ V ∗ | α(v) = 0 ∀v ∈ S}.

Now, given a distributionD on a C∞-manifoldM , we define the annihilator of D, ann(D),
such that

ann(D)q = ann(Dq).

Note that since ann(S) is a subspace of V ∗, ann(D) is a codistribution on M .

Definition 3.2 (Linear Velocity Constraint). Let Q be a C∞-manifold. A distribution D
on Q is a C∞-linear velocity constraint if ann(D) is a C∞-codistribution. A C∞-linear
velocity constraint D is regular if D is a regular distribution. Alternatively, a distribution
D on Q is a regular C∞-linear velocity constraint if D is a regular C∞-distribution.

Remark 3.3. We will only work with regular C∞-linear velocity constraints and so the
technicalities above involving regularity and smoothness can be ignored.

Often we will say velocity constraints, constraint distribution, regular constraints, or
simply constraints in reference to a regular C∞-linear velocity constraint. Constraints can
either be holonomic or nonholonomic. These are defined as follows.

16
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Definition 3.4 (Holonomic and Nonholonomic Constraints). Let D be a regular C∞-linear
velocity constraint on a C∞-manifold Q. Then,
(i) D is holonomic if D is integrable, and
(ii) D is nonholonomic if D is not holonomic.

Note that we are not interested in mechanical systems subject to holonomic constraints.
As discussed in [3], if the distribution is integrable, this means that all curves through
a point q ∈ Q satisfying the constraint must lie on the maximal integral manifold for D
through q. In this case, we can always restrict our analysis to the maximal integral manifold
of the distribution, and then the results for unconstrained mechanical systems would apply.
It is the nonholonomicity of constraints which introduces additional complexities into the
equations of motion and stability analysis.

Definition 3.5 (Totally Nonholonomic). Let D be a nonholonomic constraint on a C∞-
manifold Q. Denote by Γ∞(D) the set of C∞-vector fields on Q taking values in D and
define Lie∞(D) as the smallest subspace of Γ∞(TQ) such that Γ∞(D) ⊆ Lie∞(D) and, for
all X,Y ∈ Lie∞(D), we have [X,Y ] ∈ Lie∞(D). We say that D is totally nonholonomic

if, for all q ∈ Q, we have Lie∞(D)q
∆
= {X(q) | X ∈ Lie∞(D)} = TqQ.

Essentially, if a constraint is totally nonholonomic, for every point in the configuration
space, although our instantaneous motion is restricted to a subspace of directions, it is
possible to achieve net movement in any direction.

3.2. Equations of Motion

Here, we study the equations of motion for nonholonomic mechanical systems. Although
the results obviously apply for holonomic mechanical systems as well, they do not provide
any additional information of interest to us.

Definition 3.6 (Forced Simple Mechanical System with Constraints). A C∞-forced sim-
ple mechanical system with constraints is a 5-tuple (Q,G, V, F,D), where
(i) (Q,G, V, F ) is a C∞-forced simple mechanical system, and
(ii) D is a C∞-linear velocity constraint.

Note that since we are only interested in constraints that are regular, we will talk about
C∞-forced simple mechanical systems with regular constraints. This is our general notion
of a constrained mechanical system.

Definition 3.7 (Curve Satisfying a Constraint). Let D be a C∞-linear velocity constraint
on a C∞-manifold Q. A C∞-curve γ : I → Q satisfies the constraint D if γ′(t) ∈ Dγ(t)

for all t ∈ I.

Definition 3.8 (Constraint Force). Let D be a C∞-linear velocity constraint on a C∞-
manifold Q. A constraint force is a force taking values in ann(D). Given a continuous
curve γ : I → Q, a covector field α : I → T ∗Q along γ is called a constraint force along
γ if, for all t ∈ I, we have α(t) ∈ ann(D)γ(t).

A physical motivation for the definition of constraint forces is that they do no work on
curves satisfying the constraint. The converse is in general not true, though.



18 S. D. Yang

Definition 3.9 (Orthogonal Projections). Let D be a regular C∞-linear velocity constraint
on a C∞-manifold Q. We define two vector bundle maps over idQ, PD : TQ → TQ and
P⊥
D : TQ→ TQ, such that, for all vq ∈ TQ,
(i) vq = PD(vq)⊕ P⊥

D (vq), and
(ii) PD(vq) ∈ Dq and P⊥

D (vq) ∈ D⊥
q .

Note that PD and P⊥
D can be treated as (1, 1)-tensor fields.

Proposition 3.10 (Equations of Motion for Constrained Mechanical Systems). Let
(Q,G, V,
F,D) be a C∞-forced simple mechanical system with regular constraints. A curve γ : I → Q
satisfies the constraint D and the Lagrange-d’Alembert Principle for the force F + α and
Lagrangian L(vq) =

1
2G(vq, vq)− V (q) where α is a constraint force along γ, i.e.

G
∇γ′(t)γ

′(t) = −gradV (γ(t)) +G# ◦ F (γ′(t)) +G# ◦ α(t)
γ′(t) ∈ Dγ(t)

if and only if there exists a vector field λ along γ such that λ(t) ∈ D⊥
γ(t), and

G
∇γ′(t)γ

′(t) = −gradV (γ(t)) +G# ◦ F (γ′(t)) + λ(t)

P⊥
D (γ′(t)) = 0.

(3.2.1)

Proof. This follows since
1. P⊥

D (γ′(t)) = 0 ⇐⇒ γ′(t) ∈ Dγ(t) for all t ∈ I, and

2. points in ann(D) are mapped bijectively onto D⊥ by G#, i.e. λ(t) = G# ◦ α(t).

Proposition 3.10 gives us the equations of motion for constrained mechanical systems,
but we still need to solve for the unknown λ. Note that λ is in fact a “Lagrange multi-
plier”. We introduce the constrained affine connection here, which will help us simplify the
equations of motion after λ is solved for.

Definition 3.11 (Constrained Affine Connection). Let Q be a C∞-manifold, G a C∞-
Riemannian metric on Q, and D a regular C∞-linear velocity constraint on Q. The con-

strained affine connection,
D
∇, is

D
∇XY

∆
=

G
∇XY + (

G
∇XP

⊥
D )(Y ),

where P⊥
D : TQ → TQ is thought of as a (1, 1)-tensor field. We denote the geodesic spray

associated with
D
∇ by

D
S.

Proposition 3.12 (Properties of the Constrained Connection). Let Q be a C∞-manifold,
G a C∞-Riemannian metric on Q, and D a regular C∞-linear velocity constraint on Q.

Consider the Levi-Civita affine connection
G
∇ and the constrained connection

D
∇. Given

X ∈ Γ∞(TQ) and Y ∈ Γ∞(D), we have
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(i)
D
∇XY = PD(

G
∇XY ) and therefore

D
∇XY ∈ Γ∞(D), and

(ii) (
G
∇XP

⊥
D )(Y ) = −P⊥

D (
G
∇XY ) and therefore (

G
∇XP

⊥
D )(Y ) ∈ Γ∞(D⊥).

Proof. Let X ∈ Γ∞(TQ) and Y ∈ Γ∞(D). We have that P⊥
D (Y ) = 0, hence taking the

covariant derivative we get
G
∇X(P⊥

D (Y )) = 0,

and by the product rule for the covariant derivative we get

(
G
∇XP

⊥
D )(Y ) + P⊥

D (
G
∇XY ) = 0.

Rearranging, we get that (
G
∇XP

⊥
D )(Y ) = −P⊥

D (
G
∇XY ) ∈ Γ∞(D⊥). This proves the second

statement. Now,

D
∇XY =

G
∇XY + (

G
∇XP

⊥
D )(Y )

=
G
∇XY − P⊥

D (
G
∇XY )

= PD(
G
∇XY ) ∈ Γ∞(D),

which proves the first statement.

Definition 3.13. Let D be a regular C∞-distribution on a C∞-manifold Q. A C∞-affine
connection ∇ restricts to D if, for all X ∈ Γ∞(TQ) and for all Y ∈ Γ∞(D), we have
∇XY ∈ Γ∞(D).

Hence we can say that
D
∇ restricts to D.

Theorem 3.14 (Equations of Motion for Constrained Mechanical Systems using the Con-
strained Connection). Let (Q,G, V, F,D) be C∞-forced simple mechanical system with reg-
ular constraints. A curve γ : I → Q satisfies the constraint D and the Lagrange-d’Alembert
Principle for the force F + α and Lagrangian L(vq) = 1

2G(vq, vq) − V (q) where α is a
constraint force along γ, i.e.

G
∇γ′(t)γ

′(t) = −gradV (γ(t)) +G# ◦ F (γ′(t)) +G# ◦ α(t)
γ′(t) ∈ Dγ(t)

if and only if
D
∇γ′(t)γ

′(t) = −PD ◦ gradV (γ(t)) + PD ◦G# ◦ F (γ′(t)) (3.2.2)

and γ′(t0) ∈ Dγ(t0) for some t0 ∈ I.

Proof. We only consider the forward direction of the proof here. We refer to [3] for a
complete proof.

Applying Proposition 3.10, it is clear that since P⊥
D (γ′(t)) = 0, there exists t0 ∈

I such that γ′(t0) ∈ Dγ(t0). By Proposition 3.12, we have that P⊥
D (

G
∇γ′(t)γ

′(t)) =
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−(
G
∇γ′(t)P

⊥
D )(γ′(t)). Now, consider

G
∇γ′(t)γ

′(t) = −gradV (γ(t)) + G# ◦ F (γ′(t)) + λ(t).
We solve for λ(t):

λ(t) =
G
∇γ′(t)γ

′(t) + gradV (γ(t))−G# ◦ F (γ′(t))

= P⊥
D (

G
∇γ′(t)γ

′(t)) + P⊥
D (gradV (γ(t)))− P⊥

D (G# ◦ F (γ′(t)))

= −(
G
∇γ′(t)P

⊥
D )(γ′(t)) + P⊥

D (gradV (γ(t)))− P⊥
D (G# ◦ F (γ′(t))).

Hence, substituting this expression for λ(t), we get

G
∇γ′(t)γ

′(t) = −(
G
∇γ′(t)P

⊥
D )(γ′(t))− P⊥

D (G# ◦ F (γ′(t))) + P⊥
D (gradV (γ(t)))

+G# ◦ F (γ′(t))− gradV (γ(t)),

and so
D
∇γ′(t)γ

′(t) = PD(G# ◦ F (γ′(t)))− PD(gradV (γ(t))),

using the fact that PD = idTQ − P⊥
D .

3.3. Equilibria

In contrast to dissipative mechanical systems without velocity constraints, the critical points
of the potential function do not fully characterize the equilibria of a nonholonomic me-
chanical system. While any critical point of the potential function is still an equilibrium
configuration for the nonholonomic mechanical system, the velocity constraints introduce
new equilibria, which correspond to points in which the gradient of the potential function is
orthogonal to the allowable velocities. In fact, the equilibria tend to no longer be isolated,
and tend to form a manifold of equilibria. However, this is not always the case, contrary
to the claims in [11] and assumptions made by many researchers. Equilibria can still be
isolated, and the equilibria do not necessarily form a submanifold of the configuration space.
We borrow examples from [6] and rework them here.

Definition 3.15 (Equilibrium Configuration). Let Σ = (Q,G, V, F,D) be a C∞-forced
simple mechanical system with regular constraints. A point q0 ∈ Q is an equilibrium
configuration for Σ if the trivial curve γ(t) = q0 satisfies the equations of motion (3.2.2).

Let us characterize the equilibrium configurations of a nonholonomic mechanical system.

Lemma 3.16 (Characterization of Equilibrium Configurations). Let Σ = (Q,G, V, F,D)
be a C∞-forced simple mechanical system with regular constraints such that F (Z(TQ)) =
Z(T ∗Q). A point q0 ∈ Q is an equilibrium configuration for Σ if and only if dV (q0) ∈
ann(Dq0) (equivalently, PD(G# ◦ dV (q0)) = 0).

Proof. (⇒) Since q0 is an equilibrium configuration we have that γ(t) = q0, γ
′(t) = 0q0 , and

D
∇γ′(t)γ

′(t) = 0. So −PD(G# ◦ dV (γ(t))) + PD(G# ◦ F (γ′(t))) = 0. Since F (γ′(t)) = 0, we

get −PD(G# ◦ dV (q0)) = 0, or PD(G# ◦ dV (q0)) = 0.
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(⇐) Suppose PD(G# ◦ dV (q0)) = 0. Consider γ(t) = q0. Then γ
′(t) = 0q0 and

D
∇γ′(t)γ

′(t) = −PD(G# ◦ dV (γ(t))) + PD(G# ◦ F (γ′(t)))

is satisfied. Hence q0 is an equilibrium configuration.

The following is an example of a nonholonomic mechanical system in which the set of
equilibria do not form a manifold. The original example is found in [6]. For this example
(and subsequent examples), we use Mathematica to aid us in heavy computations and
symbolic manipulations.

Example 3.17. Consider Σ = (Q,G, V, F,D), a C∞-forced simple mechanical system with
regular constraints such that F (Z(TQ)) = Z(T ∗Q), where
(i) Q = R3 with global coordinate charts (R3, ϕ = (x, y, z)) and (TR3, Tϕ =

(x, y, z, u, v, w)),
(ii) G = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz,
(iii) V (q) = 1

2(x
2 + y2 + z2),

(iv) F (vq) = −udx(q)− vdy(q)− wdz(q), and

(v) D is defined such that D⊥ = span
{
x ∂
∂x + y ∂

∂y + (1 + x− y) ∂
∂z

}
.

Observe that we can write D = span {X1, X2}, where

X1 = (1 + x)
∂

∂x
+ (−x) ∂

∂y
+ (−x) ∂

∂z
,

X2 = (y)
∂

∂x
+ (1− y)

∂

∂y
+ (−y) ∂

∂z
.

Indeed, we have that x · (1 + x) + y · (−x) + (1 + x− y) · (−x) = 0 and x · y + y · (1− y) +
(1 + x− y) · (−y) = 0, and

det

 x y 1 + x− y
1 + x −x −x
y 1− y −y

 = 2x2 − 2xy + 2x+ 2y2 − 2y + 1,

which can be verified is never zero.
Now, let us verify that the constraints are nonholonomic (in fact, totally nonholonomic).

We compute

[X1, X2] = (−x− y)
∂

∂x
+ (x+ y)

∂

∂y
+ (x+ y)

∂

∂z
,

and get

det

 1 + x −x −x
y 1− y −y

−x− y x+ y x+ y

 = x+ y,

so {X1, X2, [X1, X2]} is linearly independent everywhere except on the line x + y = 0.
Hence, one bracket is not enough to show that D is totally nonholonomic. We compute
another bracket

[X1, [X1, X2]] = (−1 + x+ y)
∂

∂x
+ (1− x− y)

∂

∂y
+ (1− x− y)

∂

∂z
.



22 S. D. Yang

Here, for {X1, X2, [X1, [X1, X2]]}, we have

det

 1 + x −x −x
y 1− y −y

−1 + x+ y 1− x− y 1− x− y

 = −x− y + 1,

so we have linear independence everywhere except on the line x + y = 1. Now, since the
solutions to x+y = 1 do not coincide with any solutions of x+y = 0, we can conclude that
D is totally nonholonomic.

The equilibria of Σ are all q ∈ Q such that G# ◦ dV (q) ∈ D⊥. We solve

G# ◦ dV (q) = λ

(
x
∂

∂x
(q) + y

∂

∂y
(q) + (1 + x− y)

∂

∂z
(q)

)
x
∂

∂x
(q) + y

∂

∂y
(q) + z

∂

∂z
(q) = λ

(
x
∂

∂x
(q) + y

∂

∂y
(q) + (1 + x− y)

∂

∂z
(q)

)

⇒


x = xλ

y = yλ

z = (1 + x− y)λ

.

If x = 0 and y = 0, then z is arbitrary. If x ̸= 0 or y ̸= 0, then λ = 1 and so z = 1 + x− y
for all x and y. Hence the set of equilibria is {(0, 0, z) | z ∈ R}∪{(x, y, z) | x−y− z = −1},
shown in Figure 3.1. It is not a submanifold of Q.

The following is an example of a nonholonomic mechanical system which has an isolated
equilibrium configuration. The original example is found in [6].

Example 3.18. Consider Σ = (Q,G, V, F,D), a C∞-forced simple mechanical system with
regular constraints such that F (Z(TQ)) = Z(T ∗Q), where
(i) Q = R3 with global coordinate charts (R3, ϕ = (x, y, z)) and (TR3, Tϕ =

(x, y, z, u, v, w)),
(ii) G = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz,
(iii) V (q) = 1

2(x− 1)2 + 1
2(y − 1)2,

(iv) F (vq) = −udx(q)− vdy(q)− wdz(q), and

(v) D is defined such that D⊥ = span
{
−y ∂

∂x + x ∂
∂y + ((y − 1)2 + z2) ∂

∂z

}
.

Observe that we can write D = span {X1, X2}, where

X1 = (x)
∂

∂x
+ ((y − 1)2 + z2 + y)

∂

∂y
+ (−x) ∂

∂z
,

X2 = ((y − 1)2 + z2)
∂

∂x
+ (0)

∂

∂y
+ (y)

∂

∂z
.

Indeed, we have that (−y) · x + x · ((y − 1)2 + z2 + y) + ((y − 1)2 + z2) · (−x) = 0 and
(−y) · ((y − 1)2 + z2) + x · 0 + ((y − 1)2 + z2) · y = 0, and

det

 −y x (y − 1)2 + z2

x (y − 1)2 + z2 + y −x
(y − 1)2 + z2 0 y


= y(−x2 − y3 + y2 − yz2 − y) + ((y − 1)2 + z2)(−x2 − ((y − 1)2 + z2)((y − 1)2 + y + z2)),
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Figure 3.1: The set of equilibria for Σ in Example 3.17. Points (0, 0, 0), (0, 0, 1), and (1, 0, 2)
are indicated in red.

which can be verified is never zero.
Now, let us verify that the constraints are nonholonomic (in fact, totally nonholonomic).

We compute

[X1, X2] = p1(x, y, z)
∂

∂x
+ p2(x, y, z)

∂

∂y
+ p3(x, y, z)

∂

∂z
,

where

p1(x, y, z) = −(y − 1)2 − 2xz − z2 + 2(y − 1)
(
(y − 1)2 + y + z2

)
,

p2(x, y, z) = −2yz,

p3(x, y, z) = 2(y − 1)2 + y + 2z2,

and get

det

 x (y − 1)2 + z2 + y −x
(y − 1)2 + z2 0 y
p1(x, y, z) p2(x, y, z) p3(x, y, z)


= 2

(
−1 + y − z2

) (
1− y + y2 + z2

)2
,

and so it can be determined that {X1, X2, [X1, X2]} is linearly independent everywhere
except on U1 = {(x, y, z) ∈ R3 | y = z2+1}. Hence, one bracket is not enough to show that
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D is totally nonholonomic. We compute another bracket

[X1, [X1, X2]] = p4(x, y, z)
∂

∂x
+ p5(x, y, z)

∂

∂y
+ p6(x, y, z)

∂

∂z
,

where

p4(x, y, z) = (−1 + y)2 + z2 − x(−2x− 2z + 4(−1 + y)z)

− 2(−1 + y)
(
(−1 + y)2 + y + z2

)
+
(
(−1 + y)2 + y + z2

)
·
(
−2(−1 + y) + 2(1 + 2(−1 + y))(−1 + y) + 2

(
(−1 + y)2 + y + z2

))
,

p5(x, y, z) = 2xy + 2(1 + 2(−1 + y))yz − 2z
(
(−1 + y)2 + y + z2

)
− 2z

(
2(−1 + y)2 + y + 2z2

)
,

p6(x, y, z) = −(−1 + y)2 − 6xz − z2 + (1 + 4(−1 + y))
(
(−1 + y)2 + y + z2

)
+ 2(−1 + y)

(
(−1 + y)2 + y + z2

)
.

Here, for {X1, X2, [X1, [X1, X2]]}, we have

det

 x (y − 1)2 + z2 + y −x
(y − 1)2 + z2 0 y
p4(x, y, z) p5(x, y, z) p6(x, y, z)


= 2

(
1− y + y2 + z2

)
(3− 8y + 11y2 − 8y3 + 3y4 + 6xz − 6xyz + 2xy2z + 6z2

− 10yz2 + 8y2z2 − 2y3z2 + 6xz3 + 3z4 − 2yz4),

and so it can be determined that we have linear independence everywhere except on

U2 = {(x, y, z) ∈ R3 | x = (−3 + 11y − 22y2 + 27y3 − 22y4 + 11y5 − 3y6 − 9z2 + 24yz2

− 35y2z2 + 28y3z2 − 13y4z2 + 2y5z2 − 9z4 + 15yz4 − 13y2z4 + 4y3z4 − 3z6 + 2yz6)

/(6z − 12yz + 14y2z − 8y3z + 2y4z + 12z3 − 12yz3 + 8y2z3 + 6z5), z ̸= 0}.

This region is shown in Figure 3.2. Let us compute yet another bracket

[X2, [X1, X2]] = p7(x, y, z)
∂

∂x
+ p8(x, y, z)

∂

∂y
+ p9(x, y, z)

∂

∂z
,

where

p7(x, y, z) = 4(−1 + y)yz + y(−2x− 2z + 4(−1 + y)z)

− 2z
(
(−1 + y)2 + z2

)
− 2z

(
2(−1 + y)2 + y + 2z2

)
,

p8(x, y, z) = −2y2

p9(x, y, z) = 6yz.

Here, for {X1, X2, [X2, [X1, X2]]}, we have

det

 x (y − 1)2 + z2 + y −x
(y − 1)2 + z2 0 y
p7(x, y, z) p8(x, y, z) p9(x, y, z)


= −4yz

(
1− y + y2 + z2

) (
3− 3y + y2 + 3z2

)
,
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Figure 3.2: The region U2.

so we have linear independence everywhere except on

U3 = {(x, y, z) ∈ R3 | y = 0} ∪ {(x, y, z) ∈ R3 | z = 0}.

Now, it can be verified that U1∩U2∩U3 = ∅, so we conclude that D is totally nonholonomic.
The equilibria of Σ are all q ∈ Q such that G# ◦ dV (q) ∈ D⊥. We solve

G# ◦ dV (q) = λ

(
−y ∂

∂x
(q) + x

∂

∂y
(q) + ((y − 1)2 + z2)

∂

∂z
(q)

)
(x− 1)

∂

∂x
(q) + (y − 1)

∂

∂y
(q) + (0)

∂

∂z
(q) = λ

(
−y ∂

∂x
(q) + x

∂

∂y
(q) + ((y − 1)2 + z2)

∂

∂z
(q)

)

⇒


x− 1 = −yλ
y − 1 = xλ

0 = ((y − 1)2 + z2)λ

.

Note that λ = 0 or (y − 1)2 + z2 = 0. If λ = 0, then x = 1, y = 1 and z is arbitrary. If
(y−1)2+z2 = 0, then (y−1)2 = −z2 ⇒ z = 0, y = 1 and x = 0. Hence the set of equilibria
is {(1, 1, z) | z ∈ R} ∪ {(0, 1, 0)}, shown in Figure 3.3. We have an isolated equilibrium at
(0, 1, 0).

We now make use of the well-known implicit function theorem. We state a version of it
along the lines of [10].

Theorem 3.19 (Implicit Function Theorem). Let F : U → Rk be a C∞-function where
U ⊆ Rn × Rk is open and consider the standard coordinates (x1, . . . , xn, y1, . . . , yk) on U .

Let (x0, y0) ∈ U such that F (x0, y0) = 0. If det

([
∂F i

∂yj

] ∣∣∣
(x0,y0)

)
̸= 0, then there exists
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Figure 3.3: The set of equilibria for Σ in Example 3.18.

neighbourhoods V ⊆ Rn of x0 and W ⊆ Rk of y0 and a C∞-function Φ : V →W such that
F−1(0) ∩ (V ×W ) is the graph of Φ, i.e. F (x, y) = 0 for (x, y) ∈ V ×W if and only if
y = Φ(x).

Proposition 3.20 (Understanding the Nature of Equilibria via the Implicit Function The-
orem). Let Σ = (Q,G, V, F,D) be a C∞-forced simple mechanical system with regular con-
straints such that F (Z(TQ)) = Z(T ∗Q), and consider an equilibrium configuration q0 for

Σ. If the map PD ◦
G
∇(PD ◦ G# ◦ dV )(q0) : D(q0) → D(q0) is invertible, then q0 is not

isolated and, in a neighbourhood of q0, the set of equilibria forms an (n − k)-dimensional
submanifold of Q, where n is the dimension of Q and k is the rank of D.

Proof. Since D is a regular C∞-distribution on Q, there exists a local chart (U, ϕ) of Q
around q0 and an admissible vector bundle chart (TU, ψ) for TQ such that

1. ψ : TU → ϕ(U)× Rk × Rn−k,
2. ϕ ◦ πTQ ◦ ψ−1(x, u, v) = x, and
3. ψ(TU ∩D) = ϕ(U)× Rk × {0}n−k.

Now consider the map

ψ ◦ PD ◦G# ◦ dV ◦ ϕ−1 : ϕ(U) ⊆ Rn−k × Rk → ϕ(U)× Rk × {0}n−k

(x, y) 7→ (x, y, F (x, y), 0)

where F : ϕ(U) ⊆ Rn−k × Rk → Rk. We have that PD ◦ G# ◦ dV (q0) = 0, so letting
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ϕ(q0) = (x0, y0), we have F (x0, y0) = 0. If det

([
∂F i

∂yj

] ∣∣∣
(x0,y0)

)
̸= 0 then, by the implicit

function theorem, there exists neighbourhoods V ⊆ Rn−k of x0 and W ⊆ Rk of y0 and a
C∞-function Φ : V → W such that F−1(0) ∩ (V ×W ) is the graph of Φ. In other words,
the submanifold Q0 = ϕ−1({(x,Φ(x)) | x ∈ V }) of Q satisfies PD ◦ G# ◦ dV (q) = 0 for all
q ∈ Q0. Hence q0 is not isolated, and in a neighbourhood of q0, the set of equilibria forms
an (n− k)-dimensional submanifold of Q.

So it remains to show that det

([
∂F i

∂yj

] ∣∣∣
(x0,y0)

)
̸= 0. Without loss of generality, we can

choose the chart (U, ϕ = (q1, . . . , qn)) such that { ∂
∂q1

(q0), . . . ,
∂

∂qn (q0)} forms an orthogonal

basis for Tq0Q and Dq0 = span{ ∂
∂q1

(q0), . . . ,
∂

∂qk
(q0)}. Now consider the map PD ◦

G
∇(PD ◦

G# ◦ dV )(q0). Let us write this out in coordinates (U, ϕ):

PD ◦
G
∇vq0

(PD ◦G# ◦ dV )(q0)

= PD ◦
(
∂(PD ◦G# ◦ dV )i

∂qj
(q0)v

j
q0 +

G
Γi
js(q0)v

j
q0(PD ◦G# ◦ dV )s(q0)

)
∂

∂qi
(q0),

or

PD ◦
G
∇(PD ◦G# ◦ dV )(q0)

= PD ◦
(
∂(PD ◦G# ◦ dV )i

∂qj
(q0) +

G
Γi
js(q0)(PD ◦G# ◦ dV )s(q0)

)
∂

∂qi
(q0)⊗ dqj(q0).

Note that since q0 is an equilibrium configuration, PD ◦ G# ◦ dV (q0) = 0 and so the term
containing the Christoffel symbols is zero. Also note that we are only interested in the map

PD ◦
G
∇(PD ◦G# ◦dV )(q0) : D(q0) → D(q0). More precisely, this is πD(q0)◦PD(q0)◦

G
∇(PD ◦

G# ◦dV )(q0)◦ iD(q0), where πD is the orthogonal projection onto D and iD is the canonical
inclusion map. In coordinates, we have

πD ◦ PD ◦

∂(PD ◦G# ◦ dV )i

∂qj
(q0) +

G
Γi
js(q0) (PD ◦G# ◦ dV )s(q0)︸ ︷︷ ︸

0

 ∂

∂qi
(q0)⊗ dqj(q0), j ∈ {1, . . . , k}

=
∂(PD ◦G# ◦ dV )i

∂qj
(q0)

∂

∂qi
(q0)⊗ dqj(q0), i, j ∈ {1, . . . , k}.

Since we have that PD ◦
G
∇(PD ◦ G# ◦ dV )(q0) : D(q0) → D(q0) is invertible, equivalently

we have

det

([
∂(PD ◦G# ◦ dV )i

∂qj

] ∣∣∣
q0

)
̸= 0.

Choosing ψ such that ψ
∣∣∣
q0

= Tϕ
∣∣∣
q0
, the invertibility of the map

[
∂(PD◦G#◦dV )i

∂qj

] ∣∣∣
q0

at q0 is

equivalent to the invertibility of
[
∂F i

∂yj

] ∣∣∣
(x0,y0)

at (x0, y0). Hence det

([
∂F i

∂yj

] ∣∣∣
(x0,y0)

)
̸= 0,

and so the result follows.
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Example 3.21. Consider again Example 3.17. We have

[
G#
]
=

1 0 0
0 1 0
0 0 1

 and [dV ] =

xy
z

 .

At (x, y, z), the projection of a tangent vector (u, v, w) onto D(x, y, z) isuv
w

− (u, v, w) · (x, y, 1 + x− y)

∥(x, y, 1 + x− y)∥2

 x
y

1 + x− y


=

uv
w

− xu+ yv + (1 + x− y)w

x2 + y2 + (1 + x− y)2

 x
y

1 + x− y



=

y2 + (1 + x− y)2 −xy −x(1 + x− y)
−xy x2 + (1 + x− y)2 −y(1 + x− y)

−x(1 + x− y) −y(1 + x− y) x2 + y2


x2 + y2 + (1 + x− y)2

uv
w

 ,

so we have

[PD(x, y, z)] =
1

x2 + y2 + (1 + x− y)2

y2 + (1 + x− y)2 −xy −x(1 + x− y)
−xy x2 + (1 + x− y)2 −y(1 + x− y)

−x(1 + x− y) −y(1 + x− y) x2 + y2

 .

Hence,

[
PD ◦G# ◦ dV

]
=

p1(x, y, z)p2(x, y, z)
p3(x, y, z)

 ,

where

p1(x, y, z) =
−xy2 + x

(
(1 + x− y)2 + y2

)
− x(1 + x− y)z

x2 + (1 + x− y)2 + y2
,

p2(x, y, z) =
−x2y +

(
x2 + (1 + x− y)2

)
y − (1 + x− y)yz

x2 + (1 + x− y)2 + y2
,

p3(x, y, z) =
−x2(1 + x− y)− (1 + x− y)y2 +

(
x2 + y2

)
z

x2 + (1 + x− y)2 + y2
.

Taking partial derivatives, we get

∂p1
∂x

=
2x(1 + x− y) + (1 + x− y)2 − xz − (1 + x− y)z

x2 + (1 + x− y)2 + y2

−
(2x+ 2(1 + x− y))

(
−xy2 + x

(
(1 + x− y)2 + y2

)
− x(1 + x− y)z

)
(x2 + (1 + x− y)2 + y2)2

,

∂p1
∂y

=
−2xy + x(−2(1 + x− y) + 2y) + xz

x2 + (1 + x− y)2 + y2

−
(−2(1 + x− y) + 2y)

(
−xy2 + x

(
(1 + x− y)2 + y2

)
− x(1 + x− y)z

)
(x2 + (1 + x− y)2 + y2)2

,

∂p1
∂z

= − x(1 + x− y)

x2 + (1 + x− y)2 + y2
,



Linearization and Stability of Nonholonomic Mechanical Systems 29

∂p2
∂x

=
−2xy + (2x+ 2(1 + x− y))y − yz

x2 + (1 + x− y)2 + y2

−
(2x+ 2(1 + x− y))

(
−x2y +

(
x2 + (1 + x− y)2

)
y − (1 + x− y)yz

)
(x2 + (1 + x− y)2 + y2)2

,

∂p2
∂y

=
(1 + x− y)2 − 2(1 + x− y)y − (1 + x− y)z + yz

x2 + (1 + x− y)2 + y2

−
(−2(1 + x− y) + 2y)

(
−x2y +

(
x2 + (1 + x− y)2

)
y − (1 + x− y)yz

)
(x2 + (1 + x− y)2 + y2)2

,

∂p2
∂z

= − (1 + x− y)y

x2 + (1 + x− y)2 + y2
,

∂p3
∂x

=
−x2 − 2x(1 + x− y)− y2 + 2xz

x2 + (1 + x− y)2 + y2

−
(2x+ 2(1 + x− y))

(
−x2(1 + x− y)− (1 + x− y)y2 +

(
x2 + y2

)
z
)

(x2 + (1 + x− y)2 + y2)2
,

∂p3
∂y

=
x2 − 2(1 + x− y)y + y2 + 2yz

x2 + (1 + x− y)2 + y2

−
(−2(1 + x− y) + 2y)

(
−x2(1 + x− y)− (1 + x− y)y2 +

(
x2 + y2

)
z
)

(x2 + (1 + x− y)2 + y2)2
,

∂p3
∂z

=
x2 + y2

x2 + (1 + x− y)2 + y2
.

Let us now compute πD(q0) ◦PD(q0) ◦
G
∇(PD ◦G# ◦ dV )(q0) ◦ iD(q0) at various equilibria q0

(shown in red in Figure 3.1). Note that

[
G
∇(PD ◦G# ◦ dV )(q0)

]
=


∂p1
∂x (q0)

∂p1
∂y (q0)

∂p1
∂z (q0)

∂p2
∂x (q0)

∂p2
∂y (q0)

∂p2
∂z (q0)

∂p3
∂x (q0)

∂p3
∂y (q0)

∂p3
∂z (q0)

 .

1. At q0 = (0, 0, 1), we haveD(q0) = span
{

∂
∂x(q0),

∂
∂y (q0)

}
andD⊥(q0) = span

{
∂
∂z (q0)

}
.

We can write

[iD(q0)] =

1 0
0 1
0 0

 , [PD(q0)] =

1 0 0
0 1 0
0 0 0

 , [πD(q0)] =

(
1 0 0
0 1 0

)
,

so [
πD(q0) ◦ PD(q0) ◦

G
∇(PD ◦G# ◦ dV )(q0) ◦ iD(q0)

]
=

(
0 0
0 0

)
.

This is not invertible. Hence this is consistent with the fact that there is no manifold
structure at (0, 0, 1).

2. At q0 = (0, 0, 0), we haveD(q0) = span
{

∂
∂x(q0),

∂
∂y (q0)

}
andD⊥(q0) = span

{
∂
∂z (q0)

}
.

Again, we can write

[iD(q0)] =

1 0
0 1
0 0

 , [PD(q0)] =

1 0 0
0 1 0
0 0 0

 , [πD(q0)] =

(
1 0 0
0 1 0

)
,
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so [
πD(q0) ◦ PD(q0) ◦

G
∇(PD ◦G# ◦ dV )(q0) ◦ iD(q0)

]
=

(
1 0
0 1

)
.

This is invertible. Hence, in a neighbourhood of (0, 0, 0), the set of equilibria forms a
one-dimensional submanifold of Q.

3. At q0 = (1, 0, 2), we have D(q0) = span
{
2 ∂
∂x(q0)−

∂
∂y (q0)−

∂
∂z (q0),

∂
∂y (q0)

}
and

D⊥(q0) = span
{

∂
∂x(q0) + 2 ∂

∂z (q0)
}
. In other words, e1 = (2,−1,−1) and e2 = (0, 1, 0)

form a basis for D(q0) and e3 = (1, 0, 2) forms a basis for D⊥(q0). In this basis, we
can write

[iD(q0)]{e1,e2,e3} =

1 0
0 1
0 0

 , [PD(q0)]{e1,e2,e3} =

1 0 0
0 1 0
0 0 0

 ,

[πD(q0)]{e1,e2,e3} =

(
1 0 0
0 1 0

)
.

The transformation matrix from the basis {e1, e2, e3} to standard coordinates {u, v, w}
is

T =

 2 0 1
−1 1 0
−1 0 2

 ,

and its inverse is

T−1 =
1

5

2 0 −1
2 5 −1
1 0 2

 .

Hence we have[
πD(q0) ◦ PD(q0) ◦

G
∇(PD ◦G# ◦ dV )(q0) ◦ iD(q0)

]
{e1,e2,e3}

=
1

5

(
4 −1
4 −1

)
.

This is not invertible. Hence, in a neighbourhood of (1, 0, 2), we cannot conclude
whether the set of equilibria has a manifold structure. Note that from Example 3.17
and referring to Figure 3.1, however, we know the set of equilibria around (1, 0, 2)
does form a two-dimensional submanifold of Q.

3.4. Forced Affine Connection Systems

We now consider forced affine connection systems, a generalization of forced simple me-
chanical systems with constraints. In the next chapter, we will look at the linearization of
forced affine connection systems, and then apply these results to obtain the linearization
for forced simple mechanical systems with constraints.
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Definition 3.22 (Vector Force). Let Q be a C∞-manifold and consider Y : TQ→ TQ. Y
is a C∞-vector force if Y is a C∞-vector bundle map over idQ.

Note that our notion of a vector force is assumed to be time-independent.

Definition 3.23 (Forced Affine Connection System). A C∞-forced affine connection
system is a 4-tuple (Q,∇, Y,D), where
(i) Q is a C∞-manifold,
(ii) ∇ is a C∞-affine connection on Q,
(iii) Y is a C∞-vector force, and
(iv) D is a regular C∞-distribution to which ∇ restricts, and for which Y is D-valued.

Definition 3.24 (Equations of Motion). Let Σ = (Q,∇, Y,D) be a C∞-forced affine con-
nection system. The equations of motion for Σ are

∇γ′(t)γ
′(t) = Y (γ′(t)), (3.4.1)

where γ : I → Q and γ′(t0) ∈ Dγ(t0) for some (and therefore, all) t0 ∈ I.

Remark 3.25 (Reinterpreting Constrained Mechanical Systems). For a forced simple me-
chanical system with regular constraints (Q,G, V, F,D), we have the forced affine connection

system (Q,
D
∇, PD(G# ◦ F − gradV ), D). Note that the equations of motion for the forced

simple mechanical system with regular constraints coincide with the equations of motion
for the forced affine connection system.

Definition 3.26 (Equilibrium Configuration). Let Σ = (Q,∇, Y,D) be a C∞-forced affine
connection system. A point q0 ∈ Q is an equilibrium configuration for Σ if the trivial
curve γ(t) = q0 satisfies the equations of motion (3.4.1).

Similarly to forced simple mechanical systems, we can consider the associated vector field
for forced affine connection systems. Let Σ = (Q,∇, Y,D) be a C∞-forced affine connection
system and consider a local chart (U, ϕ = (q1, . . . , qn)) of Q. For a curve γ : I → Q
satisfying the equations of motion (3.4.1), let ϕ ◦ γ(t) = q(t) = (q1(t), . . . , qn(t)). Write Y
as Y (vq) = Y i(vq)

∂
∂qi

(q) and let Γi
jk be the Christoffel symbols for ∇ in the chart (U, ϕ).

The equations of motion in coordinates are

q̈i + Γi
jkq̇

j q̇k = Y i,

or {
q̇i = vi

v̇i = −Γi
jkv

jvk + Y i,

where v(t) = (v1(t), . . . , vn(t)) = q̇(t). It can be shown that this gives rise to a well-defined
vector field X on D, i.e. X : D → TD defined by

X(vq)
∆
= S(vq) + vlft(Y )(vq), (3.4.2)

where the integral curves ofX, projected onto Q (using the canonical projection), are curves
satisfying the equations of motion (3.4.1). We will call X the associated vector field for
Σ. In coordinates this can be written as

X
∣∣∣
TU

(vq) = vi
∂

∂qi
(vq) +

(
−Γi

jk(q)v
jvk + Y i(vq)

) ∂

∂vi
(vq),
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where (TU, Tϕ = (q1, . . . , qn, v1, . . . , vn)) is the corresponding local chart of TQ for (U, ϕ).
Exactly as before, an equilibrium configuration q0 ∈ Q gives rise to an equilibrium

point 0q0 for the vector field X, and stability notions can be made for the equilibrium
configuration q0 by reference to the equilibrium point 0q0 .

Lemma 3.27 (Characterization of Equilibrium Configurations). Let Σ = (Q,∇, Y,D) be a
C∞-forced affine connection system. A point q0 ∈ Q is an equilibrium configuration for Σ
if and only if Y (0q0) = 0.

Proof. The proof is immediate by considering the equations of motion (3.4.1) and setting
∇γ′(t)γ

′(t) = 0.



Chapter 4

Nonholonomic Mechanical
Systems: Linearization about
Equilibria

In this chapter, we obtain the linearization of a forced affine connection system and then
apply this to nonholonomic mechanical systems. We then examine the validity of an alter-
native approach to linearization.

4.1. Linearization of a Forced Affine Connection System

We will require Lemma 2.8 for decomposing the state space of the linearization.

Lemma 4.1 (Tangent Lift of the Geodesic Spray). Let Σ = (Q,∇,W,D) be a C∞-forced
affine connection system, and consider an equilibrium configuration q0 ∈ Q for Σ. Then,
for all v1 ⊕ v2 ∈ Tq0Q⊕ Tq0Q

∼= T0q0TQ, we have

ST (v1 ⊕ v2) = (0⊕ 0⊕ v2 ⊕ 0)v1⊕v2 .

Proof. The proof is exactly the same as that of Lemma 2.9.

Lemma 4.2 (Tangent Lift of the Vector Force). Let Σ = (Q,∇,W,D) be a C∞-forced
affine connection system, and consider an equilibrium configuration q0 ∈ Q for Σ. Then,
for all v1 ⊕ v2 ∈ Tq0Q⊕ Tq0Q

∼= T0q0TQ, we have

vlft(W )T (v1 ⊕ v2) = (0⊕ 0⊕ 0⊕ (d1W (0q0)(v1) + d2W (0q0)(v2)))v1⊕v2 ,

where we have defined d1W (0q0), d2W (0q0) ∈ L(Tq0Q;Tq0Q) such that given a local chart
(U, ϕ = (q1, . . . , qn)) of Q and corresponding local chart (TU, Tϕ = (q1, . . . , qn, v1, . . . , vn))
of TQ,

[d1W (0q0)] =

[
∂W i

∂qj
(0q0)

]
,

[d2W (0q0)] =

[
∂W i

∂vj
(0q0)

]
.

33
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Proof. The proof is analogous to that of Lemma 2.11.

Proposition 4.3 (Linearization of a Forced Affine Connection System). Let Σ =
(Q,∇,W,D) be a C∞-forced affine connection system and consider an equilibrium con-
figuration q0 ∈ Q for Σ. Then the linearization of (3.4.2) at 0q0 in the decomposition
T0q0TQ

∼= Tq0Q⊕ Tq0Q is given by

AΣ(q0) =

(
0 idTq0Q

d1W (0q0) d2W (0q0)

)
,

and the linearized equations of motion are(
q̇(t)
v̇(t)

)
=

(
0 idTq0Q

d1W (0q0) d2W (0q0)

)(
q(t)
v(t)

)
.

Proof. This follows from combining the results of Lemmas 2.8, 4.1 and 4.2.

4.2. Linearization of a Nonholonomic Mechanical System

In contrast to the unconstrained mechanical systems we considered where equilibria corre-
sponded to critical points of the potential function, this is no longer true for constrained
mechanical systems. While critical points are still equilibra, they are in general not the only
ones. In other words, we must linearize the equations of motion about a point which is not
necessarily a critical point of the potential function. Before looking at this more general
case, let us first restrict ourselves to equilibria which are critical points.

Proposition 4.4 (Linearization of a Nonholonomic Mechanical System at a Critical Point).
Let Σ = (Q,G, V, F,D) be a C∞-forced simple mechanical system with regular constraints
such that F (Z(TQ)) = Z(T ∗Q), and consider an equilibrium configuration q0 ∈ Q for Σ
such that dV (q0) = 0. Then the linearized equations of motion at 0q0 in the decomposition
T0q0TQ

∼= Tq0Q⊕ Tq0Q are given by(
q̇(t)
v̇(t)

)
=

(
0 idTq0Q

−PD ◦G# ◦HessV ♭(q0) + PD ◦G# ◦ d1F (0q0) PD ◦G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
.

Proof. The equations of motion are

D
∇γ′(t)γ

′(t) = PD(G# ◦ F (γ′(t))− gradV (γ(t))),

and γ′(t0) ∈ Dγ(t0) for some t0 ∈ I. This can be linearized using Proposition 4.3 by

considering ∇ =
D
∇ and W (vq) = PD(G# ◦ F (vq)− gradV (q)).
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Consider (U, ϕ = (q1, . . . , qn)), a local chart of Q around q0. We write out

W
∣∣∣
TU

(vq) =W i(vq)
∂

∂qi
(q)

= PD(G# ◦ F (vq)− gradV︸ ︷︷ ︸
G#◦dV

(q))

= PD
i
j(q)

∂

∂qi
(q)⊗ dqj(q)

(
Gst(q)Ft(vq)

∂

∂qs
(q)−Gst(q)

∂V

∂qt
(q)

∂

∂qs
(q)

)
= PD

i
j

∂

∂qi
⊗ dqj

(
GstFt

∂

∂qs
−Gst∂V

∂qt
∂

∂qs

) ∣∣∣
vq

= PD
i
jG

jkFk
∂

∂qi
− PD

i
jG

jk ∂V

∂qk
∂

∂qi

∣∣∣
vq

=

(
PD

i
j(q)G

jk(q)Fk(vq)− PD
i
j(q)G

jk(q)
∂V

∂qk
(q)

)
∂

∂qi
(q),

which gives us thatW i(vq) = PD
i
j(q)G

jk(q)Fk(vq)−PD
i
j(q)G

jk(q) ∂V
∂qk

(q). Now, we compute

[d1W (0q0)] =

[
∂W i

∂qj
(0q0)

]
=

[
∂

∂qj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
(0q0)

]
by first computing the derivative

∂

∂qj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
=
∂PD

i
s

∂qj
GstFt + PD

i
s

∂Gst

∂qj
Ft + PD

i
sG

st∂Ft

∂qj

− ∂PD
i
s

∂qj
Gst∂V

∂qt
− PD

i
s

∂Gst

∂qj
∂V

∂qt
− PD

i
sG

st ∂2V

∂qj∂qt

and now evaluating at 0q0

∂

∂qj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
(0q0)

=
∂PD

i
s

∂qj
(q0)G

st(q0)Ft(0q0)︸ ︷︷ ︸
0

+PD
i
s(q0)

∂Gst

∂qj
(q0)Ft(0q0)︸ ︷︷ ︸

0

+PD
i
s(q0)G

st(q0)
∂Ft

∂qj
(0q0)

− ∂PD
i
s

∂qj
(q0)G

st(q0)
∂V

∂qt
(q0)︸ ︷︷ ︸
0

−PD
i
s(q0)

∂Gst

∂qj
(q0)

∂V

∂qt
(q0)︸ ︷︷ ︸
0

−PD
i
s(q0)G

st(q0)
∂2V

∂qj∂qt
(q0)

(4.2.1)

= PD
i
s(q0)G

st(q0)
∂Ft

∂qj
(0q0)− PD

i
s(q0)G

st(q0)
∂2V

∂qj∂qt
(q0).

So we have that

d1W (0q0)(v1) = PD ◦G# ◦ d1F (0q0)(v1)− PD ◦G# ◦HessV ♭(q0)(v1).

Next we compute

[d2W (0q0)] =

[
∂W i

∂vj
(0q0)

]
=

[
∂

∂vj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
(0q0)

]
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again by first computing the derivative

∂

∂vj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
=
∂PD

i
s

∂vj︸ ︷︷ ︸
0

GstFt + PD
i
s

∂Gst

∂vj︸ ︷︷ ︸
0

Ft + PD
i
sG

st∂Ft

∂vj

− ∂PD
i
s

∂vj︸ ︷︷ ︸
0

Gst∂V

∂qt
− PD

i
s

∂Gst

∂vj︸ ︷︷ ︸
0

∂V

∂qt
− PD

i
sG

st ∂2V

∂vj∂qt︸ ︷︷ ︸
0

= PD
i
sG

st∂Ft

∂vj

and then evaluating at 0q0

∂

∂vj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
(0q0) = PD

i
s(q0)G

st(q0)
∂Ft

∂vj
(0q0).

In this case, we get that

d2W (0q0)(v2) = PD ◦G# ◦ d2F (0q0)(v2).

Hence the linearization is(
q̇(t)
v̇(t)

)
=

(
0 idTq0Q

−PD ◦G# ◦HessV ♭(q0) + PD ◦G# ◦ d1F (0q0) PD ◦G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
.

Remark 4.5. This is the same form as the linearization for the unconstrained case, except
that now we have the projection map PD in front of each term.

Now, let us consider the general case. First, we prove the following lemma.

Lemma 4.6 (Covariant Derivative of the Projected Potential Force at an Equilibrium
Configuration in Coordinates). Consider the D-valued vector field PD ◦ gradV : Q → D.
Let vq ∈ TQ where q is an equilibrium configuration, i.e. we have PD ◦ gradV (q) = 0.
Then, for a local chart (U, ϕ = (q1, . . . , qn)) of Q around q and corresponding local chart
(TU, Tϕ = (q1, . . . , qn, v1, . . . , vn)) of TQ, we have

G
∇vq (PD ◦ gradV ) (q)

=

(
∂PD

i
j

∂qk
(q)Gjt(q)

∂V

∂qt
(q) + PD

i
j(q)

∂Gjt

∂qk
(q)

∂V

∂qt
(q) + PD

i
j(q)G

jt(q)
∂2V

∂qk∂qt
(q)

)
vk

∂

∂qi
(q).
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Proof. By direct computation, we get

G
∇vq (PD ◦ gradV ) (q)

=

(
G
∇vqPD

)
(gradV︸ ︷︷ ︸
G#◦dV

(q)) + PD

((
G
∇vq gradV︸ ︷︷ ︸

G#◦dV

)
(q)

)

=

(
∂PD

i
j

∂qk
(q)vk + PD

q
j(q)

G
Γi
qk(q)v

k − PD
i
k(q)

G
Γk
pj(q)v

p

)
∂

∂qi
(q)⊗ dqj(q)

(
Gab(q)

∂V

∂qb
(q)

∂

∂qa
(q)

)
+ PD

i
j(q)

∂

∂qi
(q)⊗ dqj(q)

((
∂(G# ◦ dV )a

∂qb
(q)vb +

G
Γa
bc(q)v

b(G# ◦ dV )c(q)

)
∂

∂qa
(q)

)
=

(
∂PD

i
j

∂qk
vk + PD

q
j

G
Γi
qkv

k − PD
i
k

G
Γk
pjv

p

)
∂

∂qi
⊗ dqj

(
Gab ∂V

∂qb
∂

∂qa

)

+ PD
i
j

∂

∂qi
⊗ dqj

((
∂(G# ◦ dV )a

∂qb
vb +

G
Γa
bcv

b(G# ◦ dV )c
)

∂

∂qa

) ∣∣∣∣∣
vq

=

(
∂PD

i
j

∂qk
vk + PD

q
j

G
Γi
qkv

k − PD
i
k

G
Γk
pjv

p

)(
Gjb ∂V

∂qb

)
∂

∂qi

+ PD
i
j

(
∂(G# ◦ dV )j

∂qb
vb +

G
Γj
bcv

b(G# ◦ dV )c
)

∂

∂qi

∣∣∣∣∣
vq

=

(
∂PD

i
j

∂qk
vkGjb ∂V

∂qb
+ PD

q
j

G
Γi
qkv

kGjb ∂V

∂qb
− PD

i
k

G
Γk
pjv

pGjb ∂V

∂qb

)
∂

∂qi

+

(
PD

i
j

∂(Gjt ∂V
∂qt )

∂qb
vb + PD

i
j

G
Γj
bcv

bGct ∂V

∂qt

)
∂

∂qi

∣∣∣∣∣
vq

=

(
∂PD

i
j

∂qk
vkGjb ∂V

∂qb
+ PD

q
j

G
Γi
qkv

kGjb ∂V

∂qb
−PD

i
k

G
Γk
pjv

pGjb ∂V

∂qb︸ ︷︷ ︸
cancels with (*)

+PD
i
j

∂Gjt

∂qb
∂V

∂qt
vb + PD

i
jG

jt ∂2V

∂qb∂qt
vb

+ PD
i
j

G
Γj
bcv

bGct ∂V

∂qt︸ ︷︷ ︸
(*)

)
∂

∂qi

∣∣∣∣∣
vq

=

(
∂PD

i
j

∂qk
vkGjb ∂V

∂qb
+

G
Γi
qkv

k PD
q
jG

jb ∂V

∂qb︸ ︷︷ ︸
0

+PD
i
j

∂Gjt

∂qb
∂V

∂qt
vb + PD

i
jG

jt ∂2V

∂qb∂qt
vb

)
∂

∂qi

∣∣∣∣∣
vq

=

(
∂PD

i
j

∂qk
(q)Gjt(q)

∂V

∂qt
(q) + PD

i
j(q)

∂Gjt

∂qk
(q)

∂V

∂qt
(q) + PD

i
j(q)G

jt(q)
∂2V

∂qk∂qt
(q)

)
vk

∂

∂qi
(q).

Proposition 4.7 (Linearization of a Nonholonomic Mechanical System). Let Σ =
(Q,G, V, F,D) be a C∞-forced simple mechanical system with regular constraints such that
F (Z(TQ)) = Z(T ∗Q), and consider an equilibrium configuration q0 ∈ Q for Σ. Then the
linearized equations of motion at 0q0 in the decomposition T0q0TQ

∼= Tq0Q⊕Tq0Q are given
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by (
q̇(t)
v̇(t)

)
=

(
0 idTq0

Q

−PD ◦
G
∇(PD ◦ gradV )(q0) + PD ◦G# ◦ d1F (0q0) PD ◦G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
.

Proof. The proof is exactly the same as that of Proposition 4.4 except for the calculation
of d1W (0q0). Note that before, when we evaluated at 0q0 in (4.2.1), we used the fact that
q0 was a critical point to obtain zeroes in two of the terms. This no longer applies here.

Let us compute

[d1W (0q0)] =

[
∂W i

∂qj
(0q0)

]
=

[
∂

∂qj

(
PD

i
sG

stFt − PD
i
sG

st∂V

∂qt

)
(0q0)

]
by again first computing the derivative, but expanding only the first term to get

∂

∂qj

(
PD

i
sG

stFt − PD
i
sG

st ∂V

∂qt

)
=
∂PD

i
s

∂qj
GstFt + PD

i
s

∂Gst

∂qj
Ft + PD

i
sG

st ∂Ft

∂qj
− ∂

∂qj

(
PD

i
sG

st ∂V

∂qt

)
.

Now, note that since PD is idempotent, PD ◦ PD ◦G# ◦ dV = PD ◦G# ◦ dV , and so

PD
i
sG

st ∂V

∂qt
= PD

i
sPD

s
tG

tr ∂V

∂qr

∂

∂qj

(
PD

i
sG

st ∂V

∂qt

)
=

∂

∂qj

(
PD

i
sPD

s
tG

tr ∂V

∂qr

)
=
∂PD

i
s

∂qj
PD

s
tG

tr ∂V

∂qr
+ PD

i
s

(
∂PD

s
t

∂qj
Gtr ∂V

∂qr
+ PD

s
t

∂Gtr

∂qj
∂V

∂qr
+ PD

s
tG

tr ∂2V

∂qj∂qr

)
.

Evaluating now at 0q0 , we get

∂

∂qj

(
PD

i
sG

stFt − PD
i
sG

st ∂V

∂qt

)
(0q0)

=
∂PD

i
s

∂qj
(q0)G

st(q0)Ft(0q0)︸ ︷︷ ︸
0

+PD
i
s(q0)

∂Gst

∂qj
(q0)Ft(0q0)︸ ︷︷ ︸

0

+ PD
i
s(q0)G

st(q0)
∂Ft

∂qj
(0q0)−

∂PD
i
s

∂qj
(q0)PD

s
t (q0)G

tr(q0)
∂V

∂qr
(q0)︸ ︷︷ ︸

0

− PD
i
s(q0)

(
∂PD

s
t

∂qj
(q0)G

tr(q0)
∂V

∂qr
(q0) + PD

s
t (q0)

∂Gtr

∂qj
(q0)

∂V

∂qr
(q0) + PD

s
t (q0)G

tr(q0)
∂2V

∂qj∂qr
(q0)

)
= PD

i
s(q0)G

st(q0)
∂Ft

∂qj
(0q0)

− PD
i
s(q0)

(
∂PD

s
t

∂qj
(q0)G

tr(q0)
∂V

∂qr
(q0) + PD

s
t (q0)

∂Gtr

∂qj
(q0)

∂V

∂qr
(q0) + PD

s
t (q0)G

tr(q0)
∂2V

∂qj∂qr
(q0)

)
.

So, applying Lemma 4.6, we have that

d1W (0q0)(v1) = PD ◦G# ◦ d1F (0q0)(v1)− PD ◦
G
∇v1(PD ◦ gradV )(q0),

or

d1W (0q0)(v1) = PD ◦G# ◦ d1F (0q0)(v1)− PD ◦
G
∇(PD ◦ gradV )(q0)(v1).
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Hence the linearization is(
q̇(t)
v̇(t)

)
=

(
0 idTq0

Q

−PD ◦
G
∇(PD ◦ gradV )(q0) + PD ◦G# ◦ d1F (0q0) PD ◦G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
.

Note that when dV (q0) = 0, we have PD ◦
G
∇(PD ◦ gradV )(q0) = PD ◦G# ◦HessV ♭(q0),

so this result is consistent with Proposition 4.4.

4.3. Observation: Linearizing Before Solving for Lagrange
Multipliers

Ever since researchers started studying the linearization of nonholonomic mechanical sys-
tems, there has been a debate regarding the correct approach. Whittaker’s original pro-
cedure in [14] involved linearizing the constraints in addition to the equations of motion.
In other words, using our differential geometric language, the equations in (3.2.1) are lin-
earized before the Lagrange multipliers are solved for. As discussed in [12], he and other
researchers argued that this approach was valid, and because linearizing the nonholonomic
constraints gave rise to holonomic ones, the nonholonomicity of constraints played no role
in stability analysis. We show here that this approach is in general not valid; it gives us a
linearization with missing information.

Again, let us first consider the case where the equilibrium configuration is a critical
point of the potential function. Actually, for this case, we will show that the approach is
in fact valid.

4.3.1. Direct Linearization of a Nonholonomic Mechanical System at a
Critical Point

Let Σ = (Q,G, V, F,D) be a C∞-forced simple mechanical system with regular constraints
such that F (Z(TQ)) = Z(T ∗Q), and consider an equilibrium configuration q0 ∈ Q for Σ
such that dV (q0) = 0. The equations of motion are

G
∇γ′(t)γ

′(t) = − gradV︸ ︷︷ ︸
G#◦dV

(γ(t)) +G# ◦ F (γ′(t)) + λ(t)

P⊥
D (γ′(t)) = 0.

We want to linearize these equations about the equilibrium point 0q0 and then use the
linearized equations to solve for the linearized constraint force.

Consider a local chart (U, ϕ = (q1, . . . , qn)) of Q around q0, and write

1.
G
∇γ′(t)γ

′(t) =

(
q̈i(t) +

G
Γi
jk(γ(t))q̇

j(t)q̇k(t)

)
∂
∂qi

(γ(t)) where
G
Γi
jk : U → R and ϕ◦γ(t) =

(q1(t), . . . , qn(t)),
2. dV (q) = ∂V

∂qi
(q)dqi(q) where ∂V

∂qi
: U → R,

3. F (vq) = Fi(vq)dq
i(q) where Fi : TU → R,

4. λ(t) = λi(t) ∂
∂qi

(γ(t)) where λi : R → R, and
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5. G(q) = Gij(q)dq
i(q)⊗ dqj(q) where Gij : U → R.

Hence we have

q̈i(t) +
G
Γi
jk(γ(t))q̇

j(t)q̇k(t) = −Gij(γ(t))
∂V

∂qj
(γ(t)) +Gij(γ(t))Fj(γ

′(t)) + λi(t).

Let q(t) = (q1(t), . . . , qn(t)) and q̇(t) = (q̇1(t), . . . , q̇n(t)). The entire equation in coordinates
is now

q̈i(t) +
G
Γi
jk(q(t))q̇

j(t)q̇k(t) = −Gij(q(t))
∂V

∂qj
(q(t)) +Gij(q(t))Fj(q(t), q̇(t)) + λi(t).

Consider the linearization about the trajectory (q(t) = ϕ(q0), q̇(t) = 0, q̈(t) = 0, λi(t) =
0) using 

q(t) = ϕ(q0) + δq(t)

q̇(t) = 0 + δq̇(t)

q̈(t) = 0 + δq̈(t)

λi(t) = 0 + δλi(t).

Linearizing

q̈i +
G
Γi
jk(q)q̇

j q̇k = −Gij(q)
∂V

∂qj
(q) +Gij(q)Fj(q, q̇) + λi,

we get

δq̈i +
∂(

G
Γi
jk(q)q̇

j q̇k)

∂q

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸

0

δq +
∂(

G
Γi
jk(q)q̇

j q̇k)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸

0

δq̇

= −
∂(Gij(q) ∂V

∂qj
(q))

∂q

∣∣∣
q=ϕ(q0)

δq +
∂(Gij(q)Fj(q, q̇))

∂q

∣∣∣
q=ϕ(q0),q̇=0

δq +
∂(Gij(q)Fj(q, q̇))

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ + δλi.

Hence,

δq̈i = −

(
∂Gij(q)

∂q

∂V

∂qj
(q)
∣∣∣
q=ϕ(q0)︸ ︷︷ ︸

0

+Gij(q)
∂ ∂V

∂qj
(q)

∂q

∣∣∣
q=ϕ(q0)

)
δq

+

(
∂Gij(q)

∂q
Fj(q, q̇)

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸
0

+Gij(q)
∂Fj(q, q̇)

∂q

∣∣∣
q=ϕ(q0),q̇=0

)
δq +Gij(q)

∂Fj(q, q̇)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ + δλi

= −Gij(q)
∂ ∂V

∂qj
(q)

∂q

∣∣∣
q=ϕ(q0)

δq +Gij(q)
∂Fj(q, q̇)

∂q

∣∣∣
q=ϕ(q0),q̇=0

δq +Gij(q)
∂Fj(q, q̇)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ + δλi

= −Gij(q)
∂2V (q)

∂qk∂qj

∣∣∣
q=ϕ(q0)

δqk +Gij(q)
∂Fj(q, q̇)

∂qk

∣∣∣
q=ϕ(q0),q̇=0

δqk +Gij(q)
∂Fj(q, q̇)

∂vk

∣∣∣
q=ϕ(q0),q̇=0

δq̇k + δλi

= −Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k +Gij(q0)
∂Fj

∂qk
(0q0)δq

k +Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k + δλi.

Hence the linearized equation is

δq̈i(t) = −Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gij(q0)
∂Fj

∂qk
(0q0)δq

k(t) +Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k(t) + δλi(t).
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In first order form, we have

δq̇1(t)
...

δq̇n(t)
δq̈1(t)

...
δq̈n(t)


=

(
0n×n In×n[

−Gij(q0)
∂2V

∂qk∂qj
(q0) +Gij(q0)

∂Fj

∂qk
(0q0)

] [
Gij(q0)

∂Fj

∂vk (0q0)
])


δq1(t)
...

δqn(t)
δq̇1(t)

...
δq̇n(t)


+



0
...
0

δλ1(t)
...

δλn(t)


.

It seems like we could have almost pulled this result out from the standard linearization

AΣ(q0) =

(
0 idTq0Q

−G(q0)
# ◦HessV (q0)

♭ +G(q0)
# ◦ d1F (0q0) G(q0)

# ◦ d2F (0q0)

)
.

Now, we have to linearize the constraint equations

P⊥
D (γ′(t)) = 0.

Let us write P⊥
D (q) = P⊥

D
i

j(q)
∂
∂qi

(q) ⊗ dqj(q) where P⊥
D

i

j
: U → R, and so P⊥

D (q)(vq) =

P⊥
D

i

j(q)v
j
q

∂
∂qi

(q) where vq = viq
∂
∂qi

(q). Hence we have

P⊥
D (γ′(t)) = P⊥

D
i

j(γ(t))q̇
j(t)

∂

∂qi
(γ(t)) = 0,

or
P⊥
D

i

j(q(t))q̇
j(t) = 0.

Consider the linearization about the same trajectory (q(t) = ϕ(q0), q̇(t) = 0, q̈(t) = 0, λi(t) =
0) using 

q(t) = ϕ(q0) + δq(t)

q̇(t) = 0 + δq̇(t)

q̈(t) = 0 + δq̈(t)

λi(t) = 0 + δλi(t).

Linearizing

P⊥
D

i

j(q)q̇
j = 0,

we get

∂(P⊥
D

i

j(q)q̇
j)

∂q

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸

0

δq +
∂(P⊥

D
i

j(q)q̇
j)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ = 0

P⊥
D

i

j(q)
∣∣∣
q=ϕ(q0)

δq̇j = 0

P⊥
D

i

j(q0)δq̇
j = 0.

Hence the linearized equation is

P⊥
D

i

j(q0)δq̇
j(t) = 0.
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Now, we solve for the linearized constraint force. First, differentiate the linearized
constraints to get

P⊥
D

i

j(q0)δq̈
j(t) = 0.

We had

δq̈i(t) = −Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gij(q0)
∂Fj

∂qk
(0q0)δq

k(t) +Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k(t) + δλi(t),

so

δλi(t) = δq̈i(t) +Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)−Gij(q0)
∂Fj

∂qk
(0q0 )δq

k(t)−Gij(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

= P⊥
D

i

s(q0)

(
δq̈s(t) +Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t)−Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
= P⊥

D
i

s(q0)δq̈
s(t)︸ ︷︷ ︸

0

+P⊥
D

i

s(q0)

(
Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t)−Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)

= P⊥
D

i

s(q0)

(
Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t)−Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
.

Hence we have

δq̈i(t) = −Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gij(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gij(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

+ P⊥
D

i

s(q0)

(
Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t)−Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
= δis

(
−Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t) +Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
− P⊥

D
i

s(q0)

(
−Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t) +Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
=
(
δis − P⊥

D
i

s(q0)︸ ︷︷ ︸
PD

i
s(q0)

)(
−Gsj(q0)

∂2V

∂qk∂qj
(q0)δq

k(t) +Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)

= −PD
i
s(q0)G

sj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) + PD
i
s(q0)G

sj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) + PD
i
s(q0)G

sj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t).

In first order form, we have



δq̇1(t)
...

δq̇n(t)
δq̈1(t)

...
δq̈n(t)


=

(
0n×n In×n[

−PD
i
s(q0)G

sj(q0)
∂2V

∂qk∂qj
(q0) + PD

i
s(q0)G

sj(q0)
∂Fj

∂qk
(0q0 )

] [
PD

i
s(q0)G

sj(q0)
∂Fj

∂vk (0q0 )
])


δq1(t)
...

δqn(t)
δq̇1(t)

...
δq̇n(t)


,

i.e.(
q̇(t)
v̇(t)

)
=

(
0 idTq0Q

−PD ◦G# ◦HessV ♭(q0) + PD ◦G# ◦ d1F (0q0) PD ◦G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
.

This is exactly what we got using the linearization of a forced affine connection system
when dV (q0) = 0 (Proposition 4.4).
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4.3.2. Direct Linearization of a Nonholonomic Mechanical System

Now, let us look at the general case. Let Σ = (Q,G, V, F,D) be a C∞-forced simple
mechanical system with regular constraints such that F (Z(TQ)) = Z(T ∗Q), and consider
an equilibrium configuration q0 ∈ Q for Σ. The equations of motion are

G
∇γ′(t)γ

′(t) = − gradV︸ ︷︷ ︸
G#◦dV

(γ(t)) +G# ◦ F (γ′(t)) + λ(t)

P⊥
D (γ′(t)) = 0.

We want to linearize these equations about the equilibrium point 0q0 and then use the
linearized equations to solve for the linearized constraint force. We follow the same steps
as before, except we must now linearize about the trajectory (q(t) = ϕ(q0), q̇(t) = 0, q̈(t) =
0, λi(t) = λi0) using 

q(t) = ϕ(q0) + δq(t)

q̇(t) = 0 + δq̇(t)

q̈(t) = 0 + δq̈(t)

λi(t) = λi0 + δλi(t).

Linearizing

q̈i +
G
Γi
jk(q)q̇

j q̇k = −Gij(q)
∂V

∂qj
(q) +Gij(q)Fj(q, q̇) + λi,

we get

δq̈i +
∂(

G
Γi
jk(q)q̇

j q̇k)

∂q

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸

0

δq +
∂(

G
Γi
jk(q)q̇

j q̇k)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸

0

δq̇

= −
∂(Gij(q) ∂V

∂qj
(q))

∂q

∣∣∣
q=ϕ(q0)

δq +
∂(Gij(q)Fj(q, q̇))

∂q

∣∣∣
q=ϕ(q0),q̇=0

δq +
∂(Gij(q)Fj(q, q̇))

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ + δλi.

Hence,

δq̈i = −

(
∂Gij(q)

∂q

∂V

∂qj
(q)
∣∣∣
q=ϕ(q0)

+Gij(q)
∂ ∂V

∂qj
(q)

∂q

∣∣∣
q=ϕ(q0)

)
δq

+

(
∂Gij(q)

∂q
Fj(q, q̇)

∣∣∣
q=ϕ(q0),q̇=0︸ ︷︷ ︸
0

+Gij(q)
∂Fj(q, q̇)

∂q

∣∣∣
q=ϕ(q0),q̇=0

)
δq +Gij(q)

∂Fj(q, q̇)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ + δλi

= −∂Gij(q)

∂q

∂V

∂qj
(q)
∣∣∣
q=ϕ(q0)

δq −Gij(q)
∂ ∂V

∂qj
(q)

∂q

∣∣∣
q=ϕ(q0)

δq +Gij(q)
∂Fj(q, q̇)

∂q

∣∣∣
q=ϕ(q0),q̇=0

δq

+Gij(q)
∂Fj(q, q̇)

∂q̇

∣∣∣
q=ϕ(q0),q̇=0

δq̇ + δλi

= −∂Gij(q)

∂qk
∂V

∂qj
(q)
∣∣∣
q=ϕ(q0)

δqk −Gij(q)
∂2V (q)

∂qk∂qj

∣∣∣
q=ϕ(q0)

δqk +Gij(q)
∂Fj(q, q̇)

∂qk

∣∣∣
q=ϕ(q0),q̇=0

δqk

+Gij(q)
∂Fj(q, q̇)

∂vk

∣∣∣
q=ϕ(q0),q̇=0

δq̇k + δλi

= −∂Gij

∂qk
(q0)

∂V

∂qj
(q0)δq

k −Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k +Gij(q0)
∂Fj

∂qk
(0q0)δq

k +Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k + δλi.
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Hence the linearized equation is

δq̈i(t) = −∂G
ij

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)−Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gij(q0)
∂Fj

∂qk
(0q0)δq

k(t)

+Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k(t) + δλi(t).

In first order form, we have

δq̇1(t)
...

δq̇n(t)
δq̈1(t)

...
δq̈n(t)


=

(
0n×n In×n[

− ∂Gij

∂qk
(q0)

∂V
∂qj

(q0)−Gij(q0)
∂2V

∂qk∂qj
(q0) +Gij(q0)

∂Fj

∂qk
(0q0 )

] [
Gij(q0)

∂Fj

∂vk (0q0 )
])


δq1(t)
...

δqn(t)
δq̇1(t)

...
δq̇n(t)


+



0
...
0

δλ1(t)
...

δλn(t)


.

Now, we have to linearize the constraint equations P⊥
D (γ′(t)) = 0 about the trajectory

(q(t) = ϕ(q0), q̇(t) = 0, q̈(t) = 0, λi(t) = λi0). This gives us

P⊥
D

i

j(q0)δq̇
j(t) = 0,

exactly as before.
Let us solve for the linearized constraint force. Differentiating, we get

P⊥
D

i

j(q0)δq̈
j(t) = 0.

We had

δq̈i(t) = −∂G
ij

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)−Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gij(q0)
∂Fj

∂qk
(0q0)δq

k(t)

+Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k(t) + δλi(t),

so

δλi(t) = δq̈i(t) +
∂Gij

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t) +Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)−Gij(q0)
∂Fj

∂qk
(0q0)δq

k(t)

−Gij(q0)
∂Fj

∂vk
(0q0)δq̇

k(t)

= P⊥
D

i

s(q0)

(
δq̈s(t) +

∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t) +Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)

−Gsj(q0)
∂Fj

∂qk
(0q0)δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0)δq̇

k(t)

)
= P⊥

D

i

s(q0)δq̈
s(t)︸ ︷︷ ︸

0

+P⊥
D

i

s(q0)

(
∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t) +Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)

−Gsj(q0)
∂Fj

∂qk
(0q0)δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0)δq̇

k(t)

)
= P⊥

D

i

s(q0)

(
∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t) +Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)−Gsj(q0)
∂Fj

∂qk
(0q0)δq

k(t)

−Gsj(q0)
∂Fj

∂vk
(0q0)δq̇

k(t)

)
.
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Hence we have

δq̈i(t) = −
∂Gij

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)−Gij(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gij(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gij(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

+ P⊥
D

i

s(q0)

(
∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t) +Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)−Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t)−Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
= δis

(
−
∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)−Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
− P⊥

D
i

s(q0)

(
−
∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)−Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t) +Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
=
(
δis − P⊥

D
i

s(q0)︸ ︷︷ ︸
PD

i
s(q0)

)(
−

∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)−Gsj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)

+Gsj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) +Gsj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t)

)
= −PD

i
s(q0)

∂Gsj

∂qk
(q0)

∂V

∂qj
(q0)δq

k(t)− PD
i
s(q0)G

sj(q0)
∂2V

∂qk∂qj
(q0)δq

k(t)

+ PD
i
s(q0)G

sj(q0)
∂Fj

∂qk
(0q0 )δq

k(t) + PD
i
s(q0)G

sj(q0)
∂Fj

∂vk
(0q0 )δq̇

k(t).

In first order form, we have

δq̇1(t)
...

δq̇n(t)
δq̈1(t)

...
δq̈n(t)


=

 0n×n In×n[
−PD

i
s
∂Gsj

∂qk
∂V
∂qj

− PD
i
sG

sj ∂2V
∂qk∂qj

+ PD
i
sG

sj ∂Fj

∂qk

] ∣∣∣
0q0

[
PD

i
s(q0)G

sj(q0)
∂Fj

∂vk (0q0)
]


δq1(t)
...

δqn(t)
δq̇1(t)

...
δq̇n(t)


.

This is not the same as what we got using the linearization of a forced affine connection
system.

We see here that the two approaches to linearization give us different answers. There
is no ambiguity in the first approach since in that approach we solve for the constraint
force first and then linearize the resulting equations of motion, which is exactly what we
mean by linearization. The second approach is faulty; linearizing the system does not
mean we can linearize the constraints. Now, it is interesting to ask: when do the two
operations, of linearizing the equations and solving for Lagrange multipliers, commute? In
other words, when does this second approach actually give us a valid linearization? Based
on our calculations above, we have at least a sufficient condition. We know this holds at
critical points of the potential function.



Chapter 5

Nonholonomic Mechanical
Systems: Stability of Equilibria

Now, with our knowledge in nonholonomic mechanical systems and its linearizations, we
try to explore the stability of its equilibria. Because the presence of constraints greatly
complicate the nature of equilibria for these systems, we only scratch the surface of this
topic here. The results in this chapter are by no means complete nor comprehensive; there
remains much work to be done.

5.1. Stability via Linearization

We begin by looking at stability analysis via linearization. First, let us examine the structure
of the linearization.

Let Σ = (Q,G, V, F,D) be a C∞-forced simple mechanical system with regular con-
straints such that F (Z(TQ)) = Z(T ∗Q), and consider an equilibrium configuration q0 ∈ Q
for Σ. The linearized equations of motion about the equilibrium point 0q0 are(

q̇(t)
v̇(t)

)
=

(
0 idTq0

Q

−PD ◦
G
∇(PD ◦ gradV )(q0) + PD ◦G# ◦ d1F (0q0) PD ◦G# ◦ d2F (0q0)

)(
q(t)
v(t)

)
,

or

(
q̇(t)
v̇(t)

)
=

(
0 idTq0Q

−PD(q0) ◦
G
∇(PD ◦ gradV )(q0) + PD(q0) ◦ G(q0)# ◦ d1F (0q0 ) PD(q0) ◦ G(q0)# ◦ d2F (0q0 )

)(
q(t)
v(t)

)
.

Let V = Tq0Q, D = D(q0), M = G(q0), PD = PD(q0), L =
G
∇(PD ◦ gradV )(q0), F1 =

d1F (0q0), and F2 = d2F (0q0). Hence, we want to study the linear map

A =

(
0 idV

−PDL+ PDM
#F1 PDM

#F2

)
: V ⊕ V → V ⊕ V, (5.1.1)

where V is a finite-dimensional R-vector space, D is a subspace of V , M is an inner product
on V , PD : V → V is the orthogonal projection of V onto D, and L, F1 and F2 are linear
maps from V to V .

46
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Proposition 5.1 (Invariant Subspace of the State Space). Consider the linear map A from
(5.1.1). We have that D ⊕D is A-invariant, i.e. A(D ⊕D) ⊆ D ⊕D.

Proof. Note thatD is a subspace of V , soD⊕D is a subspace of V ⊕V . Given (q, v) ∈ D⊕D,
we have

A(q, v) =

(
0 idV

−PDL+ PDM
#F1 PDM

#F2

)(
q
v

)
=

(
v

−PDLq + PDM
#F1q + PDM

#F2v

)
∈ D ⊕D.

Now, consider the decomposition V = D ⊕ D⊥. Let us write the linear map A from
(5.1.1) as A : D ⊕D⊥ ⊕D ⊕D⊥ → D ⊕D⊥ ⊕D ⊕D⊥, where

A =


0 0 idD 0
0 0 0 idD⊥

πD(−PDL+ PDM#F1)iD πD(−PDL+ PDM#F1)iD⊥ πD(PDM#F2)iD πD(PDM#F2)iD⊥

πD⊥(−PDL+ PDM#F1)iD πD⊥(−PDL+ PDM#F1)iD⊥ πD⊥(PDM#F2)iD πD⊥(PDM#F2)iD⊥



=


0 0 idD 0
0 0 0 idD⊥

−πDPDLiD + πDPDM#F1iD −πDPDLiD⊥ + πDPDM#F1iD⊥ πDPDM#F2iD πDPDM#F2iD⊥

0 0 0 0



=


0 0 idD 0
0 0 0 idD⊥

−πDLiD + πDM#F1iD −πDLiD⊥ + πDM#F1iD⊥ πDM#F2iD πDM#F2iD⊥

0 0 0 0

 ,

where πD, πD⊥ , iD, iD⊥ are the obvious projection and inclusion maps. We define the lin-
earization restricted to the invariant subspace, AD : D ⊕D → D ⊕D, as

AD =

(
0 idD

−πDLiD + πDM
#F1iD πDM

#F2iD

)
.

Proposition 5.2 (Eigenvalues of the Linearization). The eigenvalues of AD form a subset
of the eigenvalues of A. All other eigenvalues of A are zero.

Proof. Instead of writing A as a map from D ⊕D⊥ ⊕D ⊕D⊥ to D ⊕D⊥ ⊕D ⊕D⊥, let
us write it as a map from D ⊕D ⊕D⊥ ⊕D⊥ to D ⊕D ⊕D⊥ ⊕D⊥, i.e.

A =


0 idD 0 0

−πDLiD + πDM
#F1iD πDM

#F2iD −πDLiD⊥ + πDM
#F1iD⊥ πDM

#F2iD⊥

0 0 0 idD⊥

0 0 0 0

 .

We see from here that D ⊕D is again A-invariant, and

σ(A) = σ(AD) ∪ σ
(
0 idD⊥

0 0

)
,

so we are done.
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We can also prove this directly. Suppose (q1, q2, v1, v2) ∈ D ⊕ D⊥ ⊕ D ⊕ D⊥ is an
eigenvector not in D ⊕ D. Hence q2 ̸= 0 or v2 ̸= 0, and there exists λ ∈ C such that
A(q1, q2, v1, v2) = λ(q1, q2, v1, v2). We have

λq1 = v1

λq2 = v2

λv1 =Wq1 +Xq2 + Y v1 + Zv2

λv2 = 0,

where W = −πDLiD + πDM
#F1iD, X = πDM

#F2iD, Y = −πDLiD⊥ + πDM
#F1iD⊥ and

Z = πDM
#F2iD⊥ . Now, if v2 ̸= 0, then λ = 0 implies that v1 = v2 = 0, which is a

contradiction. So it must be that q2 ̸= 0. If q2 ̸= 0, then from v2 = λq2 and λv2 = 0 we
have λ2q2 = 0, which means λ = 0.

Proposition 5.3 (Eigenvectors of the Linearization). Let (q, v) ∈ V ⊕V and λ ∈ C. Then,
(q, v) is an eigenvector of A with λ as the associated eigenvalue if and only if q ̸= 0 and
q ∈ Ker(λ2idV + PDL− PDM

#F1 − λPDM
#F2).

Proof. Let (q, v) ∈ V ⊕ V be an eigenvector of A and let λ be the associated eigenvalue.
Then, (

0 idV
−PDL+ PDM

#F1 PDM
#F2

)(
q
v

)
= λ

(
q
v

)
,

or {
v = λq

−PDLq + PDM
#F1q + PDM

#F2v = λv.

Now, if q = 0, then v = 0 and so (q, v) cannot be an eigenvector. So it must be that q ̸= 0.
We have

−PDLq + PDM
#F1q + PDM

#F2v = λv

−PDLq + PDM
#F1q + λPDM

#F2q = λ2q

λ2q + PDLq − PDM
#F1q − λPDM

#F2q = 0

(λ2idV + PDL− PDM
#F1 − λPDM

#F2)q = 0

so q ∈ Ker(λ2idV + PDL− PDM
#F1 − λPDM

#F2).
The converse is also clear from the above.

From Proposition 5.2, we immediately see that the eigenvalues of A cannot be restricted
to C− since we always have eigenvalues at zero. Hence, we can never use Proposition A.8
to conclude local asymptotic stability of an equilibrium configuration for nonholonomic
mechanical systems. This already reveals a severe limitation to the linearization approach.

Remark 5.4 (Trajectories of the Linearization). What do trajectories of the linearization
look like? For an initial condition (q0, v0) ∈ D ⊕D, the trajectory remains inside D ⊕D.
For an initial condition (q0, v0) ∈ V ⊕ V but not in D ⊕D:

1. If v0 /∈ D, then v0 will have a component in D⊥ which remains constant. Hence q(t)
never stops increasing along that direction in D⊥ and so the trajectory is unstable.
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2. If q0 /∈ D, then q0 has a component in D⊥. If v0 ∈ D, then this component remains
contant and so the trajectory will not go to zero. If v0 /∈ D, then like the first case,
the trajectory is unstable.

Thus the linearized system as a whole is not stable.

It is interesting to ask whether it is enough to study the map AD, and be able conclude
local asymptotic stability from this since the trajectories that do appear to have physical
meaning are those in D⊕D. This is not true, however. Because the constraints only present
restrictions on the velocity, we should really be looking at V ⊕D, not D⊕D. The following
is an example of a nonholonomic mechanical system in which the linearization restricted to
the invariant subspace has eigenvalues with strictly negative real part, but the equilibrium
configuration is not locally asymptotically stable.

Example 5.5. Consider Σ = (Q,G, V, F,D), a C∞-forced simple mechanical system with
regular constraints such that F (Z(TQ)) = Z(T ∗Q), where
(i) Q = R3 with global coordinate charts (R3, ϕ = (x, y, z)) and (TR3, Tϕ =

(x, y, z, u, v, w)),
(ii) G = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz,
(iii) V (q) = x2 + y2,
(iv) F (vq) = −udx(q)− vdy(q)− wdz(q), and
(v) D = span{X1, X2}, where X1 =

∂
∂x and X2 =

∂
∂y + (x+ z) ∂

∂z .

We compute [X1, X2] =
∂
∂z . Note that X1 and X2 belong to D, but [X1, X2] does not.

Hence D is not involutive and so is not integrable. Furthermore, {X1, X2, [X1, X2]} is
linearly independent for all q ∈ Q, so D is in fact totally nonholonomic.

Consider the equilibrium configuration q0 = (0, 0, 0). We calculate

[HessV (q0)] =

2 0 0
0 2 0
0 0 0

 , [G] =

1 0 0
0 1 0
0 0 1



[d1F (0q0)] =

0 0 0
0 0 0
0 0 0

 , [d2F (0q0)] =

−1 0 0
0 −1 0
0 0 −1

 , [PD(q0)] =

1 0 0
0 1 0
0 0 0

 .

The linearization A is then 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 0 0 −1 0 0
0 −2 0 0 −1 0
0 0 0 0 0 0

 ,

and the restricted linearization AD is
0 0 1 0
0 0 0 1
−2 0 −1 0
0 −2 0 −1

 ,
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which has eigenvalues σ(AD) =
{
−1

2 −
√
7
2 i,−

1
2 −

√
7
2 i,−

1
2 +

√
7
2 i,−

1
2 +

√
7
2 i
}
. All eigen-

values of the map AD have strictly negative real part. However, since the equilibrium
configuration is not isolated (all points on the z-axis are equilibria), we cannot have local
asymptotic stability.

We cannot conclude local asymptotic stability of an equilibrium configuration, but we
can conclude, to a certain extent, instability. Consider the following definition.

Definition 5.6 (Instability of the Equilibrium Set). Let Σ = (Q,G, V, F,D) be a C∞-
forced simple mechanical system with regular constraints such that F (Z(TQ)) = Z(T ∗Q).
Let Q0 ⊆ Q be the set of equilibrium configurations. An equilibrium configuration q0 ∈ Q
is Q0-unstable if there exists a neighbourhood U ⊆ TQ of Z(TQ0) such that for every
neighbourhood V ⊆ TQ of 0q0 , there is a point vq ∈ V such that the integral curve
ΦX
t (vq) /∈ U for some t ≥ 0.

The following proposition is due to [6].

Proposition 5.7 (Instability via Linearization Analysis). Let Σ = (Q,G, V, F,D) be a C∞-
forced simple mechanical system with regular constraints such that F (Z(TQ)) = Z(T ∗Q).
Let q0 ∈ Q be an equilibrium configuration for Σ and let Q0 ⊆ Q be the set of equilibrium
configurations. Let AΣ(q0) be the linearization of Σ at 0q0. If σ(AΣ(q0)) ∩C+ ̸= ∅, then q0
is Q0-unstable.

Proof. We require the following fact (see Theorem 6.1, Corollary 6.1 and the remark to
Corollary 6.1 in [7]). Since the linearization AΣ(q0) has an eigenvalue with positive real part,
for some ϵ > 0 there exists a solution γ : (−∞, 0] → Q to (3.2.2) such that γ′(t) ̸= 0q0 for all
t ≤ 0, and limt→−∞ ∥Tϕ◦γ′(t)−Tϕ(0q0)∥e−ϵt = 0 where we have chosen some coordinates.
In other words, we can find a solution on the unstable manifold which converges to 0q0 as
we move back in time.

Note that we also have γ′(t) /∈ Z(TQ0) for all t ≤ 0. Let U ⊆ TQ be a neighbourhood
of Z(TQ0) such that γ′(0) /∈ U . Now, for every neighbourhood V ⊆ TQ of 0q0 , there exists
a t < 0 such that γ′(t) ∈ V but γ′(0) /∈ U .

Corollary 5.8 (Instability via Linearization Analysis in the Absence of Dissipation). In

the absence of dissipation, if PD ◦
G
∇(PD ◦ gradV )(q0) has an eigenvalue with negative real

part, then q0 is Q0-unstable.

Proof. We have the linearization

AΣ(q0) =

(
0 idTq0Q

−PD ◦
G
∇(PD ◦ gradV )(q0) 0

)
.
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The characteristic equation is

det

(
s

(
idTq0Q

0

0 idTq0Q

)
−

(
0 idTq0Q

−PD ◦
G
∇(PD ◦ gradV )(q0) 0

))

= det

(
s · idTq0Q

−idTq0Q

PD ◦
G
∇(PD ◦ gradV )(q0) s · idTq0Q

)

= det

(
0 −idTq0Q

s2 · idTq0Q
+ PD ◦

G
∇(PD ◦ gradV )(q0) s · idTq0Q

)

= det(s2 · idTq0Q
− (−PD ◦

G
∇(PD ◦ gradV )(q0))) = 0.

Hence the eigenvalues of AΣ(q0) are the square roots of the eigenvalues of −PD ◦
G
∇(PD ◦

gradV )(q0). If PD ◦
G
∇(PD ◦ gradV )(q0) has an eigenvalue with negative real part, then

AΣ(q0) has an eigenvalue with positive real part and so q0 is Q0-unstable.

5.2. Stability via Lyapunov Methods

Now, we look at stability analysis via Lyapunov methods. Though our approach is elemen-
tary, interesting observations and questions arise. First, we prove that the total energy of
a constrained mechanical system changes directly with the external force. The constraint
forces have no overall effect on the total energy. Intuitively, this comes from the fact that
constraint forces do no work on curves satisfying the equations of motion (3.2.2).

Proposition 5.9 (Time Derivative of Energy for Constrained Mechanical Systems). Let
(Q,G, V, F,D) be a C∞-forced simple mechanical system with regular constraints, and con-
sider a curve γ : I → Q satisfying the equations of motion (3.2.2). Then,

dE(γ′(t))

dt
= ⟨F (γ′(t)); γ′(t)⟩.

Proof. We know that the total energy is

E(vq) =
1

2
G(q)(vq, vq) + V (q),

hence

E(γ′(t)) =
1

2
G(γ(t))(γ′(t), γ′(t)) + V (γ(t)),
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and so taking the time derivative we get

dE(γ′(t))

dt

=
d

dt

(
1

2
G(γ(t))(γ′(t), γ′(t)) + V (γ(t))

)
=

1

2
(
G
∇γ′(t)G)︸ ︷︷ ︸

0

(γ(t))(γ′(t), γ′(t)) +
1

2
G(γ(t))(

G
∇γ′(t)γ

′(t), γ′(t))

+
1

2
G(γ(t))(γ′(t),

G
∇γ′(t)γ

′(t)) + (
G
∇γ′(t)V )(γ(t))

= G(γ(t))(
G
∇γ′(t)γ

′(t), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩

= G(γ(t))(PD ◦G# ◦ F (γ′(t))− PD ◦G# ◦ dV (γ(t))− (
G
∇γ′(t)P

⊥
D )(γ′(t)), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩

= G(γ(t))(PD ◦G# ◦ F (γ′(t)), γ′(t))−G(γ(t))(PD ◦G# ◦ dV (γ(t)), γ′(t))

−G(γ(t))((
G
∇γ′(t)P

⊥
D )(γ′(t)), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩

= G(γ(t))(G# ◦ F (γ′(t)), PT
D(γ′(t)))−G(γ(t))(G# ◦ dV (γ(t)), PT

D(γ′(t)))

−G(γ(t))((
G
∇γ′(t)P

⊥
D )(γ′(t)), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩

= ⟨G♭ ◦G# ◦ F (γ′(t));PT
D(γ′(t))⟩ − ⟨G♭ ◦G# ◦ dV (γ(t));PT

D(γ′(t))⟩

−G(γ(t))((
G
∇γ′(t)P

⊥
D )(γ′(t)), γ′(t)) + ⟨dV (γ(t)); γ′(t)⟩

= ⟨F (γ′(t));PT
D(γ′(t))⟩ − ⟨dV (γ(t));PT

D(γ′(t))⟩+G(γ(t))(P⊥
D (

G
∇γ′(t)γ

′(t)), γ′(t))︸ ︷︷ ︸
0

+⟨dV (γ(t)); γ′(t)⟩

= ⟨F (γ′(t));PT
D(γ′(t))⟩+ ⟨dV (γ(t)); γ′(t)− PT

D(γ′(t))⟩
= ⟨F (γ′(t));PT

D(γ′(t))⟩+ ⟨dV (γ(t)); (PT
D)⊥(γ′(t))⟩

= ⟨F (γ′(t));PD(γ′(t))⟩+ ⟨dV (γ(t));P⊥
D (γ′(t))︸ ︷︷ ︸

0

⟩

= ⟨F (γ′(t)); γ′(t)⟩.

Let us look at how Theorem 2.23 should be adapted, if possible. First of all, in order to
apply the Lyapunov stability criteria, we need a function which is locally positive-definite
about the equilibrium configuration. The obvious choice is the potential function. For
dissipative nonholonomic mechanical systems, we know that equilibria can arise at config-
urations which are not critical points of the potential function. This already presents a
huge limitation; in order to easily apply Lyapunov methods, we need to restrict ourselves
to equilibria which are critical points. We can prove the following theorem, which raises
some interesting questions.

Theorem 5.10. Let Σ = (Q,G, V, Fdiss, D) be a C∞-simple mechanical system with dissi-
pation subject to nonholonomic constraints, and consider q0 ∈ Q such that dV (q0) = 0.
(i) If V is locally positive-definite about q0, then q0 is stable.
(ii) If q0 is an isolated local minimum for V , Fdiss is strictly dissipative on D, and there

exists a neighbourhood U ⊆ Q of q0 such that dV (q) /∈ ann(D)q for all q ∈ U \ {q0},
then q0 is locally asymptotically stable.
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Note: there exists a neighbourhood U ⊆ Q of q0 such that dV (q) /∈ ann(D)q for all
q ∈ U \ {q0} if and only if PD(G# ◦ dV (q)) is locally non-zero around q0 except at q0.

Proof. (i) This part of the proof is analogous to that of Theorem 2.23, however we only
need to consider the manifold D, not the entire TQ. Hence, consider the energy
function E : D → R, E(vq) = 1

2G(q)(vq, vq) + V (q). Without loss of generality,
assume V (q0) = 0.
Claim: E is a Lyapunov function for the associated vector field X for Σ at the point
0q0 .
Proof of claim:
1. We have E(0q0) = 0.
2. E(γ′(t)) is non-increasing by Proposition 5.9. In other words, LXE is negative-

semidefinite about 0q0 .
3. We need to show that there exists a neighbourhood TU ∩ D ⊆ D of 0q0 such

that for all vq ∈ TU ∩D \ {0q0}, we have E(vq) > 0. Since V is locally positive-
definite about q0, there exists a neighbourhood U ⊆ Q of q0 such that for all
q ∈ U \ {q0}, we have V (q) > 0. Now, for all vq ∈ TU ∩ D \ Z(TU ∩ D), we
have G(q)(vq, vq) > 0. Hence, for all vq ∈ TU ∩ D \ {0q0}, we have E(vq) > 0.
Hence E is a Lyapunov function for the associated vector field at the point 0q0
as claimed.

Hence, by the Lyapunov stability criteria (Theorem A.16), q0 is stable.
(ii) Since q0 is an isolated local minimum for V , V is locally positive-definite about q0 and

so (i) applies. E is a Lyapunov function. Also, since q0 is an isolated local minimum
for V and there exists a neighbourhood U ⊆ Q of q0 such that dV (q) /∈ ann(D)q for
all q ∈ U \ {q0}, then there exists a neighbourhood W ⊆ Q of q0 such that for all
q ∈ W \ {q0}, we have V (q) > V (q0) and PD(G# ◦ dV (q)) ̸= 0. We have that E is
positive-definite on TW ∩D and E(γ′(t)) is non-increasing. Let A = {vq ∈ TW ∩D |
⟨Fdiss(vq), vq⟩ = 0} = Z(TW ∩D).
Claim: {0q0} is the only positively invariant set in A.
Proof of claim: Suppose 0q1 ̸= 0q0 is another point. Now, unlike Theorem 2.23, having
q0 an isolated local minimum is not enough. We now require dV (q) /∈ ann(D)q for
all q ∈ U \ {q0}, which means q0 is an isolated equilibrium configuration. Hence the
requirement of q0 being an isolated local minimum in Theorem 2.23 should actually be
a requirement on the equilibria, i.e. q0 should be an isolated equilibrium point. Since
we assumed dV (q) /∈ ann(D)q for all q ∈ U \ {q0}, q1 ̸= q0 ⇒ PD(G# ◦ dV (q1)) ̸= 0.
Hence the solution will leave A, proving the claim.
Hence the corollary to LaSalle Invariance Principle (Corollary A.22) implies q0 is
locally asymptotically stable.

Remark 5.11 (Questions). 1. We know that isolated equilibria for nonholonomic me-
chanical systems do exist, but do isolated equilibria exist such that they are a local
minimum for the potential function?

2. In fact, do locally asymptotically stable equilibria even exist for nonholonomic me-
chanical systems?



Chapter 6

Conclusions and Future Work

6.1. Conclusions

In this report, we studied the linearization of nonholonomic mechanical systems about
equilibria and looked into the stability of its equilibria via both linearization and Lyapunov
methods. Although there are still many unanswered questions, from this investigation we
can summarize the following:

1. While the contraints tend to introduce a manifold of equilibria, equilibria can still
be isolated and the set of equilibria may not form a submanifold of the configuration
space.

2. The proper way to linearize the equations of motion of a nonholonomic mechanical
system about an equilibrium point is to first solve for the constraint force before lin-
earizing. Linearizing the constraints first before solving for the (linearized) constraint
force in general will not give the same result. These two processes, however, do com-
mute when linearizing about an equilibrium point which is also a critical point of the
potential function.

3. Due to the presence of eigenvalues at zero, the linearization of a nonholonomic me-
chanical system can never be used to conclude local asymptotic stability, although it
can be used to conclude a type of instability.

4. Lyapunov methods using energy tend to fail for the main reason that the potential
function may no longer be positive-definite around the equilibrium.

6.2. Future Work

There remains much work to be done. Let us outline some interesting questions:
1. Can we find other conditions such that the two operations of linearization and solving

for Lagrange multipliers commute when linearizing nonholonomic mechanical sys-
tems?

2. Is it possible to conclude stability (but not necessarily local asymptotic stability) by
ignoring the eigenvalues at zero which arise due to the constraint and instead just
studying the part of the linearization restricted to the invariant subspace?

3. Can we find other conditions for when the equilibria form a submanifold, or when
they are isolated?

54
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4. How can we adapt the Lyapunov methods to work in a more straightforward way?
For example, if we assume the equilibria form a submanifold, it is possible to consider
stability with respect to not just a point, but the entire equilibrium manifold. This
is studied in [8], for example.



Appendix A

Nonlinear Systems and Stability
Analysis

This appendix is more or less a quick summary of nonlinear systems and stability analysis
as found in [3].

Definition A.1 (Nonlinear System). Let M be a C∞-manifold and X ∈ Γ∞(TM). The

nonlinear system associated with X is the system of first order ODEs specified by γ′(t)
∆
=

Ttγ(
∂
∂t(t)) = X(γ(t)), where γ : I → M . It is often convenient to simply refer to X as the

nonlinear system, with the understanding that what we actually mean is the underlying
differential equation.

Definition A.2 (Equilibrium Point). Let M be a C∞-manifold and X ∈ Γ∞(TM). A
point x0 ∈M is an equilibrium point for X if the trivial curve γ : R →M , γ(t) = x0 is
an integral curve for X.

Proposition A.3 (Characterization of Equilibrium Points). Let M be a C∞-manifold and
X ∈ Γ∞(TM). A point x0 ∈M is an equilibrium point for X if and only if X(x0) = 0.

Definition A.4 (Convergence of a Curve). LetM be a C∞-manifold, S ⊆M , and consider
γ : [t0,∞) →M .
(i) γ approaches S as t→ ∞ if, for all neighbourhoods U ⊆M of S, there exists T ≥ t0

such that for all t > T , we have γ(t) ∈ U . This is denoted by γ(t) → S as t→ ∞.
(ii) For x0 ∈M and S = {x0}, γ converges to x0 as t→ ∞ if γ approaches S as t→ ∞.

This is denoted by limt→∞ γ(t) = x0.

Definition A.5 (Stability Notions). LetM be a C∞-manifold, X ∈ Γ∞(TM), and consider
x0 ∈M , an equilibrium point for X.
(i) x0 is stable if, for all neighbourhoods U ⊆ M of x0, there exists a neighbourhood

W ⊆ U of x0 such that for all x ∈W , the integral curve t 7→ ΦX
t (x) takes values in U

for t ≥ 0.
(ii) x0 is unstable if x0 is not stable.
(iii) x0 is locally asymptotically stable if x0 is stable and there exists a neighbourhood

U ⊆ M of x0 such that for all x ∈ U , the integral curve t 7→ ΦX
t (x) converges to x0

as t→ ∞.
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(iv) x0 is globally asymptotically stable if x0 is stable and for all x ∈M , the integral
curve t 7→ ΦX

t (x) converges to x0 as t→ ∞.

Definition A.6 (Linear System). Let V be a finite-dimensional R-vector space and A ∈
L(V ;V ), where L(V ;V ) is the set of linear maps from V to V . The linear system
associated with A is the system of first order linear ODEs specified by ẋ(t) = A(x(t)),
where x : I → V . Note that 0 ∈ V is always an equilibrium point.

We denote the set of eigenvalues by σ, the algebraic multiplicity of an eigenvalue λ by
ma(λ), and the geometric multiplicity of an eigenvalue λ by mg(λ).

Theorem A.7 (Stability of Linear Systems). Let V be a finite-dimensional R-vector space
and A ∈ L(V ;V ).
(i) If σ(A) ∩ C+ ̸= ∅, then 0 is unstable.
(ii) σ(A) ⊆ C− if and only if 0 is globally asympotically stable.
(iii) If σ(A) ⊆ C− and for all λ ∈ σ(A) ∩ iR we have ma(λ) = mg(λ), then 0 is stable.
(iv) If σ(A) ⊆ C− and there exists λ ∈ σ(A) ∩ iR such that ma(λ) > mg(λ), then 0 is

unstable.

Proposition A.8 (Stability from Linear Stability). Let M be a C∞-manifold, X ∈
Γ∞(TM), and x0 ∈ M , an equilibrium point for X. Consider AX(x0) ∈ L(Tx0M ;Tx0M),
the linearization of X at x0 (see Proposition C.8).
(i) If σ(AX(x0)) ⊆ C−, then x0 is locally asymptotically stable.
(ii) If σ(AX(x0)) ∩ C+ ̸= ∅, then x0 is unstable.

Definition A.9 (More Stability Notions). Let M be a C∞-manifold, X ∈ Γ∞(TM) and
x0 ∈M , an equilibrium point for X. Consider AX(x0) ∈ L(Tx0M ;Tx0M), the linearization
of X at x0.
(i) x0 is linearly stable if 0 is stable for the linearization AX(x0).
(ii) x0 is linearly asymptotically stable if 0 is asymptotically stable for the lineariza-

tion AX(x0).
(iii) x0 is linearly unstable if x0 is not linearly stable.
(iv) x0 is spectrally stable if σ(AX(x0)) ⊆ C−.
(v) x0 is spectrally unstable if x0 is not spectrally stable.

Note A.10 (Some Immediate Implications). 1. linear asymptotic stability ⇒ local
asymptotic stability

2. spectral instability ⇒ instability

Proposition A.11 (Time Derivative of a Function Evaluated Along an Integral Curve).
Let M be a C∞-manifold, X ∈ Γ∞(TM) and ψ ∈ C∞(M). Then,

d

dt
ψ(ΦX

t (x)) = LXψ(Φ
X
t (x)).

Proof. Consider (U, ϕ = (x1, . . . , xn)), a local chart of M , and let X
∣∣∣
U
= Xi ∂

∂xi . Let

γ : I → M
t 7→ ΦX

t (x),
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and ϕ ◦ γ(t) = (γ1(t), . . . , γn(t)). Then,

LXψ(Φ
X
t (x)) = LXψ(γ(t))

= dψ(γ(t))(X(γ(t)))

=
∂ψ

∂xj
(γ(t))dxj(γ(t))

(
γ̇i(t)

∂

∂xi
(γ(t))

)
=
∂ψ

∂xi
(γ(t))γ̇i(t)

=
d

dt
(ψ ◦ ϕ−1 ◦ ϕ ◦ γ(t))

=
d

dt
(ψ ◦ γ(t))

=
d

dt
ψ(ΦX

t (x)).

Definition A.12 (Locally Positive-definite Function). Let M be a C∞-manifold, ψ ∈
C∞(M) and x0 ∈M .
(i) ψ is locally positive-definite about x0 if ψ(x0) = 0 and there exists a neighbour-

hood U ⊆M of x0 such that for all x ∈ U \ {x0}, we have ψ(x) > 0.
(ii) ψ is locally positive-semidefinite about x0 if ψ(x0) = 0 and there exists a neigh-

bourhood U ⊆M of x0 such that for all x ∈ U , we have ψ(x) ≥ 0.

Definition A.13 (Sublevel Set). Let M be a C∞-manifold, ψ ∈ C∞(M), x0 ∈ M and
L ∈ R.
(i) Define the L-sublevel set of ψ by ψ−1(≤ L)

∆
= ψ−1((−∞, L]) = {x ∈M | ψ(x) ≤ L}.

(ii) Define ψ−1(≤ L, x0) as the connected component of ψ−1(≤ L) containing x0 (if
ψ(x0) ≤ L), or ∅ (if ψ(x0) > L).

Lemma A.14 (Positive-definiteness and Existence of a Compact Sublevel Set). Let M be
a C∞-manifold, ψ ∈ C∞(M) and x0 ∈ M . If ψ is locally positive-definite about x0, then
for all neighbourhoods U ⊆ M of x0, there exists α > 0 such that ψ−1(≤ α, x0) ⊆ U is
compact.

Definition A.15 (Lyapunov Function). Let M be a C∞-manifold, X ∈ Γ∞(TM), x0 ∈M
and ψ ∈ C∞(M). ψ is a Lyapunov function for X about x0 if ψ is locally positive-
definite about x0 and LXψ is locally negative-semidefinite about x0.

Theorem A.16 (Lyapunov Stability Criteria). Let M be a C∞-manifold, X ∈ Γ∞(TM)
and x0 ∈M an equilibrium point for X.
(i) If there exists a Lyapunov function ψ for X about x0, then x0 is stable.
(ii) If there exists a Lyapunov function ψ for X about x0 and LXψ is locally negative-

definite about x0, then x0 is locally asymptotically stable.

Definition A.17 (Invariant Set). Let M be a C∞-manifold, X ∈ Γ∞(TM) and A ⊆M .
(i) A is X-invariant if, for all x ∈ A, the integral curve t 7→ ΦX

t (x) takes values in A for
all admissible t ∈ R.
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(ii) A is positively X-invariant if, for all x ∈ A, the integral curve t 7→ ΦX
t (x) takes

values in A for all admissible t ∈ R≥0.

Lemma A.18 (X-invariance and Upper Limit of Definition of an Integral Curve). Let M
be a C∞-manifold, X ∈ Γ∞(TM) and A ⊆M . If A is compact and positively X-invariant,
then for all x ∈ A, σ+(X,x) = ∞.

Definition A.19 (Positive Limit Set). Let M be a C∞-manifold, X ∈ Γ∞(TM) and
x ∈M . The positive limit set of x for X is

Ω(X,x) = {y ∈M | ∃{tk}k∈N ⊆ R : tk < tk+1∀k ∈ N, lim
k→∞

tk = ∞, lim
k→∞

ΦX
tk
(x) = y}.

Proposition A.20 (X-invariance of Positive Limit Sets). Let M be a C∞-manifold, X ∈
Γ∞(TM) and A ⊆ M compact and positively X-invariant. If x ∈ A, then Ω(X,x) ⊆ A
is nonempty, compact, and positively X-invariant. Furthermore, t 7→ ΦX

t (x) approaches
Ω(X,x) as t→ ∞.

Theorem A.21 (LaSalle Invariance Principle). Let M be a C∞-manifold, X ∈ Γ∞(TM),
A ⊆ M compact and positively X-invariant, and ψ ∈ C∞(M) such that for all x ∈ A, we
have LXψ(x) ≤ 0. Let B be the largest positively X-invariant set contained in {x ∈ A |
LXψ(x) = 0}.
(i) For all x ∈ A, the integral curve t 7→ ΦX

t (x) approaches B as t→ ∞.
(ii) If B consists of a finite number of isolated points, then for all x ∈ A, the integral

curve t 7→ ΦX
t (x) converges to a point in B as t→ ∞.

Corollary A.22 (Corollary of LaSalle Invariance Principle). Let M be a C∞-manifold,
X ∈ Γ∞(TM), x0 ∈M an equilibrium point for X, and ψ ∈ C∞(M) a Lyapunov function
for X about x0. Let U ⊆M , a neighbourhood of x0 on which ψ is positive-definite and LXψ
is negative-semidefinite. Let C = {x ∈ U | LXψ(x) = 0}. If {x0} is the only positively
X-invariant set in C, then x0 is locally asymptotically stable.



Appendix B

Affine Connections and Covariant
Derivatives

Definition B.1 (Affine Connection). LetM be a C∞-manifold. A C∞-affine connection
onM is an object ∇ : Γ∞(TM)×Γ∞(TM) → Γ∞(TM), where notationally we write ∇XY
instead of ∇(X,Y ), such that
(i) ∇ is R-bilinear,
(ii) for all X,Y ∈ Γ∞(TM) and f ∈ C∞(M), we have ∇fXY = f∇XY , and
(iii) for all X,Y ∈ Γ∞(TM) and f ∈ C∞(M), we have ∇XfY = (LXf)Y + f∇XY .
∇XY is called the covariant derivative of Y with respect to X.

Remark B.2 (An Affine Connection Introduces Additional Structure). Unlike the Lie deriva-
tive, property (2) of Definition B.1 provides additional structure to the manifold.

Note B.3 (Covariant Derivative in Coordinates). Let ∇ be a C∞-affine connection on a
C∞-manifold M , and let X,Y ∈ Γ∞(TM). Consider a local chart (U, ϕ = (x1, . . . , xn)) of

M . Write X
∣∣∣
U
= Xi ∂

∂xi and Y
∣∣∣
U
= Y i ∂

∂xi . Then,

∇XY = ∇Xi ∂

∂xi
Y j ∂

∂xj

= Xi∇ ∂

∂xi
Y j ∂

∂xj

= Xi

((
L ∂

∂xi
Y j
) ∂

∂xj
+ Y j∇ ∂

∂xi

∂

∂xj

)
=
∂Y i

∂xj
Xj ∂

∂xi
+∇ ∂

∂xj

∂

∂xk
XjY k.

Note that ∇ ∂

∂xj

∂
∂xk is a vector field, hence let us write ∇ ∂

∂xj

∂
∂xk = Γi

jk
∂
∂xi . Now, we have

the coordinate formula

∇XY =

(
∂Y i

∂xj
Xj + Γi

jkX
jY k

)
∂

∂xi
.

The functions Γi
jk : U → R are called the Christoffel symbols for ∇ in the chart (U, ϕ).

Note that if we are given Christoffel symbols for an affine connection, then we know the
structure of the affine connection, at least locally.
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Note B.4 (Covariant Derivative of a Vector Field with respect to a Tangent Vector). At

a point x ∈ M , we have ∇XY (x) =
(
∂Y i

∂xj (x)X
j(x) + Γi

jk(x)X
j(x)Y k(x)

)
∂
∂xi (x). Observe

that the value of ∇XY (x) depends on X only on its value at x, i.e. X(x). Hence, we
define the covariant derivative of Y with respect to vx ∈ TM such that in coordinates
(U, ϕ = (x1, . . . , xn)) around x we have

∇vxY (x) =

(
∂Y i

∂xj
(x)vjx + Γi

jk(x)v
j
xY

k(x)

)
∂

∂xi
(x).

where vx = vix
∂
∂xi (x). It is sometimes convenient to simply write ∇vxY instead ∇vxY (x),

with the understanding that ∇vxY is actually just a tangent vector at x, not a vector field.

Note B.5 (Covariant Derivative along a Curve). Let ∇ be a C∞-affine connection on a
C∞-manifold M , let Y ∈ Γ∞(TM), and consider a C∞-curve γ : I → M . Given t ∈ I, we

know that γ′(t)
∆
= Ttγ(

∂
∂t(t)) ∈ Tγ(t)M . So in suitable coordinates (U, ϕ = (x1, . . . , xn)), we

have

∇γ′(t)Y (γ(t)) =

(
∂Y i

∂xj
(γ(t))γ̇j(t) + Γi

jk(γ(t))γ̇
j(t)Y k(γ(t))

)
∂

∂xi
(γ(t)),

where ϕ ◦ γ(t) = (γ1(t), . . . , γn(t)) and γ′(t) = γ̇i(t) ∂
∂xi (γ(t)). Notice that if we let Y (t) =

Y (γ(t)), we have

∇γ′(t)Y (t) =

(
dY

i

dt
(t) + Γi

jk(γ(t))γ̇
j(t)Y

k
(t)

)
∂

∂xi
(γ(t)).

Now, given a vector field Y along a curve γ, i.e. Y (t) ∈ Tγ(t)M for all t, we can define
the covariant derivative of a vector field along a curve such that in coordinates we
have the expression above. In particular, γ′ is itself a vector field along the curve γ. In this
case, we get

∇γ′(t)γ
′(t) =

(
γ̈i(t) + Γi

jk(γ(t))γ̇
j(t)γ̇k(t)

) ∂

∂xi
(γ(t)),

or in compact form,

∇γ′(t)γ
′(t) =

(
γ̈i + Γi

jkγ̇
j γ̇k
) ∂

∂xi
(γ(t)).

Remark B.6 (Acceleration). Essentially, ∇γ′(t)γ
′(t) gives us a coordinate-invariant way to

express the familiar yet geometrically complicated notion of acceleration.

In Appendix C, we will cover additional details regarding ∇γ′(t)γ
′(t). Here, let us move

on to a more general topic: covariant derivatives of tensor fields.

Note B.7 (Covariant Derivatives of Tensor Fields). Consider a C∞-manifold M . Let us
look at how to define a differentiation operator on (r, s)-tensor fields, which we denote by
Dr

s .
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1. (0, 0)-tensor fields: The simplest case is D0
0 : C∞(M) → C∞(M). Note that elements

in C∞(M) are (0, 0)-tensor fields.
Given X ∈ Γ∞(TM), D0

0 can be defined by the Lie derivative

D0
0f

∆
= LXf,

or by the covariant derivative

D0
0f

∆
= ∇Xf

∆
= LXf.

In this case, they are the same.
2. (1, 0)-tensor fields: For D1

0 : Γ∞(TM) → Γ∞(TM), we have the Lie bracket

D1
0Y

∆
= [X,Y ],

or the typical covariant derivative

D1
0Y

∆
= ∇XY.

Since we are interested in covariant derivatives, we shall use D0
0f

∆
= ∇Xf and D1

0Y
∆
=

∇XY .
3. (0, 1)-tensor fields: Now, we want to find the covariant derivative of (0, 1)-tensor fields,

D0
1 : Γ∞(T ∗M) → Γ∞(T ∗M).

To do this, we insist that the product rule be satisfied, i.e. given α ∈ Γ∞(T ∗M) and
Y ∈ Γ∞(TM), we have α(Y ) ∈ C∞(M), so

D0
0(α(Y )) = (D0

1α)(Y ) + α(D1
0Y ),

or
∇X(α(Y )) = (∇Xα)(Y ) + α(∇XY ),

which means
(∇Xα)(Y ) = LX(α(Y ))− α(∇XY ).

This shows how the covariant derivative of a (0, 1)-tensor field acts on vector fields.
Let (U, ϕ = (x1, . . . , xn)) be a local chart of M . We can write this out in coordinates
as follows:

∇Xα = (∇Xα)idx
i,

where
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(∇Xα)i = (∇Xα)

(
∂

∂xi

)
= LX

(
α

(
∂

∂xi

))
− α

(
∇X

∂

∂xi

)
= LX

(
αjdx

j

(
∂

∂xi

))
− αjdx

j

(
∇X

∂

∂xi

)
= LX(αi)− αpdx

p

(
Γk
jiX

j ∂

∂xk

)
=
∂αi

∂xj
dxj

(
Xk ∂

∂xk

)
− αkΓ

k
jiX

j

=
∂αi

∂xj
Xj − αkΓ

k
ijX

j .

It can be shown that ∇Xα is indeed a (0, 1)-tensor field.
4. (1, 1)-tensor fields: Given t ∈ Γ∞(T 1

1 (TM)), α ∈ Γ∞(T ∗M) and Y ∈ Γ∞(TM), we
have t(α, Y ) ∈ C∞(M). Hence, applying product rule,

∇X(t(α, Y )) = (∇Xt)(α, Y ) + t(∇Xα, Y ) + t(α,∇XY ),

i.e.
(∇Xt)(α, Y ) = ∇X(t(α, Y ))− t(∇Xα, Y )− t(α,∇XY ).

Let (U, ϕ = (x1, . . . , xn)) be a local chart of M , and write

t = tij
∂

∂xi
⊗ dxj ,

and

∇Xt = (∇Xt)
i
j

∂

∂xi
⊗ dxj .

Hence,

(∇Xt)
i
j = (∇Xt)

(
dxi,

∂

∂xj

)
= ∇X

(
t

(
dxi,

∂

∂xj

))
− t

(
∇Xdx

i,
∂

∂xj

)
− t

(
dxi,∇X

∂

∂xj

)
= LX(tij)− t

(
−Γi

qkX
kdxq,

∂

∂xj

)
− t

(
dxi,Γk

pjX
p ∂

∂xk

)
=

∂tij
∂xk

Xk − trs
∂

∂xr

(
−Γi

qkX
kdxq

)
dxs

(
∂

∂xj

)
− trs

∂

∂xr
(dxi)dxs

(
Γk
pjX

p ∂

∂xk

)
=

∂tij
∂xk

Xk + tqjΓ
i
qkX

k − tikΓ
k
pjX

p.
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5. (r, s)-tensor fields: For the general case, given t ∈ Γ∞(T r
s (TM)), α1, . . . , αr ∈

Γ∞(T ∗M), and Y1, . . . , Ys ∈ Γ∞(TM), we have

(∇Xt)(α
1, . . . , αr, Y1, . . . , Ys) = LX(t(α1, . . . , αr, Y1, . . . , Ys))

−
r∑

i=1

t(α1, . . . ,∇Xα
i, . . . , αr, Y1, . . . , Ys)

−
s∑

j=1

t(α1, . . . , αr, Y1, . . . ,∇XYj , . . . , Ys).

In coordinates (U, ϕ = (x1, . . . , xn)), we have

(∇Xt)
i1...ir
j1...js

=
∂ti1...irj1...js

∂xk
Xk +

r∑
ρ=1

Γ
iρ
kit

i1...i...ir
j1...js

Xk −
s∑

σ=1

Γj
kjσ
ti1...irj1...j...js

Xk.

Note B.8 (Covariant Differential). In general, ∇Xt(x) depends on X only on its value
at x, i.e. X(x). We call such objects tensorial in X. Hence we can define the covariant
derivative at a point using a tangent vector vx, and write ∇t(vx) instead of ∇vxt.



Appendix C

The Geodesic Spray and Lifts of
Vector Fields to the Tangent
Bundle

Definition C.1 (Geodesic). Let ∇ be an C∞-affine connection on a C∞-manifold M . A
curve γ : I →M is a geodesic if ∇γ′(t)γ

′(t) = 0.

Definition C.2 (Geodesic Spray). Let ∇ be an C∞-affine connection on a C∞-manifold
M . The geodesic spray of ∇ is a vector field on TM , S : TM → TTM , defined such that
the integral curves of S projected onto M (using the canonical projection) are geodesics of
∇. It can be shown that such a vector field is well-defined.

Note C.3 (Geodesic Spray in Coordinates). Let ∇ be an C∞-affine connection on a C∞-
manifold M . Consider a local chart (U, ϕ = (x1, . . . , xn)) of M and corresponding local
chart (TU, Tϕ = (x1, . . . , xn, v1, . . . , vn)) of TM . The geodesic spray in coordinates is

S
∣∣∣
TU

(vx) = vi
∂

∂xi
(vx)− Γi

jkv
jvk

∂

∂vi
(vx),

where Γi
jk are the Christoffel symbols for ∇ in the chart (U, ϕ).

Now, let us look at how vector fields can be lifted to be defined on the tangent bundle.
It will be helpful to introduce the following construction. Consider a C∞-manifold M . For
a local chart (U, ϕ) around x ∈ M , we define the map θx,(U,ϕ) : TxM → Rn such that

θx,(U,ϕ)([γ]x) =
d
dt

∣∣∣
t=0

ϕ ◦ γ(t).

Definition C.4 (Vertical Lift). Let M be a C∞-manifold and consider the tangent bundle
TM . Given vx ∈ TM , define the vertical lift by vx as

vlftvx : TxM → TvxTM
Xx 7→ [t 7→ vx + tXx]vx .

Now, given X ∈ Γ∞(TM), define the vertical lift of X, vlft(X) ∈ Γ∞(TTM), by

vlft(X) : TM → TTM
vx 7→ vlftvx(X(x)).
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Note C.5 (Vertical Lift in Coordinates). Consider a local chart (U, ϕ = (x1, . . . , xn))
of M and the corresponding local chart (TU, Tϕ = (x1, . . . , xn, v1, . . . , vn)) of TM . Let

X
∣∣∣
U
(x) = Xi(x) ∂

∂xi (x). Then,

TTϕ ◦ vlft(X)
∣∣∣
TU

(vx) = (Tϕ(vx),
d

dt

∣∣∣
t=0

Tϕ(vx + tX(x))))

= (Tϕ(vx),
d

dt

∣∣∣
t=0

(ϕ(x), θx,(U,ϕ)(vx + tX(x))))

= (Tϕ(vx),
d

dt

∣∣∣
t=0

(ϕ(x), θx,(U,ϕ)(vx) + tθx,(U,ϕ)(X(x))))

= (Tϕ(vx), 0, . . . , 0, θx,(U,ϕ)(X(x))))

= (Tϕ(vx), 0, . . . , 0, X
1(x), . . . , Xn(x))),

and so

vlft(X)
∣∣∣
TU

(vx) = Xi(x)
∂

∂vi
(vx).

Note that by the same calculations, we also have

vlftvx

∣∣∣
TU

(Xx) = Xi
x

∂

∂vi
(vx),

where Xx = Xi
x

∂
∂xi (x).

Definition C.6 (Tangent Lift). Given X ∈ Γ∞(TM), recall that the flow along X by t is
a mapping ΦX

t :M →M . Define the tangent lift of X, XT ∈ Γ∞(TTM), by

XT : TM → TTM
vx 7→ [t 7→ TxΦ

X
t (vx)]vx .

Note C.7 (Tangent Lift in Coordinates). Consider a local chart (U, ϕ = (x1, . . . , xn))
of M and the corresponding local chart (TU, Tϕ = (x1, . . . , xn, v1, . . . , vn)) of TM . Let

X
∣∣∣
U
(x) = Xi(x) ∂

∂xi (x). Then,

TTϕ ◦XT
∣∣∣
TU

(vx) = (Tϕ(vx),
d

dt

∣∣∣
t=0

(Tϕ ◦ TxΦX
t (vx)))

= (Tϕ(vx),
d

dt

∣∣∣
t=0

(ϕ ◦ ΦX
t (x), θΦX

t (x),(U,ϕ) ◦ TxΦ
X
t (vx))).

Let ϕ ◦ ΦX
t (x) = (γ1(t), . . . , γn(t)). Then,

d

dt

∣∣∣
t=0

ϕ ◦ ΦX
t (x) = (γ̇1(0), . . . , γ̇n(0))

= (X1 ◦ ϕ−1(γ1(0), . . . , γn(0)), . . . , Xn ◦ ϕ−1(γ1(0), . . . , γn(0)))

= (X1(x), . . . , Xn(x)).
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Let vx = [τ 7→ λ(τ)]x and ϕ ◦ λ(τ) = (λ1(τ), . . . , λn(τ)). Then,

d

dt

∣∣∣
t=0

θΦX
t (x),(U,ϕ) ◦ TxΦ

X
t (vx) =

d

dt

∣∣∣
t=0

θΦX
t (x),(U,ϕ)([Φ

X
t ◦ λ(τ)]ΦX

t (x))

=
d

dt

∣∣∣
t=0

d

dτ

∣∣∣
τ=0

(ϕ ◦ ΦX
t ◦ λ(τ))

=
d

dt

∣∣∣
t=0

d

dτ

∣∣∣
τ=0

(ϕ ◦ ΦX
t ◦ ϕ−1 ◦ ϕ ◦ λ(τ))

=
d

dt

∣∣∣
t=0

(
d

dτ

∣∣∣
τ=0

(ϕ ◦ ΦX
t ◦ ϕ−1 ◦ ϕ ◦ λ(τ))

)
=

d

dt

∣∣∣
t=0

(
D(ϕ ◦ ΦX

t ◦ ϕ−1)
∣∣∣
ϕ(x)

◦ d

dτ

∣∣∣
τ=0

(ϕ ◦ λ(τ))
)

=
d

dt

∣∣∣
t=0

(
D(ϕ ◦ ΦX

t ◦ ϕ−1)
∣∣∣
ϕ(x)

(v1, . . . , vn)

)
=

(
d

dt

∣∣∣
t=0

D(ϕ ◦ ΦX
t ◦ ϕ−1)

∣∣∣
ϕ(x)

)
(v1, . . . , vn)

= D

(
d

dt

∣∣∣
t=0

(
ϕ ◦ ΦX

t ◦ ϕ−1
)) ∣∣∣

ϕ(x)
(v1, . . . , vn)

= D(X1 ◦ ϕ−1, . . . , Xn ◦ ϕ−1)
∣∣∣
ϕ(x)

(v1, . . . , vn)

=


∂(X1◦ϕ−1)

∂x1

∣∣∣
ϕ(x)

. . . ∂(X1◦ϕ−1)
∂xn

∣∣∣
ϕ(x)

...
. . .

...
∂(Xn◦ϕ−1)

∂x1

∣∣∣
ϕ(x)

. . . ∂(Xn◦ϕ−1)
∂xn

∣∣∣
ϕ(x)


v

1

...
vn


=

(
∂(X1 ◦ ϕ−1)

∂xi

∣∣∣
ϕ(x)

vi, . . . ,
∂(Xn ◦ ϕ−1)

∂xi

∣∣∣
ϕ(x)

vi
)

=

(
∂X1

∂xi
(x)vi, . . . ,

∂Xn

∂xi
(x)vi

)
.

Hence, we have

TTϕ ◦XT
∣∣∣
TU

(vx) = (Tϕ(vx), X
1(x), . . . , Xn(x),

∂X1

∂xi
(x)vi, . . . ,

∂Xn

∂xi
(x)vi),

and so

XT
∣∣∣
TU

(vx) = Xi(x)
∂

∂xi
(vx) +

∂Xi

∂xj
(x)vj

∂

∂vi
(vx).

Proposition C.8 (Tangent Lift at an Equilibrium Point [3]). Let M be a C∞-manifold,
X ∈ Γ∞(TM), and x0 ∈ M such that X(x0) = 0. Recall the tangent bundle projection
πTM : TM →M . Then, for all vx0 ∈ Tx0M , we have

Tvx0πTM (XT (vx0)) = 0.

In addition, there exists a unique AX(x0) ∈ L(Tx0M ;Tx0M) such that for all vx0 ∈ Tx0M ,
we have

XT (vx0) = vlftvx0 (AX(x0) · vx0).

AX(x0) is called the linearization of X at x0.
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Note C.9 (Tangent Lift and Linearization). The tangent lift is essentially the linearization
of a vector field which is valid over the entire manifold. At an equilibrium point, with the
tangent lift written in coordinates, only the Jacobian term remains, and thus there exists
a linearization which is a linear map such that the tangent lift can be written in terms of
a vertical lift.



Appendix D

Vector Bundles

In this appendix, we give a brief introduction to vector bundles, referring to [3]. The basic
idea of a vector bundle is to attach a vector space to each point of some base manifold.

Definition D.1 (Local Model for a Vector Bundle). Given U ⊆ Rn open, we call U × Rk

a local model for a vector bundle.

Definition D.2 (Local Vector Bundle Map). Let g : U ×Rk → V ×Rl, where U ×Rk and
V × Rl are local models for vector bundles.
(i) g is a C∞-local vector bundle map if g(x, v) = (g1(x), g2(x)v), where g1 : U → V

and g2 : U → L(Rk;Rl) are C∞.
(ii) g is a C∞-local vector bundle isomorphism if g(x, v) = (g1(x), g2(x)v), where

g1 : U → V is a C∞-diffeomorphism and g2 : U → L(Rk;Rl) is C∞ such that for all
x ∈ U , g2(x) is a vector space isomorphism.

Definition D.3 (Vector Bundle). Let A = {(Uα, ϕα)}α∈Λ be an atlas for a set S. We call
S a C∞-vector bundle if, for all α ∈ Λ, ϕα(Uα) is a local model for a vector bundle, and,
for all α, β ∈ Λ such that Uα ∩ Uβ ̸= ∅,

ϕα ◦ ϕ−1
β

∣∣∣
ϕβ(Uα∩Uβ)

: ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)

is a C∞-local vector bundle isomorphism. We call A a C∞-vector bundle atlas. Two
C∞-vector bundle atlases A1 and A2 are equivalent if A1∪A2 is a C

∞-vector bundle atlas.
A C∞-vector bundle structure is an equivalence class of such atlases. A chart in one of
these atlases is called an admissible vector bundle chart.

Definition D.4 (Base Space). Let V be a vector bundle. The base space of V is defined
as

B = {v ∈ V | ∃ an admissible vector bundle chart (U, ϕ) such that ϕ(v) = (x, 0) ∈ ϕ(U)}.

Note that this is well-defined.

Definition D.5 (Vector Bundle Projection). The vector bundle projection is defined
as π : V → B such that for all v ∈ V , we have π(v) = ϕ−1(pr1(ϕ(v)), 0), where (U, ϕ) is a
local vector bundle chart for V around v. Note that this is also well-defined.
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Definition D.6. (i) The base space B, when thought of as a submanifold of V , is called
the zero section and is denoted Z(V ).

(ii) Given b ∈ B, the fiber over b is the set Vb = π−1(b).

Definition D.7 (Section of a Vector Bundle). Let V be a C∞-vector bundle, π : V → B
the vector bundle projection, and consider a map ξ : B → V . We call ξ a C∞-section of

V if ξ is C∞ and π ◦ ξ = idB. Define Γ∞(V )
∆
= {ξ : B → V | ξ is a C∞-section of V }.

Definition D.8 (Subbundle of a Vector Bundle). Let V be a C∞-vector bundle, π : V → B
the vector bundle projection, and consider W ⊆ V . We call W a C∞-vector subbundle
of V if, for all b ∈ B, there exists a local chart (U, ϕ) of B and an admissible vector bundle
chart (π−1(U), ψ) for V such that
(i) b ∈ U ,
(ii) ψ : π−1(U) → ϕ(U)× Rl × Rk−l,
(iii) ϕ ◦ π ◦ ψ−1(x, u, v) = x, where ϕ ◦ π ◦ ψ−1 : ϕ(U)× Rl × Rk−l → ϕ(U), and
(iv) ψ(π−1(U) ∩W ) = ϕ(U)× Rl × {0}.

Note D.9. 1. W is a submanifold of V .
2. The idea of a vector subbundle is that one can smoothly select a subspaceWb = Vb∩W

from each fiber Vb.
3. Define the rank of W at b as rank(Wb) = dim(Wb).
4. The rank of a subbundle is locally constant. This can be too much of a restriction,

so we consider generalized subbundles.

Definition D.10 (Generalized Subbundle of a Vector Bundle). Let V be a C∞-vector
bundle, π : V → B the vector bundle projection, and consider W ⊆ V . We call W a
C∞-generalized subbundle of V if, for all b0 ∈ B,
(i) Vb0 ∩W is a subspace, and
(ii) there exists a neighbourhood U ⊆ B of b0 and a family {ξa}a∈A of C∞-sections of

V
∣∣∣
U

(called local generators of W ) such that for all b ∈ U , we have Vb ∩ W =

spanR{ξa(b) | a ∈ A}.

Definition D.11. Let V be a C∞-vector bundle, and consider a Cr-generalized subbundle
W ⊆ V of V .
(i) Given b ∈ B, b is a regular point of W if there exists a neighbourhood U ⊆ B of b

such that the rank of the fiber is constant on U .
(ii) Given b ∈ B, b is a singular point of W if b is not a regular point of W .
(iii) W is regular if b is a regular point of W for all b ∈ B.

Note D.12. A regular C∞-generalized subbundle is equivalently a C∞-subbundle.

Definition D.13 (Vector Bundle Map). Given C∞-vector bundles V andW , with π : V →
B and σ :W → A, consider a C∞-map f : V →W . We call f a C∞-vector bundle map

if there exists a C∞-map f0 : B → A such that f0 ◦ π = σ ◦ f and f
∣∣∣
Vb

∈ L(Vb;Wf0(b)). If

f is a C∞-diffeomorphism, we call it a C∞-vector bundle isomorphism.



Appendix E

Distributions, Codistributions and
Integrability

Definition E.1 (Distribution). Let M be a C∞-manifold.
(i) We call D a distribution on M if, for all x ∈M , D(x) ⊆ TxM is a subspace.
(ii) A distribution D on M is C∞ if D is a C∞-generalized subbundle of TM .
(iii) A C∞-distribution D on M is regular if D is a C∞-subbundle of TM .

Definition E.2 (Codistribution). Let M be a C∞-manifold.
(i) We call Λ a codistribution on M if, for all x ∈M , Λ(x) ⊆ T ∗

xM is a subspace.
(ii) A codistribution Λ on M is C∞ if Λ is a C∞-generalized subbundle of T ∗M .
(iii) A C∞ codistribution Λ on M is regular if Λ is a C∞-subbundle of T ∗M .

Note E.3. For a distribution D or codistribution Λ on M , we will often write Dx and Λx

instead of D(x) and Λ(x).

Definition E.4 (Involutivity). (i) Given a C∞-distribution D onM and X ∈ Γ∞(TM),
we say that X belongs to D if, for all x ∈M , we have X(x) ∈ D(x).

(ii) Given a C∞-distribution D on M , we say that D is involutive if, for all X1, X2 ∈
Γ∞(TM) such that X1, X2 belong to D, we have that [X1, X2] belongs to D.

Definition E.5 (Local Integral Manifold). Consider a C∞-manifold M , and a C∞ distri-
bution D on M . Given x0 ∈M , and a C∞-immersed submanifold S of a neighbourhood U
of x0, S is a local integral manifold if, for all x ∈ S, we have TxS ⊆ D(x).

Definition E.6 (Maximal Integral Manifold). (i) Given S, a local integral manifold, S
is maximal if, for all x ∈ S, we have TxS = D(x).

(ii) Given S, a maximal local integral manifold through x0, S is the maximal integral
manifold for D through x0 if it contains any maximal local integral manifold
through x0.

Definition E.7 (Integrability). D is integrable if, for all x ∈ M , there exists a maximal
local integral manifold through x.

Theorem E.8 (Frobenius). A regular C∞-distribution D is integrable if and only if D is
involutive.
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Proposition E.9. Let D be an integrable C∞-distribution on M and x0 ∈ M . If x0 is a
regular point for D, then there exists a local chart (U, ϕ) of M around x0 such that for all
x ∈ U , we have

D(x) = span

{
∂

∂x1
(x), . . . ,

∂

∂xk
(x)

}
.

Conversely, if such a local chart exists, then D
∣∣∣
U

is integrable.
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