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Abstract

The theory of integration for functions with values in a topological vector space
is a bit of a messy subject. There are many different choices for the integral, most
distinct from one another in general, and with no compelling reason to always adopt
one definition or another as the “right” one. No attempt is made here to resolve
this question of which integral is the “right” integral, but we overview a few of the
common notions and prove a couple of useful properties for the notion of integrability
by seminorm. For this notion of integrability, the completeness of the space of integrable
functions with values in a complete locally convex space is established. This space is
then easily seen to be isomorphic to the completion of the projective tensor product of
the usual L1 space of scalar functions with the vector space. Absolute continuity for this
notion of integrability is also considered. Here it is shown that the familiar properties
of differentiation for absolutely continuous scalar functions holds in the vector-valued
case.
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1. Introduction

We let (X,A , µ) be a complete σ-finite measure space, and we let (V,O ) be an Haus-
dorff locally convex topological F-vector space, F ∈ {R,C}. We consider the matter of
integrability of functions f : X → V. In the case that (V,O ) is a Banach space, Bochner
[1933] introduced a notion of integral that closely mirrors the usual construction of the
integral for R-valued functions. This theory has many of the nice properties of the usual
theory of integration for scalar-valued functions, but it is not clear how it is to be best
extended to the case of a general Hausdorff locally convex (V,O ). In the general locally
convex case, Pettis [1938] gives a “weak” definition of an integral which has many nice
properties. However, it lacks a compelling existence theory. Thomas [1975] considers the
case when (V,O ) is a Suslin locally convex topological vector space, and uses properties of
Suslin spaces in a substantial way to give useful existence results for the Pettis integral.
The notion of integrability by seminorm seems to have first been developed by Garnir, De
Wilde, and Schmets [1972]. It has been considered by a few authors since its introduction,
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including [Blondia 1981, Chakraborty and Ali 1993, Marraffa 2006]; however, compared
to the Bochner and Pettis integrals, it is a comparatively not well-known approach. It is
this notion of integrability by seminorm that we mainly consider in this paper. In order to
give context, we shall also consider in brief the more common strong (Bochner) and weak
(Pettis) integrals, alongside integrability by seminorm.

Our interest is in answering two related questions concerning the space of functions that
are integrable by seminorm:

1. is this space of functions complete?

2. is this space of functions isomorphic to L1(X;F)⊗πV, the completion of the projective
tensor product of the scalar L1-space with V?

The connection of spaces of integrable vector-valued functions to the projective tensor prod-
uct is firmly established at the level of book literature [Jarchow 1981, Köthe 1979, Schaefer
and Wolff 1999]. In the case that (V,O ) is a Banach space, the answer to both questions we
ask is, “Yes” [Jarchow 1981, Corollary 15.7.5], [Köthe 1979, page 199-200]. For general lo-
cally convex Hausdorff topological vector spaces, the questions are not typically addressed,
at least not definitively. For instance, the constructions of Jarchow [1981, Corollary 15.7.2],
Köthe [1979, page 199-200], and Schaefer and Wolff [1999, Theorem III.6.5] define the space
of integrable functions to be the completion of the space of simple functions, and this is
fairly easily shown to be isomorphic to L1(X;F)⊗πV. The matter of when this completion is
identifiable as some collection of integrable functions is sidestepped in this approach. Even
with the more concrete representation of functions integrable by seminorm, Blondia [1981,
Theorem 3.1] only establishes that the completion of the space of functions integrable by
seminorm is topologically isomorphic to L1(X;F)⊗πV.

The bottom line is that the two questions above seem to be unanswered, and as we
believe them to be of some degree of importance in “closing the loop” on the theory of inte-
grability by seminorm, and also of the meaning of L1(X;F)⊗πV, we answer both questions
in the affirmative when (V,O ) is complete.

As well, we prove that, if I ⊆ R is an interval, if f : I → V is integrable by seminorm,
and if

F (t) =

∫ t

t0

f(τ) dλ(τ) (λ is Lebesgue measure),

i.e., F is locally absolutely continuous, then F is almost everywhere differentiable and its
derivative is almost everywhere equal to f .

2. Measurable and integrable vector-valued functions

In this section we review the notion of integrability by seminorm. Since the existing
presentations of the properties of this integral are quite fragmented, we feel that there is
some benefit in proving the most fundamental of these properties in a self-contained manner,
although these results can be cobbled together from the existing literature with some effort.
We include in our definitions the notions of strong (i.e., Bochner) integrability and weak
(i.e., Pettis) integrability for the pedagogical purpose of comparison. We shall not establish
important results for these notions, but will refer to the literature when appropriate.

Throughout the paper, we use F to denote either R or C. Unless indicated to the
contrary, (X,A , µ) is a complete σ-finite measure space and (V,O ) is an Hausdorff locally
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convex topological F-vector space. We shall denote the collection of continuous seminorms
for (V,O ) by P . We denote the topological dual of (V,O ) by V′. We denote the dual
pairing between V′ and V by ⟨·; ·⟩. For A ⊆ V,

A◦ = {λ ∈ V′ | |⟨λ; v⟩| ≤ 1, v ∈ A}

is the polar of A.

2.1. Measurability. We first consider a few notions of measurability and how they are
related.

A µ-simple function is a function s : X→ V of the form

s =
k∑

j=1

χAjvj ,

where A1, . . . , Ak ∈ A are pairwise disjoint and satisfy µ(Aj) < ∞, j ∈ {1, . . . , k}, and
where v1, . . . , vk ∈ V. We use χA to denote the characteristic function of a set A.

The common notions of measurability are then the following.

2.1 Definition: (Measurability for vector-valued functions) A function f : X→ V is:

(i) measurable if f−1(B) ∈ A for every Borel set B ⊆ V;

(ii) strongly measurable if there exists a sequence (sj)j∈Z>0 of simple functions and a
subset Z ⊆ X of measure zero such that (sj(x))j∈Z>0 converges to f(x) for x ∈ X \Z;

(iii) measurable by seminorm if, for each p ∈ P , there exists a subset Zp ⊆ X of
measure zero and a sequence (sp,j)j∈Z>0 of simple functions such that (sp,j(x))j∈Z>0

converges to f(x) in (V, p) for every x ∈ X \ Zp;

(iv) weakly measurable if X ∋ x 7→ λ ◦ f(x) is measurable for every λ ∈ V′. •
Strong measurability implies measurability, which in turn implies measurability by semi-

norm. The former is proved by proving that

A ′ = {T ⊆ V | f−1(T ) ∈ A }.

is a σ-algebra containing O , and noting that, if the sequence (sj)j∈Z>0 converges pointwise
almost everywhere to f , then, for O ∈ O ,

f−1(O) =
⋃

N∈Z>0

∞⋃
j=N

s−1
j (O) ∈ A ,

modulo some fiddling with sets of measure zero. The latter follows by continuity of p. To
prove that measurability by seminorm implies weak measurability, we consider the usual
notions of functions whose image is, in some sense, separable.
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2.2 Definition: (Essentially separably-valued) A function f : X→ V is:

(i) essentially separably-valued if there exists a subset Z ⊆ X of measure zero and a
countable subset C ⊆ V such that f(X \ Z) ⊆ cl(C);

(ii) essentially separably-valued by seminorm if, for each p ∈ P , there exists a
subset Zp ⊆ X of measure zero and a countable subset Cp ⊆ V such that f(X \Zp) ⊆
clp(Cp) (here “clp” means closure in the seminormed vector space (V, p)). •

Obviously, if (V,O ) is separable, then both of these conditions hold for any V-valued
function. The notion of being essentially separably-valued plays an important rôle in the
classical presentation of the Bochner integral for Banach spaces, via the so-called Pettis
Measurability Theorem. Here we present this in the setting of measurability by seminorm.
The idea of the proof is an exercise on page 247 of [Garnir, De Wilde, and Schmets 1972],
the central ideas for which are to be found at various places in the text.

2.3 Theorem: (Pettis Measurability Theorem) For f : X → V, the following state-
ments are equivalent:

(i) f is measurable by seminorm;

(ii) f is (a) weakly measurable and (b) essentially separably-valued by seminorm.

Proof: (i) =⇒ (ii) Let λ ∈ V′ and note that p = |λ| is a continuous seminorm. By hypothesis,
let Zp ⊆ X have measure zero and let (sp,j)j∈Z>0 be a sequence of simple functions for which
(sp,j(x))j∈Z>0 converges to f(x) in (V, p) for every x ∈ X \ Zp. Then, for x ∈ X \ Zp,

lim
j→∞
|⟨λ; f(x)⟩ − ⟨λ; sp,j(x)⟩| = lim

j→∞
|⟨λ; f(x)− sp,j(x)⟩|

= lim
j→∞

p(f(x)− sp,j(x)) = 0.

Thus (⟨λ; sp,j(x)⟩)j∈Z>0 converges to ⟨λ; f(x)⟩ for x ∈ X\Zp. Thus λ ◦f is measurable, and
so we have weak measurability of f .

Now let p be a continuous seminorm, let Zp ⊆ X have measure zero, and let (sp,j)j∈Z>0 be
a sequence of simple functions for which (sp,j(x))j∈Z>0 converges to f(x) in (V, p) for every
x ∈ X \Zp. Since sp,j takes values in a finite subset of V, the set Cp = ∪j∈Z>0 image(sp,j) is
countable. The definition of measurability by seminorm ensures that clp(Cp) = f(X \ Zp);
thus f is essentially separably-valued by seminorm.

(ii) =⇒ (i) Let p be a continuous seminorm and let Zp ⊆ X have measure zero and let
Cp ⊆ V be countable and such that f(X \ Zp) ⊆ clp(Cp). Let us write the points in Cp as
(vj)j∈Z>0 . Let N = p−1([0, 1]) and note that, for v ∈ V,

p(v) = inf{r ∈ R>0 | v ∈ rN}
= inf{r ∈ R>0 | r−1v ∈ N}
= inf{r ∈ R>0 | |⟨λ; r−1v⟩| ≤ 1, λ ∈ N◦}
= inf{r ∈ R>0 | |⟨λ; v⟩| ≤ r, λ ∈ N◦}
= sup{|⟨λ; v⟩| | λ ∈ N◦}. (2.1)

It is now convenient to prove a lemma.
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1 Lemma: With all of the preceding notation in place, there exists a countable subset Λ ⊆
N◦ such that, for x ∈ X \ Zp, we have

p ◦ f(x) = sup{⟨λ; f(x)⟩ | λ ∈ Λ}.

Proof: We are using the notation Cp = {vj | j ∈ Z>0}. Consider a mapping

Φk : N
◦ → Fk

λ 7→ (⟨λ; v1⟩, . . . , ⟨λ; vk⟩).

For each k ∈ Z>0, let (λk,l)l∈Z>0 be such that {Φk(λk,l) | l ∈ Z>0} is dense in image(Φk),
this being possible since Fn is separable and since subsets of separable metric spaces are
separable.

Now, for λ ∈ N◦ and k ∈ Z>0, we can choose lk ∈ Z>0 large enough that

|⟨λk,lk ; vj⟩ − ⟨λ; vj⟩| <
1

k
, j ∈ {1, . . . , k}.

Let us take λk = λk,lk , and verify that Λ = {λk | k ∈ Z>0} meets the criteria of the lemma.
Let x ∈ X \ Zp and let ϵ ∈ R>0. Since clp(Cp) = f(X \ Zp), let j ∈ Z>0 be such that

|p ◦ f(x)− p(vj)| <
ϵ

4
.

By (2.1), let λ ∈ N◦ be such that

|p(vj)− ⟨λ; vj⟩| <
ϵ

4
.

By the previous paragraph, let k ∈ Z>0 be such that

|⟨λ; vj⟩ − ⟨λk; vj⟩| <
ϵ

4
.

Since λk ∈ N◦, we have

|⟨λk; vj⟩ − ⟨λk; f(x)⟩| = |⟨λk; f(x)− vj⟩| ≤ p(f(x)− vj),

by (2.1). Then we compute

|p ◦ f(x)− ⟨λk; f(x)⟩| ≤ |p ◦ f(x)− p(vj)|+ |p(vj)− ⟨λ; vj⟩|
+ |⟨λ; vj⟩ − |⟨λk; vj⟩||+ |⟨λk; vj⟩ − ⟨λk; f(x)⟩| < ϵ,

which is as desired. ▼

By the lemma and by [Cohn 2013, Proposition 2.1.5(a)], we conclude that p ◦ f is
measurable.

Now, for j, k ∈ Z>0, denote

Aj,k = {x ∈ X \ Zp | f(x) ∈ vj + k−1N} = {x ∈ X \ Zp | p(f(x)− vj) ≤ k−1},
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noting that measurability of p ◦ f implies that Aj,k ∈ A , j, k ∈ Z>0. Density (with respect
to the seminorm p) of Cp in f(X \ Zp) implies that

f(X \ Zp) =
⋃

j∈Z>0

f(Aj,k), k ∈ Z>0.

Now define A′
1,k = A1,k, k ∈ Z>0, and recursively take

A′
j,k = Aj,k \

(
k−1⋃
l=1

A′
j,l

)
, j ≥ 2, k ∈ Z>0,

and note that the sets A′
j,k, j, k ∈ Z>0, are themselves measurable, and moreover pairwise

disjoint. We also still have

f(X \ Zp) =
⋃

j∈Z>0

f(A′
j,k), k ∈ Z>0.

Also, vj ∈ f(A′
j,k), j, k ∈ Z>0. We then take

sk : X→ V

x 7→
k∑

j=1

vjχA′
j,k
,

noting that sk is a simple function by virtue of pairwise disjointness of the sets A′
j,k, j, k ∈

Z>0. Moreover, because the sets A′
j,k, j, k ∈ Z>0, are pairwise disjoint, if x ∈ A′

j,k for some
k ∈ Z>0 and some j ∈ {1, . . . , k}, then sk(x) = vj .

It remains to show that (sk(x))k∈Z>0 converges to f(x) in (V, p) for every x ∈ X \ Zp.
To see this, let x ∈ X \Zp, let ϵ ∈ R>0, and let j ∈ Z>0 be such that p(f(x)− vj) < ϵ. Let
N ≥ j be such that f(x) ∈ vj +N−1N. Then, for k ≥ N ,

x ∈ A′
j,k =⇒ sk(x) = vj =⇒ p(f(x)− sk(x)) < ϵ,

as desired. ■

For Suslin spaces, Thomas [1975] shows that all four notions of measurability are equiv-
alent and, furthermore, that there is a countable subset of V′ for which it suffices to check
weak measurability. When (V,O ) is metrisable, then measurability by seminorm implies
strong measurability.

2.4 Proposition: (Measurability by seminorm for metrisable spaces) If (V,O ) is
metrisable, then f : X→ V is measurable by seminorm if and only if it is strongly measur-
able.

Proof: Let (pj)j∈Z>0 be a countable set of continuous seminorms generating the topology
O . Let Zpj ⊆ X be sets of measure zero and let Cpj ⊆ V be countable sets such that
f(X\Cpj ) ⊆ clpj (Cpj ), j ∈ Z>0. Let Z = ∪kj=1Zpj and C = ∪kl=1Cpj . Let p be a continuous
seminorm for (V,O ) and let M ∈ R>0 and j1, . . . , jk ∈ Z>0 be such that

p(v) ≤M max{pj1(v), . . . , pjk(v)}.
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Therefore, if Npjl
= p−1

jl
([0, 1)) and Np = p−1([0, 1)) are the absolutely convex 0-

neighbourhoods, we have

M−1Npjl
⊆ Np =⇒ clpjl (Cpjl

) ⊆ clp(Cpjl
), l ∈ {1, . . . , k}.

Now we have

x ∈ X \ Z =⇒ x ∈ X \ Zjl =⇒ f(x) ∈ clpjl (Cpjl
) ⊆ clp(Cpjl

) ⊆ clp(C),

which gives the result. ■

2.2. Integrability. Next we consider notions of integrability for vector-valued functions. We
again consider other notions that that of integrability by seminorm, just for pedagogical
reasons.

For a simple function s =
∑k

j=1 χAjvj , the integral of s is

∫
X

s dµ =
k∑

j=1

µ(Aj)vj ∈ V.

It is routine to show that this definition of integral is independent of the particular repre-
sentation of a simple function.

The notions of integrability that we write down are then the following.

2.5 Definition: (Integrability for vector-valued functions) Let f : X→ V.

(i) The function f is strongly integrable if there exist a sequence (sj)j∈Z>0 of simple
functions and a subset Z ⊆ X of measure zero such that:

(a) (sj(x))j∈Z>0 converges to f(x) for x ∈ X \ Z;

(b) for each p ∈ P and for each j ∈ Z>0, the function p ◦ (f − sj) is integrable and

lim
j→∞

∫
X

p ◦ (f − sj) dµ = 0;

(c) for A ∈ A , the limit limj→∞
∫
A sj dµ exists.

We denote the strong integral of f by

(S)

∫
X

f dµ = lim
j→∞

∫
X

sj dµ.

(ii) The function f is integrable by seminorm if, for each p ∈ P and for each A ∈ A ,
there exists a sequence (sp,j)j∈Z>0 of simple functions, a subset Zp ⊆ X of measure
zero, and IA(f) ∈ V such that:

(a) (sp,j(x))j∈Z>0 converges to f(x) in (V, p) for x ∈ X \ Zp;

(b) x 7→ p(f(x)− sp,j(x)) is integrable for j ∈ Z>0 and

lim
j→∞

∫
X

p ◦ (f − sp,j) dµ = 0;
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(c) we have

lim
j→∞

p

(∫
A
sp,j dµ− IA(f)

)
= 0.

We denote the integral of f by∫
X

f dµ = IX(f).

(iii) The function f is weakly integrable if, for each A ∈ A , there exists IA(f) ∈ V such
that, for each λ ∈ V′:

(a) λ ◦ f is measurable;

(b) λ ◦ f is integrable;

(c) we have

⟨λ; IA(f)⟩ =
∫
A
λ ◦ f dµ.

We denote the weak integral of f by

(W )

∫
X

f dµ = IX(f). •

For our purposes, as we are mainly interested in integrability by seminorm we simply
refer to the “integral” as that version of the integral arising in this case, just for the sake
of brevity. The weak integral is the classical Pettis integral. The strong integral gives the
classical Bochner integral when (V,O ) is a Banach space. In the general case of a locally
convex space, there seems to not be much known about the strong integral. An approach
using approximation by nets of simple functions is presented by Beckmann and Deitmar
[2011]. A difficulty with this approach concerns measurability, where nets interact poorly
with measurability. This is overcome by Beckmann and Deitmar by making a blanket
assumption of measurability. This, however, makes things like the Dominated Convergence
Theorem problematic.

One readily verifies, using the triangle inequality, that if f is integrable by seminorm
(or, indeed, strongly integrable), then p ◦ f is integrable and

p

(∫
X

f dµ

)
≤
∫
X

p ◦ f dµ, p ∈ P . (2.2)

It is also relatively easy to establish that, if f is integrable by seminorm (or, indeed, strongly
or weakly integrable), and if ϕ : V→ U is a continuous linear map, then∫

X

ϕ ◦ f dµ = ϕ

(∫
X

f dµ

)
. (2.3)

In terms of comparing these integrals, it is obvious that strong integrability implies
integrability by seminorm, and that the values for the two integrals agree. The converse
assertion also clearly holds for normed vector spaces. In the following result we give the
relationship between integrability by seminorm and weak integrability. As with the Pettis
Measurability Theorem, this result can be pieced together from material in [Garnir, De
Wilde, and Schmets 1972], entering the presentation around page 253.
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2.6 Theorem: (Comparison of integrals) If f : X→ V is measurable by seminorm, then
the following are equivalent:

(i) f is integrable by seminorm;

(ii) f is weakly integrable and p ◦ f is integrable for every continuous seminorm p for
(V,O ).

Moreover, if either of the two conditions is satisfied, then∫
X

f dµ = (W )

∫
X

f dµ.

Proof: (i) =⇒ (ii) By (2.2), we know that p ◦ f is integrable for every p ∈ P . By (2.3), λ ◦ f
is integrable and, for each λ ∈ V′,∫

X

λ ◦ f dµ = λ

(∫
X

f dµ

)
.

The definition of the weak integral then ensures that f is weakly integrable with weak
integral equal to the integral.

(ii) =⇒ (i) First let us prove a lemma.

1 Lemma: If f : X→ V is measurable by seminorm and is such that p ◦ f is integrable for
every p ∈ P , then, for every p ∈ P , there exists a sequence (sp,j)j∈Z>0 of simple functions
and a subset Zp ⊆ X of measure zero such that

lim
j→∞

p(f(x)− sp,j(x)) = 0, x ∈ X \ Zp,

and

lim
j→∞

∫
X

p ◦ (f − sp,j) dµ = 0.

Proof: We use σ-finiteness of the measure to define F : X→ R>0 by

F =

∞∑
j=1

1

1 + 2jµ(Aj)
χAj ,

where X = ∪j∈Z>0Aj , µ(Aj) < ∞, and the family Aj , j ∈ Z>0, is pairwise disjoint. Then
F is measurable and, since∫

X

N∑
j=1

1

1 + 2jµ(Aj)
χAj dµ <

N∑
j=1

1

2j
≤ 1,

by the Beppo–Levi Theorem [Cohn 2013, Corollary 2.4.2], we can conclude that F is inte-
grable. One then defines a finite measure µF on (X,A ) by

µF (A) =

∫
X

FχA dµ,

and one can easily see that each of the measures µ and µF is absolutely continuous with
respect to the other.



10 A. D. Lewis

Measurability of f by seminorm means that, for each p ∈ P , there exists a sequence
(tp,j)j∈Z>0 of simple functions and a subset Zp ⊆ X of measure zero such that

lim
j→∞

p(f(x)− tp,j(x)) = 0, x ∈ X \ Zp.

Let
Ap,j = {x ∈ X | p ◦ tp,j(x) ≤ p ◦ f(x) + F (x)}

and let sp,j = χAp,j tp,j , and note that sp,j is a simple function for each j ∈ Z>0. By [Cohn
2013, Proposition 2.1.3], Ap,j ∈ A , j ∈ Z>0. We then have

lim
j→∞
|p ◦ f(x)− p ◦ tp,j(x)| ≤ lim

j→∞
p(f(x)− tp,j(x)) = 0, x ∈ X \ Zp,

and so X \ Zp ⊆ ∪j∈Z>0Ap,j . Therefore,

lim
j→∞

p(f(x)− sp,j(x)) = 0, x ∈ X \ Zp.

Since
p(f(x)− sp,j(x)) ≤ p ◦ f(x) + F (x), x ∈ X \ Zp, j ∈ Z>0,

and since the right-hand side is integrable by hypothesis, the Dominated Convergence The-
orem [Cohn 2013, Theorem 2.4.5] then gives

lim
j→∞

∫
X

p ◦ (f − sp,j) dµ = 0,

which is the result. ▼

Continuing with the proof, let (sp,j)j∈Z>0 be a sequence of simple functions satisfying
the conclusions of the lemma. This already gives the first of the conditions for integrability
by seminorm. As for the second,

p(f(x)− sp,j(x)) ≤ p ◦ f(x) + p ◦ sp,j(x), x ∈ X \ Zp, j ∈ Z>0,

which gives integrability of the left-hand side, giving the second of the conditions of inte-
grability by seminorm by the lemma.

It remains to verify the third of the conditions for integrability by seminorm, and that
the value of the integral agrees with the weak integral. Let IX(f) be the weak integral of
f . Weak integrability implies that

λ(IX(f)) =

∫
X

λ ◦ f dµ,

which gives

λ(IX(f)− IX(sp,j)) =

∫
X

λ ◦ (f − sp,j) dµ.

Using (2.1), for a continuous seminorm p with associated 0-filter neighbourhood N =
p−1([0, 1]), we have

p(IX(f)− IX(sp,j)) = sup{|⟨λ; IX(f)− IX(sp,j)⟩| | λ ∈ N◦}

≤ sup

{∫
X

|⟨λ; f − sp,j⟩|dµ
∣∣∣∣ λ ∈ N◦

}
=

∫
X

p ◦ (f − sp,j) dµ,

By the lemma, letting j →∞ we get conclusions of the theorem. ■
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A function f : X→ V is integrally bounded if p ◦ f is integrable for every continuous
seminorm p for (V,O ). The following theorem shows the importance of this notion for
integrability by seminorm for functions taking values in complete spaces. Our proof here
follows [Blondia 1981, Theorem 2.10].

2.7 Theorem: (Integrability for complete locally convex topological vector
spaces) If (V,O ) is complete, the following are equivalent for a function f : X→ V:

(i) f is integrable by seminorm;

(ii) f is measurable by seminorm and integrally bounded.

Proof: (i) =⇒ (ii) If f is integrable (by seminorm), then it is measurable by seminorm, by
definition. By (2.2), f is also integrally bounded.

(ii) =⇒ (i) By the Lemma from the proof of Theorem 2.6, for p ∈ P , there exists a
subset Zp ⊆ X of measure zero and a sequence (sp,j)j∈Z>0 of simple functions such that

lim
j→∞

p(f(x)− sp,j(x)) = 0, x ∈ X \ Zp,

and

lim
j→∞

∫
X

p ◦ (f − sp,j) dµ = 0. (2.4)

Let us define a directed set

I = {(P, k) | P ⊆ P is finite and k ∈ Z>0},

with the partial order

(P1, k1) ⪯ (P2, k2) ⇐⇒ P1 ⊆ P2, k1 ≤ k2.

Let P ⊆ P be finite and let pP ∈ P be such that

p(v) ≤ pP (v), v ∈ V, p ∈ P.

By (2.4), for k ∈ Z>0, let sP,k : X→ V be a simple function for which∫
X

pP ◦ (f − sP,k) dµ <
1

k
.

We claim that, for A ∈ A , (
∫
A sP,k dµ)(P,k)∈I is a Cauchy net in V. Indeed, let q be a

continuous seminorm and let ϵ ∈ R>0. Let (P0, k0) ∈ I be such that q ∈ P0 and such that
k−1
0 < ϵ

2 . Then, for (P0, k0) ⪯ (P1, k1), (P2, k2), we have

q

(∫
A
(sP1,k1 − sP2,k2) dµ

)
≤
∫
A
q ◦ (f − sP1,k1) dµ+

∫
A
q ◦ (f − sp2,k2) dµ

≤
∫
X

pP1(f − sP1,k1) dµ+

∫
X

pP2(f − sP2,k2) dµ < ϵ,

showing that, indeed, the net (
∫
A sP,k dµ)(P,k)∈I is Cauchy. We conclude, then, from com-

pleteness of (V,O ) that there exists vA ∈ V such that

lim
(P,k)∈I

∫
A
sP,k dµ = vA.
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Moreover, let q be a continuous seminorm and let ϵ ∈ R>0. Let (P, k) ∈ I be such that
q ∈ P , k−1 < ϵ

3 , and∫
X

pP ◦ (f − sP,k) dµ <
ϵ

3
, q

(∫
A
sP,k dµ− vA

)
<

ϵ

3
.

Also let sq,j = s{q},j , j ∈ Z>0. Then, for j ≥ k,

q

(∫
A
sq,j dµ− vA

)
≤
∫
A
q ◦ (f − sq,j) dµ+

∫
A
q ◦ (f − sP,k) dµ+ q

(∫
A
sP,k dµ− vA

)
≤
∫
X

pP ◦ (f − sP,k) dµ+

∫
X

pP ◦ (f − sP,k) dµ+ q

(∫
A
sP,k dµ− vA

)
< ϵ,

giving integrability by seminorm. ■

A useful version of the Dominated Convergence Theorem holds for integrability by
seminorm.

2.8 Theorem: (Dominated Convergence Theorem) For a sequence fj : X → V, j ∈
Z>0, assume the following:

(i) fj, j ∈ Z>0, is integrable by seminorm;

(ii) there exists f : X→ V and a subset Z ⊆ V of measure zero such that limj→∞ fj(x) =
f(x) for x ∈ X \ Z;

(iii) there exists g ∈ L1(X;R≥0) and, for each p ∈ P , subsets Zp,j ⊆ X, j ∈ Z>0, such
that p ◦ fj(x) ≤ g(x) for x ∈ X \ Zp,j, j ∈ Z>0.

Then f is integrable by seminorm and

lim
j→∞

∫
X

fj dµ =

∫
X

f dµ.

Proof: Let us first show that f is measurable by seminorm. Since fj , j ∈ Z>0, is measurable
by seminorm, by Theorem 2.3, fj is essentially separably-valued by seminorm. Thus, for
each j ∈ Z>0 and each continuous seminorm p, there is a subset Z ′

p,j ⊆ X of measure zero
and a countable subset Cp,j ⊆ V such that fj(X \ Z ′

p,j) ⊆ clp(Cp,j). Let Cp = ∪j∈Z>0Cp,j

and Z ′
p = Z ∪j∈Z>0 Z

′
p,j so that, f(X \Z ′

p) ⊆ cl(Cp). Thus f is essentially separably-valued
by seminorm. Again by Theorem 2.3, fj is weakly measurable for each j ∈ Z>0. Thus, for
each λ ∈ V′, λ ◦ fj is measurable. Therefore, for x ∈ X \ Z,

λ(f(x)) = λ

(
lim
j→∞

fj(x)

)
= lim

j→∞
λ(fj(x)),

and so λ ◦f is the almost everywhere limit of a sequence of measurable functions, whence it
is measurable by [Cohn 2013, Proposition 2.1.5]. Thus f is weakly measurable, and hence
measurable by seminorm according to Theorem 2.3.

Now, given that p ◦ fj(x) ≤ g(x) for x ∈ X \ Zp,j and j ∈ Z>0, and given that
limj→∞ fj(x) = f(x) for x ∈ X \ Z, we have

p ◦ f(x) = lim
j→∞

p ◦ fj(z) ≤ g(x), x ∈ X \ (Z ∪ ∪j∈Z>0Zp,j).
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As we proved during the course of the proof of Theorem 2.3, p ◦ f is measurable, whence
p ◦ f is integrable. Therefore, by the Lemma from the proof of Theorem 2.6, there exists a
sequence (sp,j)j∈Z>0 of simple functions and a subset Zp ⊆ X of measure zero such that

lim
j→∞

p(f(x)− sp,j(x)) = 0, x ∈ X \ Zp,

and

lim
j→∞

∫
X

p ◦ (f − sp,j) dµ = 0.

This is gives the second of the conditions for integrability by seminorm.
Finally, by (2.2), we have

p

(∫
X

f dµ−
∫
X

fj dµ

)
≤
∫
X

p ◦ (f − fj) dµ.

By the usual Dominated Convergence Theorem [Cohn 2013, Theorem 2.4.5], which holds
since

p(f(x)− fj(x)) ≤ 2g(x), x ∈ X \ (Z ∪ ∪j∈Z>0Zp,j), j ∈ Z>0,

we have

lim
j→∞

∫
X

p ◦ (f − fj) dµ = 0.

As this hold for every continuous seminorm p, we obtain∫
X

f dµ = lim
j→∞

∫
X

fj dµ

as desired. ■

3. The space L1(X;V)

In this section we answer the two questions posed in the introduction. First let us recall
the standard constructions, a good presentation of which is that of Jarchow [1981, §15.7].

The set of simple functions is denoted by Ŝ(X;V). Denote

Z(X;V) = {s ∈ Ŝ(X;V) | µ({x ∈ X | s(x) ̸= 0}) = 0}

and
S(X;V) = Ŝ(X;V)/Z(X;V),

i.e., S(X;V) is the set of equivalence classes of simple functions agreeing almost everywhere.
For a continuous seminorm p for (V,O ), define a seminorm

pX,V : S(X;V)→ R

[s] 7→
∫
X

p ◦ s dµ,

noting that the definition is obviously independent of the choice of representative from [s].
We then take the locally convex topology on S(X;V) defined by the seminorms pX,V as p runs
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over the collection of continuous seminorms for (V,O ). In the scalar-valued case, i.e., when
V = F, then we have the norm

p1([s]) =

∫
X

|s| dµ, [s] ∈ S(X;F),

giving the usual locally convex topology for the space of equivalence classes of scalar-valued
simple functions. Jarchow [1981, Theorem 15.7.1] shows that the bilinear mapping

(s, v) 7→ (t 7→ s(t)v)

defines a topological isomorphism

S(X;V) ≃ S(X;F)⊗π V,

⊗π being the projective tensor product [Jarchow 1981, Chapter 15].
Now we extend these constructions to the space of integrable functions.

3.1 Definition: (Spaces of integrable functions) Let (X,A , µ) be a σ-finite measure
space and let (V,O ) be an Hausdorff locally convex topological vector space.

(i) We shall refer to a function f : X → V as being integrable if it is integrable by
seminorm.

(ii) We denote by L̂1(X;V) the set of integrable functions.

(iii) Denote

ZP (X;V) = {f ∈ L̂1(X;V) | µ({x ∈ X | p ◦ f(x)}) = 0 for all p ∈ P }.

(iv) Denote L1(X;V) = L̂1(X;V)/ZP (X;V). •
The seminorms above for simple functions obviously extend to integrable functions.

Thus, for p ∈ P , define a seminorm

pX,V : L
1(X;V)→ R

[f ] 7→
∫
X

p ◦ f dµ.

We then take the locally convex topology on L1(X;V) defined by the seminorms pX,V. In
the scalar-valued case we have the norm

p1([f ]) =

∫
X

|f | dµ, [f ] ∈ L1(X;F).

We note that S(X;V) is dense in L1(X;V) by definition, and so we have topological
isomorphisms

L1(X;V) ≃ S(X;V) ≃ L1(X;F)⊗πV ≃ L1(X;F)⊗πV, (3.1)

by virtue of [Jarchow 1981, Proposition 15.2.3(a)], and noting that taking the completion
of a projective tensor product is the same as taking the completion of the projective tensor
product of the completions [Jarchow 1981, Corollary 15.2.4]. Here we use · to denote the
completion, and ⊗π denotes that we are taking the completion of the projective tensor
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product. As we commented upon in the introduction, many authors define the L1-space
of vector-valued functions to be equal to the completion of S(X;V). This is, of course,
unsatisfactory because one does not know very much about what objects in the completion
look like. Other authors merely note (3.1), and do not consider the question of when one
can append “L1(X;V) ≃” to the left of this equation.

The following theorem addresses this question.

3.2 Theorem: (Spaces of integrable functions and the projective tensor product)
If (V,O ) is complete, then L1(X;V) is complete, and in consequence we have a topological
isomorphism

L1(X;V) ≃ L1(X;F)⊗πV.

Proof: Note that the “in consequence” assertion follows from (3.1), and so we must prove
the completeness assertion.

First we prove the result in the important special case of Banach spaces. Usually this is
proved by means of, “it’s just like the usual case,” but we elect to give the complete proof.

1 Lemma: If (V,O ) is a Banach space, then L1(X;V) is a Banach space.

Proof: We let p be the norm. We need only prove sequential completeness. Let ([fj ])j∈Z>0

be a Cauchy sequence in L1(X;V). For k ∈ Z>0, let jk ∈ Z>0 be such that pX,V(fj − fjk) <
2−k for k ∈ Z>0. Without loss of generality, we can arrange that jk < jk+1, k ∈ Z>0. Then

C ≜ pX,V(fj1) +

∞∑
k=1

pX,V(fjk+1
− fjk) <∞.

Define
gm : X→ R≥0

x 7→ p(fj1(x)) +
m∑
k=1

p(fjk+1
(x)− fjk(x))

for m ∈ Z>0. Let g(x) = limm→∞ gm(x), the limit existing (possibly infinite) as it is a limit
of a monotonically increasing sequence. We have

p1(gm) = p1

(
p ◦ fj1 +

m∑
k=1

p ◦ (fjk+1
− fjk)

)

≤ p1(p ◦ fj1) +

m∑
k=1

p1(p ◦ (fjk+1
− fjk)) < C.

By the Beppo Levi Theorem [Cohn 2013, Corollary 2.4.2],

p1(g) = lim
m→∞

p1(gm) <∞, =⇒ g = p ◦ fj1 +
∞∑
k=1

p ◦ (fjk+1
− fjk) ∈ L1(X,R≥0).

Thus there exists a subset Z ⊆ X of measure zero such that the series

p(fj1(x)) +
∞∑
k=1

p(fjk+1
(x)− fjk(x))
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with positive terms converges for all x ∈ X \ Z. Since an absolutely convergent series in a
complete normed vector space converges, the series

fj1(x) +
∞∑
k=1

(fjk+1
(x)− fjk(x))

converges for every x ∈ X \Z. Since the mth partial sum for this series is fjm+1(x), we can
define

f(x) =

{
limm→∞ fjm(x), x ∈ X \ Z,
0, x ∈ Z.

We claim that f is measurable by seminorm. By Theorem 2.3, this is equivalent to
assuming that fjm , m ∈ Z>0, is essentially separably-valued by seminorm and weakly
measurable, and proving that f has these same attributes. For m ∈ Z>0, let (sm,l)l∈Z>0

be a sequence of simple functions and let Zm ⊆ X be a set of measure zero such that
liml→∞ sm,l(x) = fjm(x) for x ∈ X \ Zm. Let Cm,l ⊆ V be the finite set of values taken
by sm,l and let C = ∪m,l∈Z>0Cm,l. Then f(x) ∈ cl(C) for x ∈ X \ (Z ∪ ∪m∈Z>0Zm),
and so f is essentially separably-valued by seminorm. Moreover, for λ ∈ V′, λ ◦ f(x) =
limm→∞ λ ◦ fjm(x) for x ∈ X \ Z, and so λ ◦ f is measurable being the almost everywhere
pointwise limit of measurable functions [Cohn 2013, Proposition 2.1.5(c)]. Thus f is weakly
measurable.

Next we claim that ([fj ])j∈Z>0 converges to [f ] and that [f ] ∈ L1(X;V). Let ϵ ∈ R>0

and let N ∈ Z>0 be such that

pX,V(fj − fj′) < ϵ, j, j′ ≥ jN .

For m ≥ N and j ≥ jN , pX,V(fj − fjm) < ϵ. Then, by Fatou’s Lemma [Cohn 2013,
Theorem 2.4.4],

p1(p ◦ (f − fj)) = p1

(
lim inf
m→∞

p ◦ (fjm − fj)
)

≤ lim inf
m→∞

p1(p ◦ (fjm − fj)) ≤ ϵ.

From this we conclude that pX,V(f − fj) < ∞ and so f − fj ∈ L1(X;V) for j ≥ jN by
Theorem 2.7. Therefore, pX,V(f) ≤ pX,V(f − fj) + pX,V(fj) <∞, and so also f ∈ L1(X;V).
We also conclude that limj→∞ fj = f . ▼

Now we consider the general case. For p ∈ P , we have the subspace

Np = {v ∈ V | p(v) = 0},

and, on the quotient space Vp = V/Np we have the norm

p/Np
(v + Np) = inf{p(v + u) | u ∈ Np}.

Since (V,O ) is complete, the seminormed space (V, p) is complete and so the quotient
(Vp, p/Np

) is a complete normed vector space by [Jarchow 1981, Proposition 4.4.1] (we use
a notion of completeness that holds for non-Hausdorff spaces, but this is not problematic).
We use the obvious partial order for P :

p ⪯ p′ ⇐⇒ p(v) ≤ p′(v), v ∈ V.
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For p ⪯ p′ we have continuous linear mappings

ϕp,p′ : Vp′ → Vp

v + Np′ 7→ v + Np

with dense image [cf. Jarchow 1981, §2.9]. Moreover, by [Jarchow 1981, Theo-
rem 2.9.2], (V,O ) is topologically isomorphic to the inverse limit of the inverse system
(((Vp, p))p∈P , (ϕp,p′)p⪯p′) of Banach spaces, and the mappings induced by the inverse limit
are the quotient mappings

π/Np
: V→ Vp, p ∈ P .

For p ∈ P , define
π̂/Np

: L1(X;V)→ L1(X;Vp)

[f ] 7→ [π/Np
◦ f ].

Continuity of the quotient mappings π/Np
and (2.3) ensure that [πNp

◦ f ] ∈ L1(X;Vp). In
like manner, we have mappings

ϕ̂p,p′ : L
1(X;Vp′)→ L1(X;Vp)

[f ] 7→ [ϕp,p′ ◦ f ],
p, p′ ∈ P , p ⪯ p′.

Now let ([fi])i∈I be a Cauchy net in L1(X;V). As Cauchy nets are preserved by con-
tinuous linear maps, (π̂/Np

([fi]))i∈I is a Cauchy net in (Vp, p/Np
), and so converges by the

lemma above. We denote the limit by [fp].

We claim that [fp] = ϕ̂p,p′([fp′ ]) for p, p
′ ∈ P , p ⪯ p′. Indeed,

[fp] = lim
i∈I

π̂/Np
([fi]) = lim

i∈I
[π/Np

◦ fi]

= lim
i∈I

[ϕp,p′ ◦ π/Np′
◦ fi] =

[
ϕp,p′

(
lim
i∈I

π/Np′
◦ fi

)]
= ϕ̂p,p′([fp′ ]),

as claimed.
Note that, for each p ∈ P , we have the diagram

V
π/Np // Vp

X

f

OO

fp

??

This defines, using the universal property of the inverse limit in the category of sets, the
mapping f assigned to the dashed vertical arrow.

We need to show that [f ] is independent of the choice of representative [fp], p ∈ P . For
each p ∈ P , let fp, f

′
p : X → V be such that [fp] = [f ′

p], meaning that there exists a subset
Zp ⊆ X of measure zero such that fp(x) = f ′

p(x) for x ∈ X \ Zp. Let f, f ′ : X → V be the
associated mappings, as in the preceding paragraph. By [Jarchow 1981, Proposition 4.2.1],
π/Np

is open, and so there exists Cp ∈ R>0 such that

p(v) ≤ Cpp/Np
(π/Np

(v)), v ∈ V.
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Thus, for x ∈ X, we have

p ◦ f(x) ≤ Cpp/Np
◦ fp(x), p ◦ f ′(x) ≤ Cpp/Np

◦ f ′
p(x).

In particular, for x ∈ X \ Zp, p ◦ f(x) = p ◦ f ′(x). As this holds for every p ∈ P , [f ] = [f ′].
By integrability of fp, take a subset Zp ⊆ X of measure zero, a sequence (sp,j)j∈Z>0 of

simple functions, and, for A ∈ A , a vector vp,A ∈ Vp such that

1. limj→∞ sp,j(x) = fp(x) for x ∈ X \ Zp,

2. limj→∞
∫
X
p/Np

◦ (fp − sp,j) dµ = 0, and

3. limj→∞ p/Np
(
∫
A sp,j dµ− vp,A) = 0.

Let s′p,j ∈ Ŝ(X;V) be such that π/Np
◦ s′p,j = sp,j (this is easily done as simple functions take

finitely many values).
Then, for x ∈ X \ Zp,

lim
j→∞

p(f(x)− s′p,j(x)) ≤ lim
j→∞

Cpp/Np
(fp(x)− sp,j(x)) = 0.

This gives the first condition for integrability of f by seminorm.
Next we have ∫

X

p ◦ (f − s′p,j) dµ ≤ Cp

∫
X

p/Np
◦ (f − sp,j),

from which we conclude that x 7→ p(f(x)− s′p,j(x)) is integrable and that

lim
j→∞

∫
X

p ◦ (f − s′p,j) dµ = 0,

giving the second condition for integrability of f by seminorm.
For the final of the conditions for integrability of f by seminorm, consider the diagram

V
π/Np // Vp

L1(X;V)

IA

OO

π̂/Np

// L1(X;Vp)

∫
A

OO

By the universal property of inverse limits in the category of topological vector spaces, there
is a unique continuous linear mapping indicated by the vertical arrow. We then have

p

(∫
A
s′p,j dµ− IA(f)

)
≤ Cpp/Np

(∫
A
sp,j dµ− vp,A

)
,

which, upon taking the limit as j →∞, gives the theorem. ■

We can also consider in our setting the notion of local integrability. It is convenient
to do this in the setting of Borel measures on Hausdorff topological spaces [Cohn 2013,
§7.2], an example of which is the Lebesgue measure on Euclidean space. Typically, for a
coherent theory, one restricts to locally compact topological spaces, but for the purposes of
the definition this is not necessary. Thus, if (S,OS) is an Hausdorff topological space, we
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consider a σ-algebra A containing the Borel σ-algebra, and we let µ be a measure for the
measurable space (S,A ). If T ⊆ S has the subspace topology, then we denote

AT = {A ∩ T | A ∈ A }.

We note that AT contains the Borel σ-algebra of T with the subspace topology by virtue
of [Cohn 2013, Lemma 7.2.2]. We also denote µT = µ|AT .

With this notation, we can make the following definition, denoting by K (S) the collec-
tion of compact subsets of S.

3.3 Definition: (Locally integrable vector-valued function) Let (V,O ) be an Haus-
dorff locally convex topological vector space, let (S,OS) be an Hausdorff topological space,
let A be a σ-algebra on S containing the Borel σ-algebra, and let µ : A → R≥0 be a mea-
sure. A function f : S→ V is locally integrable if, for each K ∈ K (S), f |K ∈ L1(K;V). •

Let us consider how to topologise the collection of all locally integrable functions. We
note that K (S) is a directed set by K1 ⪯ K2 if K1 ⊆ K2. Thus we can take

L1
loc(S;V) = lim←−

K∈K (S)

L1(K;V).

We note that, if f : S→ V is locally integrable, then [f |K] ∈ L1(K;V), and so L1
loc(S;V) does

indeed contain all locally integrable functions, or more properly, their equivalence classes.

4. Absolutely continuous vector-valued functions on the line

For R-valued functions there is an ϵ-δ definition of absolute continuity [Cohn 2013,
page 135], which is then shown to be equivalent to the function being almost everywhere
differentiable with a locally integrable derivative [Cohn 2013, Corollary 6.3.8]. We adopt
the latter point of view with our definition.

4.1 Definition: (Absolutely continuous vector-valued function) Let I ⊆ R be an
interval. A function F : I → V is locally absolutely continuous if there exists f ∈
L1
loc(I;V) such that

F (t) = F (t0) +

∫ t

t0

f(τ) dλ(τ). •

We can now show that, for this notion of absolute continuity and for the notion of inte-
grability by seminorm, one has the following useful property of locally absolutely continuous
functions.

4.2 Theorem: (Almost everywhere differentiability of locally absolutely continu-
ous functions) Let I ⊆ R be an interval, and let F : I → V be absolutely continuous and
given by

F (t) = F (t0) +

∫ t

t0

f(τ) dλ(τ)

for t0 ∈ I and f ∈ L1
loc(I;V). Then F is differentiable almost everywhere and

lim
s→0

F (t+ s)− F (t)

s
= f(t), a.e. t ∈ I.
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Proof: We first prove a technical lemma. In the statement of the lemma, we denote by

D0 = [−1
2 ,

1
2 ]

n ⊆ Rn

the disk centred at 0 with side length 1 and we denote by λn the Lebesgue measure for Rn.

1 Lemma: Let U ⊆ Rn be open and let f ∈ L1
loc(U;R≥0), i.e., f is locally integrable in the

sense of Lebesgue. Then

lim
s→0

∫
D0

f(x+ sξ) dλn(ξ) = f(x)

for almost every x ∈ U.

Proof: Let

fs(x) =

∫
D0

f(x+ sξ) dλn(ξ)

and
m(x) = lim inf

s→0
fs(x), M(x) = lim sup

s→0
fs(x).

We first claim that
λn({x ∈ U | M(x) =∞}) = 0.

Suppose that this is not so, and let A ⊆ U be the set of positive measure on which M is
infinite. Since U is covered by a countable collection of bounded open disks, there must
exist a bounded open disk D with cl(D) ⊆ U such that A′ ≜ A ∩D has positive measure.
For s ∈ R>0 and for x ∈ U, we denote by sD0 + x the disk with side length |s| centred at
x. For a ∈ R≥0, denote

Ca = {sD0 + x | fs(x) > a}.

We claim that Ca is a Vitali cover of A′, as in [Cohn 2013, page 164]. Indeed, let x ∈ A′

and let δ ∈ R>0. Since M(x) =∞, there exists s ∈ R with |s| < δ such that fs(x) > a, and
we conclude that, indeed, Ca is a Vitali cover. Thus, by the Vitali Covering Lemma [Cohn
2013, Theorem 6.2.1], there exists a sequenceDj ≜ sjD0+xj , j ∈ Z>0, of disjoint disks such
that Dj ⊆ D, j ∈ Z>0, and such that the set of points from A′ not covered by ∪j∈Z>0Dj

has measure zero. Then, by a change of variable,∫
Dj

f(x) dλn(x) = |sj |n
∫
D0

f(xj + sjξ) dλn(ξ) = |sj |nfsj (xj).

Since |sj |n = λn(Dj), ∫
Dj

f(x) dλn(x) > aλn(Dj).

Therefore, if E = ∪j∈Z>0Dj , we have∫
D
f(x) dλn(x) ≥

∫
E
f(x) dλn(x) ≥ aλn(E) ≥ aλn(A

′) > 0.

Therefore, since a ∈ R>0 is arbitrary, we conclude that f is not locally integrable. This
contradiction gives our claim that M is infinite on a set of zero measure.



Integrable and absolutely continuous vector-valued functions 21

Now we claim that
λn({x ∈ U | m(x) < M(x)}) = 0.

As in the preceding step, we do this by contradiction, so that

A = {x ∈ U | m(x) < M(x)}

has positive measure. Just as in the preceding step, this means that there is a bounded
open disk D with cl(D) ⊆ U such that A′ ≜ A∩D has positive measure. For x ∈ A′, there
exist q, q′ ∈ Q such that

m(x) < q < q′ < M(x).

For q, q′ ∈ Q satisfying q < q′, we can denote

A′
q,q′ = {x ∈ A′ | m(x) < q < q′ < M(x)}.

Note that
A′ = ∪{A′

q,q′ | q, q′ ∈ Q, q < q′},

and this union is a countable union. Therefore, there must be some q, q′ ∈ Q with q < q′

and with λn(A
′
q,q′) > 0. We fix such a q and q′. By definition of Lebesgue measure (or

by [Cohn 2013, Proposition 1.4.1]), let O ⊆ D be an open set such that A′
q,q′ ⊆ O and such

that
λn(O) <

√
q′/qλn(A

′
q,q′).

Using the notation as above, let

Cq = {sD0 + x | fs(x) < q}.

Similarly to the preceding part of the proof, Cq is a Vitali cover of Aq,q′ , and so we can find
a sequence Dj ≜ sjD0+xj ⊆ O, j ∈ Z>0, of disjoint disks from Cq that covers A′

q,q′ except
for a set of measure zero. By a computation with a change of variable, just as above, we
have ∫

Dj

f(x) dλn(x) < qλn(Dj).

Let E = ∪j∈Z>0Dj and calculate∫
E
f(x) dλn(x) < qλn(E) ≤ qλn(O) ≤

√
qq′λn(A

′
q,q′). (4.1)

Again by definition of Lebesgue measure, let O′ ⊆ D be an open set such that E ⊆ O′ and
such that ∫

O′
f(x) dλn(x) ≤

√
q′/q

∫
E
f(x) dλn(x). (4.2)

We now take
Cq′ = {sD0 + x | ft(x) > q′},

which we verify to be a Vitali cover of O′ ∩ A′
q,q′ . Let D′

j ≜ s′jD0 + x′
j ⊆ O′, j ∈ Z>0, be

a sequence of disjoint disks that covers O′ ∩ A′
q,q′ except for a set of measure zero. Since
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E ⊆ O′ and since E covers A′
q,q′ except for a set of measure zero, the disks D′

j cover A′
q,q′

except for a set of measure zero. As we have done already twice, we arrive at∫
D′

j

f(x) dλn(x) > q′λn(D
′
j).

Taking E′ = ∪j∈Z>0D
′
j , we have∫

O′
f(x) dλn(x) ≥

∫
E′

f(x) dλn(x) > q′λn(E
′) ≥ q′λn(A

′
q,q′).

Combining this with (4.2) gives∫
E
f(x) dλn(x) >

√
qq′λn(A

′
q,q′),

in contradiction with (4.1). We conclude from this contradiction that the set of points at
which m(x) < M(x) must have measure zero.

We conclude from the above that lims→0 fs(x) exists almost everywhere; let us denote
the limit as g(x) when it exists. We now show that, at almost all such points where the
limit g(x) exists, we, in fact, have g(x) = f(x). Let D be a bounded disk with cl(D) ⊆ U.
We have, noting that λn(D0) = 1,∫

D
|fs(x)− f(x)| dλn(x) =

∫
D

∣∣∣∣∫
D0

(f(x+ sξ)− f(x)) dλn(ξ)

∣∣∣∣ dλn(x)

≤
∫
D

∫
D0

|f(x+ sξ)− f(x)| dλn(ξ) dλn(x)

=

∫
D0

∫
D
|f(x+ sξ)− f(x)| dλn(x) dλn(ξ),

using Fubini’s Theorem [Cohn 2013, Theorem 5.2.2] and for s small enough that D+sD0 ⊆
U. By continuity of translation in L1, we then have

lim
s→0

∫
D
|fs(x)− f(x)| dλn(x) = 0.

By [Cohn 2013, Proposition 3.1.5], it follows that fs converges to f pointwise almost every-
where as s→ 0 on D. Now let (sj)j∈Z>0 be a sequence converging to 0. Define gj = fsj . Let
(Dj)j∈Z>0 be a sequence of bounded disks that cover U. Choose a subsequence (g1,j)j∈Z>0

of (gj)j∈Z>0 and a subset Z1 ⊆ D1 of measure zero such that limj→∞ g1,j(x) = f(x) for
x ∈ D1\Z1. Next, choose a subsequence (g2,j)j∈Z>0 of (g1,j)j∈Z>0 and a subset Z2 ⊆ D1∪D2

of measure zero such that limj→∞ g2,j(x) = f(x) for x ∈ (D1 ∪D2) \ Z2. Carrying on this
way, we get subsequences (gk,j)j∈Z>0 and subsets Zk ⊆ D1 ∪ · · · ∪Dk of measure zero such
that

lim
j→∞

gk,j(x) = f(x), x ∈ (D1 ∪ · · · ∪Dk) \ Zk, k ∈ Z>0.

Now let x ∈ U \ (∪j∈Z>0Zj) and let ϵ ∈ R>0. Let k ∈ Z>0 be such that x ∈ D1 ∪ · · · ∪Dk.
Let N ≥ k be such that gj,j(x) < ϵ for j ≥ N . This shows that the subsequence (gj,j)j∈Z>0

of (gj)j∈Z>0 converges pointwise almost everywhere to f in U. Since (gj)j∈Z>0 converges
pointwise almost everywhere to g, we conclude that (gj)j∈Z>0 converges pointwise almost
everywhere to f . Since the sequence (sj)j∈Z>0 is arbitrary, we conclude that lims→0 fs(x) =
f(x) for almost every x, as is asserted by the lemma. ▼
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The next, much simpler, lemma is a consequence of preceding technical lemma.

2 Lemma: Let I ⊆ R be an interval and let f ∈ L1
loc(I;V). Then, for each p ∈ P ,

lim
s→0

∫ 1

0
p(f(t+ sτ)− f(t)) dλ(τ) = 0

for almost every t ∈ I.
Proof: We take p ∈ P . By Theorem 2.3, let Cp ⊆ V be a countable subset and let Z ′

p ⊆ I
have measure zero and such that f(I \ Z ′

p) ⊆ clp(Cp). Write Cp = {vp,j | j ∈ Z>0}. By
Theorem 2.6, p◦f is locally integrable. Therefore, for each j ∈ Z>0, by the previous lemma,
there exists a subset Zp,j ⊆ I of measure zero such that we have

lim
s→0

∫ 1

0
p(f(t+ sτ)− vp,j) dλ(τ) = p(f(t)− vp,j)

for every t ∈ I \ Zp,j . Taking Zp = ∪j∈Z>0Zp,j , we have

lim
s→0

∫ 1

0
p(f(t+ sτ)− vp,j) dλ(τ) = p(f(t)− vp,j)

for every t ∈ I \Zp and every j ∈ Z>0. Now, for t ∈ I \ (Zp ∪Z ′
p), let j ∈ Z>0 be such that

p(f(t)− vp,j) <
ϵ
3 . Then there exists s sufficiently small that∣∣∣∣∫ 1

0
p(f(t+ sτ)− vp,j) dλ(τ)− p(f(t)− vp,j)

∣∣∣∣ < ϵ

3
.

Therefore, ∫ 1

0
p(f(t+ sτ)− vp,j) dλ(τ) <

2ϵ

3
.

As a result, for the chosen s and j,∫ 1

0
p(f(t+ sτ)− f(t)) dλ(τ) ≤

∫ 1

0
p(f(t+ sτ)− vp,j) dλ(τ) +

∫ 1

0
p(f(t)− vp,j) dλ(τ) < ϵ,

giving the desired conclusion. ▼

By the lemma just preceding, for p ∈ P , we have

lim
s→0

p

(∫ 1

0
f(t+ sτ) dλ(τ)−

∫ 1

0
f(t) dλ(τ)

)
≤ lim

s→0

∫ 1

0
p(f(t+ sτ)− f(t)) dλ(τ) = 0

for almost every t ∈ I. Therefore,

lim
s→0

∫ 1

0
f(t+ sτ) dλ(τ) =

∫ 1

0
f(t) dλ(τ) = f(t)

for almost every t ∈ I. By a change of variable,

lim
s→0

1

s

∫ t+s

t
f(τ) dλ(τ) = f(t)

for almost every t ∈ I. Thus, for almost every t ∈ I,

lim
s→0

F (t+ s)− F (t)

s
= f(t),

which is the theorem. ■
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