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Abstract

The exponential map that characterises the flows of vector fields is the key in under-
standing the basic structural attributes of control systems in geometric control theory.
However, this map does not exist due to the lack of completeness of flows for general
vector fields.

An appropriate substitute is devised for the exponential map, not by trying to
force flows to be globally defined by any compactness assumptions on the manifold,
but by a categorical development of spaces of vector fields and flows, thus allowing for
systematic localisation of such spaces. That is to say, we give a presheaf construction of
the exponential map for vector fields with measurable time-dependence and continuous
parameter-dependence in the category of general topological spaces. Moreover, all
regularities in state are considered, including the cases of continuous, finitely differen-
tiable, smooth and holomophic. Using geometric descriptions of suitable topologies
for vector fields and for local diffeomorphisms, the homeomorphism of the exponential
map is derived by a uniform treatment for these regularities. Finally, a new sort of
continuous dependence is proved, that of the fixed time local flow on the parameter
which plays an important role in the establishment of the homeomorphism of the
exponential map.
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Chapter 1

Introduction

In geometric control theory, one can study linear and nonlinear control theory from
the point of view of applications, or from a more fundamental point of view where the
system structure is a key element. It is well understood that the language of systems
such as I am interested in should be founded in the study of differential geometry
and vector fields on manifolds (Agrachev and Sachkov, 2004; Bloch, 2003; Bullo and
Lewis, 2005; Jurdjevic, 1997; Nijmeijer and Van der Schaft, 1990).

Understanding the basic structural attributes of control systems requires under-
standing how the system is connected to the trajectories of the system. For a control
system

ξ′(t) = F (t, ξ(t), µ(t))
with a control µ ∶ T → C and trajectory ξ ∶ T → M , the controllability, reachability,
and stabilisability properties depend solely on the understanding a family of flows

(t, t0, x0)↦ ΦF (t, t0, x0, µ), µ ∈ U

for some class of controls U . This is typically thought of as the image of the family of
time-varying vector fields (t, x)↦ Fµ(t, x) ∶= F (t, ξ(t), µ(t)) under some “exponential
map”

exp ∶ {vector fields} → {local flows}
F ↦ ΦF .

The idea of the flow of a vector field seems so well understood that it barely merits any
systematic explication. However, the accepted casual manner of this presentation has
a deficiency, this being that there is no way to generally define the exponential map as
a mapping from the Lie algebra of vector fields to the group of diffeomorphisms. Quite
apart from any technical difficulties that arise from working with infinite-dimensional
manifolds, the incompleteness of general vector fields causes any näıve definition to
fail.

One might overcome this by working with compact manifolds or by working with
only complete vector fields. Particularly, the assumption of completeness is one that

1



2 Y. Zhang

is very often made in passing “for the sake of convenience.” For manifolds that are
compact, the problem of completeness can be overcome, and the desired exponential
map, in fact, exists (Omori, 1970). For noncompact manifolds, one can work with
vector fields with compact support. These compactness assumptions (for compact
manifolds) or impositions (of compact support) are not satisfactory. For example,
the compactness assumption fails for linear ordinary differential equations, and any
theory not including these can hardly be said to be general. As another instance of
the lacking of these compactness constructions, note that a real analytic vector field
on a noncompact manifold can never have compact support. From our perspective,
any theory not including analytic vector fields is not satisfactory.

Another route to the exponential map in the time-varying case involves coming up
with some series representation for time-varying flows. The so-called Volterra series is
an adaptation of the exponential series for time-varying vector fields, and rigorous
versions of this work date back to (Agrachev and Gamkrelidze, 1979). A nice recent
summary of this work can be found in the book of (Agrachev and Sachkov, 2004). The
“inversion” of the Volterra series leads to the notion of a Baker–Campbell–Hausdorff
formula in the time-varying case. An example of this can be found in the work of
(Strichartz, 1987). These considerations have given rise to an area dedicated to using
methods from the theory of free algebras. For a recent outline of these methods, we
refer to (Kawski, 2021). While these techniques have proved to have significant value
in geometric control theory, the problem of defining the exponential map for general
vector fields still remains open.

The drawbacks of these approaches to this subject come in various forms. One such
drawback concerns regularity of the vector fields, and definedness and convergence of
the series. The series from this theory are comprised of differential operators that arise
from iterating first-order differential operators, i.e., vector fields. In degenerate cases
where some nilpotency can be assumed, only finite iterations are necessary. However,
one cannot expect this to be the case generically, and so a general theory in this
framework must allow for infinite iterations of first-order differential operators, i.e., at
least infinite differentiability. Thus the theory simply does not apply to lower degrees
of regularity. Moreover, even in the infinitely differentiable setting, the series do not
converge in any meaningful way. This is not surprising since there are some aspects
of Taylor series in these series representations, and so one expects, and it is indeed
the case, that real analyticity is required for convergence. Again, lesser regularity is
simply not represented by these series methods (and it is certainly not claimed to be
represented in the literature on the subject).

Another limitation of the series representations of flows is that they are only made
for a single time-varying vector field, whereas any sort of “exponential map” should
give us some representation of a flow given any time-varying vector field. The problem
here comes in two flavours. First, the completeness problem mentioned above appears
in the series representations as well; the domain in space and time simply cannot be
uniform over all vector fields. Second, if one is working with real analytic vector fields
and asking for convergence of series, the region of convergence will depend on the
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specific vector field (Jafarpour and Lewis, 2014, Example 6.24). In any case, the lack
of a fixed domain for flows and convergence creates a problem for series representation
methods as a means for defining any general sort of exponential map.

This, then, leaves open the question of how one satisfactorily addresses the problem
of defining the exponential map in any general way.

1.1. Contribution of the thesis

The general question about the existence of the exponential map is addressed
in this thesis by considering, not vector fields and diffeomorphisms, but presheaves
of vector fields and presheaves of local diffeomorphisms of various of regularities,
which allow for systematic localisation of the components of what will become the
exponential map, i.e.,

exp ∶ {presheaf of vector fields}→ {presheaf of local diffeomorphisms}.

Moreover, we present a methodology for working with vector fields with measurable
time-dependence, continuous parameter-dependence with parameters in an arbitrary
topological space, and for working with the resulting flows of such vector fields. The
presheaf point of view provides a theory that integrates the fact that flows are only
locally defined, even for vector fields that are globally defined. That is to say, we deal
with the lack of completeness not by trying to force flows to be globally defined by
some sort of assumption, but by making vector fields themselves locally defined, thus
putting them on the same local footing as their flows. The categorical framework
for talking about time-dependent vector fields and local flows herein allows one to
infer the existence of a presheaf in the category of topological spaces, which plays an
important role in the study of controllability of a control system.

Another attribute of the framework is that time-varying vector fields are considered
with a variety of degrees of regularity with respect to state, namely, Lipschitz, finitely
differentiable, smooth, real analytic, and holomorphic. In doing this, use is made of
locally convex topologies for the spaces of vector fields with these degrees of regularity.
The classes of time-varying and parameter-dependent vector fields are characterised by
their continuity, measurability, and integrability with respect to these locally convex
topologies. Within this framework, very general results are provided concerning
existence, uniqueness, and regular dependence of flows on initial and final time, initial
state, and parameters. These results include, and drastically extend, known results
for properties of flows.

Moreover, the fact that this map is a homeomorphism is established upon the
suitable topologies for sets of vector fields and flows using geometric decompositions
of various jet bundles by various of connections. This framework is interesting in that
it allows an elegant and uniform treatment of vector fields across various regularity
classes.
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1.2. An outline of the thesis

Roughly speaking, in Chapter 2 and 3 we develop the classes of vector fields and
flows we use, and attributes of these. In the final Chapter, we prove properties of
flows of vector fields, and define the exponential map and its properties.

In more details, Chapter 2 overviews the locally convex topologies for the space
of sections of a vector bundle for various regularity classes presented in (Jafarpour
and Lewis, 2014), including the newly developed topology in the real analytic case.
Most importantly, we use these locally convex topologies to describe classes of time-
dependent and parameter-dependent sections. The approach we take strictly extends
the usual approach to parameter-dependence in the theory of ordinary differential
equations, and allows, for example, vector fields that depend on a parameter in a
general topological space.

In Chapter 3, we carefully and geometrically establish the basic results concerning
existence and uniqueness of integral curves, and of the regular dependence of flows on
initial time, final time, initial state, and parameter. We make a comment that the
new type of continuity result for the “parameter to local flow” mapping provides a
geometric toolbox for dealing with the exponential map which will be established in
Chapter 4.

In Chapter 4, we carefully establish the presheaf exponential map in the category
of topological spaces. We start by developing a categorical framework for talking about
time-dependent vector fields and local flows, which allow one to infer the existence of
a presheaf, here in the category of topological spaces. The presheaves we construct
are put together by requiring that, in any product neighbourhood of a point in time,
state, and parameter, the theory should agree with the “standard” theory of Section
3.1 and Section 3.2. Since the collection of product neighbourhoods are a basis for the
open sets in the product, standard presheaf theory constructions then give a presheaf
whose local sections over products agree with the prescribed ones. Essentially by
taking inverse limits in these appropriate categories, we show that the theory of local
flows is elegantly represented by the existence of an “exponential mapping” from the
presheaf of vector fields to the presheaf of flows. Moreover, using the appropriate
topologies we developed for time-dependent vector fields and the topology for local
flows herein, this exponential map can be shown to be an homeomorphism onto its
image by the universal property of the inverse limit.

1.3. Background and notation

We shall give a brief outline of the notations we use in the main body of the thesis.
We shall mainly give definitions, establish the bare minimum of facts we require, and
refer the reader to the references for details.

Manifolds, vector bundles, and jet bundles. We shall assume all manifolds
to be Hausdorff, second countable, and connected. We shall work with manifolds
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and vector bundles coming from the different categories: smooth (i.e., infinitely
differentiable), real analytic, and holomorphic (i.e., complex analytic). We shall use
“class Cr” to denote these three cases, i.e., r ∈ {∞, ω,hol} for smooth, real analytic,
and holomorphic, respectively. When r = hol, we shall frequently ask that M be a
Stein manifold; this means that there is a proper embedding of M in CN for a suitable
N ∈ Z>0 (Grauert and Remmert, 1955). A typical Cr-vector bundle we will denote
by π ∶ E →M . The dual bundle we denote by E∗. The tangent bundle we denote by
πTM ∶ TM →M and the cotangent bundle by πT ∗M ∶ T ∗M →M .

While manifolds and vector bundles are smooth, real analytic, or holomorphic, we
shall work with other sorts of geometric objects, e.g., functions, mappings, sections,
that have various sorts of regularity. Let us introduce the terminology we shall
use. Let m ∈ Z≥0 and let m′ ∈ {0, lip}. We shall work with objects with regularity
ν ∈ {m +m′,∞, ω,hol}. Thus ν = m means “m-times continuously differentiable,”
ν = m + lip means “m-times continuously differentiable with locally Lipschitz top
derivative,” ν =∞ means “smooth”, ν = ω means “real analytic”, and ν = hol means
“holomorphic.” Given ν ∈ {m+m′,∞, ω,hol}, we shall often say “let r ∈ {∞, ω,hol}, as
required.” This has obvious meaning that r = hol when ν = hol, r = ω when ν = ω, and
r =∞ otherwise. We shall also use the terminology “let F ∈ {R,C}, as appropriate.”
This means that F = C when r = hol and F = R otherwise.

If m ∈ Z≥0 and m′ ∈ {0, lip}, and if ν ∈ {m +m′,∞, ω,hol}, then the Cν-sections
of E are denoted by Γν(E). By Cν(M) we denote the set of Cν-functions on M ,
noting that these are F-valued, i.e., C-valued when ν = hol. If M and N are Cr-
manifolds, Cν(M ;N) denotes the set of Cν-mappings from M to N . If f ∈ Cν+1(M)
and X ∈ Γν(TM), we denote by LXf or Xf the Lie derivative of f with respect to
X. If Φ ∈ C1(M ;N), TΦ ∶ TM → TN denotes the derivative of Φ.

For a Cr-vector bundle π ∶ E → M , r ∈ {∞, ω,hol}, we denote by πm ∶ JmE →
M the vector bundle of m-jets of sections of E; see (Kolář, Michor, and Slovák,
1993, §12.17) and (Saunders, 1989). For Cr-manifolds M and N , we denote by
ρm0 ∶ Jm(M ;N) →M ×N the bundle of m-jets of mappings from M to N . We also
have a fibre bundle

ρm ≜ pr1 ○ ρm0 ∶ Jm(M ;N)→M,

where pr1 is the projection onto the first component. We signify the m-jet of a section,
function, or mapping by use of the prefix jm, i.e., jmξ, jmf , or jmΦ. The set of jets of
sections at x we denote by Jmx E and the set of jets of mappings at (x, y) ∈M ×N we
denote by Jm(M ;N)(x,y). As a special case, Jm(M ;R) denotes the bundle of m-jets
of functions. We denote by T ∗mx M = Jm(M ;R)(x,0) the jets of functions with value
0 at x, and T ∗mM = ∪x∈MT ∗mx M . The space T ∗mx M has the structure of a R-algebra
specified by requiring that

mr
x ∋ f ↦ jmf(x) ∈ T ∗mxM

be a R-algebra homomorphism, with mr
x ⊆ Cr(M) being the ideal of functions

vanishing at x. We then note (Kolář, Michor, and Slovák, 1993, Proposition 12.9) that
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Jm(M ;N)(x,y) is identified with the set of R-algebra homomorphisms from T ∗my N to
T ∗mx M according to

jmΦ(x)(jmg(y)) = jm(Φ∗g)(x)
for Φ a smooth mapping defined in some neighbourhood of x and satisfying Φ(x) = y.
We note that Γν(JmE) can be thought of in the usual way since πm ∶ JmE →M is a Cr-
vector bundle. However, Jm(M ;N) is not, generally, a vector bundle; nonetheless, we
shall denote by Γν(Jm(M ;N)) the set of Cν-sections of the bundle ρm ∶ Jm(M ;N)→
M .

Metrics and connections. We shall make use of Riemannian and fibre metrics for
the same reason of convenience. Many definitions we make use a specific choice for
such metrics, although none of the results depend on these choices. For r ∈ {∞, ω},
we let π ∶ E →M be a Cr-vector bundle. We denote by GM a Cr-Riemannian metric
on M and by Gπ a Cr-metric for the fibres of E. We make a note that the existence
of these in the real analytic case is verified by (Jafarpour and Lewis, 2014, Lemma
2.4). The metrics GM and Gπ then induce metrics in all tensor products of TM and
E and their duals. For simplicity, we just denote any such metric by GM,π.

We will frequently make use of the distance function on M associated with a
Riemannian metric G. In order to have constructions involving G make sense—in
terms of not depending on the choice of Riemannian metric—we should verify that
such constructions do not depend on the choice of this metric. Of course, this is not
true for all manner of general assertions. However, Lemma A.1 captures what we
need. This lemma will not surprise most readers, but we could not find a proof of this
anywhere.

For convenience we shall make use of connections in representing certain objects
that do not actually require a connection for their description. For r ∈ {∞, ω}, we let
π ∶ E →M be a Cr-vector bundle. We let ∇M be a Cr-affine connection on M and we
let ∇π denote a Cr-linear connection in the vector bundle. The existence of these in
the real analytic case is proved by (Jafarpour and Lewis, 2014, Lemma 2.4). Almost
always we will not require ∇M to be the Levi-Civita connection for the Riemannian
metric GM , nor do we typically require there to be any metric relationship between
∇π and Gπ. However, in our constructions for the Lipschitz topology, it is sometimes
convenient to assume that ∇M is the Levi-Civita connection for GM and that ∇π is
Gπ-orthogonal, i.e., parallel transport consists of inner product preserving mappings.
Thus, a safety-minded reader may wish to make these assumptions in all cases.



Chapter 2

Space of sections

We present a methodology for working with vector fields with measurable time-
dependence and for working with the resulting flows of such vector fields. We begin
in this section by characterizing time-varying vector fields on manifolds using locally
convex topologies generated by a family of seminorms. This presentation of time-
varying vector fields agrees with, and extends, the standard treatments. It closely
follows from (Jafarpour and Lewis, 2014).

2.1. Measurable and integrable funtions with values in locally
convex topological vector spaces

The topological characterisation relies on notions of measurability, integrability,
and boundedness in the locally convex spaces Γν(E). For an arbitrary locally convex
space V , let us review some definitions.

(1) Let (M,A ) be a measurable space. A function Ψ ∶M→ V is “measurable” if
Φ−1(B) ∈ A for every Borel set B ⊆ V .

(2) It is possible to describe a notion of integral, called the “Bochner integral”, for a
function γ ∶ T→ V that closely resembles the usual construction of the Lebesgue
integral. A curve γ ∶ T→ V is “Bochner integrable” if its Bochner integral exists
and is “locally Bochner integrable” if the Bochner integral of γ∣T′ exists for any
compact subinterval T′ ⊆ T.

(3) Finally, a subset B ⊆ V is bounded if p∣B is bounded for any continuous seminorm
p on V . A curve γ ∶ T→ V is “essentially von Neumann bounded” if there exists
a bounded set B such that

λ({t ∈ T ∣ γ(t) ∉ B}) = 0,

and is “locally essentially von Neumann bounded” if γ∣T′ is essentially von
Neumann bounded for every compact subinterval T′ ⊆ T.

7
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2.2. Topologies on space of sections

In this section we will provide explicit seminorms that define the various topologies
we use for local sections, corresponding to regularity classes ν ∈ {m +m′,∞, ω,hol}.
We shall not use much space to describe the nature of these topologies, but give a
general sketch and refer the interested readers to (Jafarpour and Lewis, 2014) for
more details.

2.2.1. Locally Lipschitz sections of vector bundles. As we are interested in ordinary
differential equations with well-defined flows, we must, according to the usual theory,
consider locally Lipschitz sections of vector bundles. In particular, we will find it
essential to topologise the space of locally Lipschitz sections of π ∶ E →M . To define
the seminorms for this topology, we make use of a “local least Lipschitz constant.”

We let ξ ∶ M → E be such that ξ(x) ∈ Ex for every x ∈ M . For a piecewise
differentiable curve γ ∶ [0, T ]→M , we denote by τγ,t ∶ Eγ(0) → Eγ(t) the isomorphism
of parallel translation along γ for each t ∈ [0, T ]. We then define, for K ⊆M compact,

lK(ξ) = sup{
∣∣τ−1γ,1(ξ ○ γ(1)) − ξ ○ γ(0)∣∣Gπ

ℓGM
(γ) ∣γ ∶ [0,1]→M, γ(0), γ(1) ∈K,

γ(0) ≠ γ(1)},

which is the K-sectional dilatation of ξ. Here ℓGM
is the length function on

piecewise differentiable curves. We also define

dil ξ ∶M → R≥0
x ↦ inf{lcl(U)(ξ) ∣ U is a relatively compact neighbourhood of x},

which is the local sectional dilatation of ξ. Note that, while the values taken by
dil ξ will depend on the choice of a Riemannian metric G, the property dil ξ(x) <∞
for x ∈M is independent of G, whence ξ ∈ Γlip(E) (Jafarpour and Lewis, 2014, Lemma
3.10).

The following characterisations of the local sectional dilatation are useful.

Lemma 2.1 (Local sectional dilatation using derivatives). For a C∞-vector bundle
π ∶ E →M and for ξ ∈ Γlip(E), we have

dil ξ(x) = inf{sup{∥∇πmvy ξ∥GM,π
∣ y ∈ cl(U), ∥vy∥GM

= 1, ξ differentiable at y}∣
U is a relatively compact neighbourhood of x}.

Proof. (Jafarpour and Lewis, 2014, Lemma 3.12).

Lemma 2.2 (Local sectional dilatation and sectional dilatation). Let π ∶ E → M
be a C∞-vector bundle. Then, for each x0 ∈ M , there exists a relatively compact
neighbourhood U of x0 such that

lcl(U)(ξ) = sup{dil ξ(x) ∣ x ∈ cl(U)}, ξ ∈ Γlip(E).
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Proof. We let U be a geodesically convex neighbourhood of x0 so that

dil ξ(x) = sup{∥∇πmvy ξ∥GM,π
∣ y ∈ cl(U), ∥vy∥GM

= 1, ξ differentiable at y}.

Thus lcl(U)(ξ) is an upper bound for

{dil ξ(x) ∣ x ∈ cl(U)}.

Next, let ϵ ∈ R>0. Let x ∈ U and vx ∈ TxM be such that (1) ξ is differentiable at x, (2)
∣∣vx∣∣GM

= 1, and (3) lcl(U)(ξ) − ∣∣∇πvxξ∣∣GM,π
< ϵ

2 . Then let V be a geodesically convex
neighbourhood of x such that cl(V) ⊆ U and such that

sup{∣∣∇πvyξ∣∣GM ,π ∣ y ∈ cl(V), ∣∣vy ∣∣GM
= 1, ξ differentiable at y} − dil ξ(x) < ϵ

2
.

We have

lcl(U)(ξ) −
ϵ

2
< sup{∥∇πmvy ξ∥GM,π

∣ y ∈ cl(V), ∥vy∥GM
= 1, ξ differentiable at y}

≤ lcl(U)(ξ).

Therefore,

lcl(U)(ξ) − ϵ = lcl(U)(ξ) −
ϵ

2
− ϵ
2

≤ sup{∥∇πmvy ξ∥GM,π
∣ y ∈ cl(V), ∥vy∥GM

= 1, ξ differentiable at y} + dil ξ
− sup{∥∇πmvy ξ∥GM,π

∣ y ∈ cl(V), ∥vy∥GM
= 1, ξ differentiable at y}

= dil ξ(x).

This shows that lcl(U)(ξ) is the least upper bound for

{dil ξ(x) ∣ x ∈ cl(U)},

as required.

2.2.2. Fibre norms for jet bundles. Fibre norms for jet bundles of a vector bundle
play an important role in our unified treatment of various classes of regularities.
Our discussion begins with general constructions for the fibres of jet bundles. Let
r ∈ {∞, ω} and let M be a Cr-manifold. Let π ∶ E → M be a Cr-vector bundle
with πm ∶ JmE →M its mth jet bundle. We shall suppose that we have a Cr-affine
connection ∇M on M and a Cr-vector bundle connection ∇π in E. By additionally
supposing that we have a Cr-Riemannian metric GM on M and a Cr-fibre metric Gπ

on E, we shall give a Cr-fibre norm on JmE.
Denote Tm(T ∗M) them-fold tensor product of T ∗M and Sm(T ∗M) the symmetric

tensor bundle. The connection ∇M induces a covariant derivative for tensor fields
A ∈ Γ1(T kl (TM)) on M , k, l ∈ Z≥0. This covariant derivative we denote by ∇M ,
dropping the particular k and l. Similarly, the connection ∇π induces a covariant
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derivative for sections B ∈ Γ1(T kl (E)) of the tensor bundles associated with E, k, l ∈ Z≥0.
This covariant derivative we denote by ∇π, dropping the particular k and l. We will
also consider differentiation of sections of T k1l1 (TM) ⊗ T

k2
l2
(E), and we denote the

covariant derivative by ∇M,π. Note that

∇M,π,mξ ≜ ∇M,π⋯(∇M,π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1 times

(∇πξ)) ∈ Γ∞(Tm(T ∗M)⊗E).

For ξ ∈ Γ∞(E) and m ∈ Z≥0, we define

Dm
∇M ,∇π(ξ) = Symm ⊗ idE(∇M,π,mξ) ∈ Γ∞(Sm(T ∗M)⊗E).

where Symm ∶ Tm(T ∗M)→ Sm(T ∗M) by

Symm(v1 ⊗⋯⊗ vm) =
1

m!
∑
σ∈Sm

vσ(1) ⊗⋯⊗ vσ(m).

We take the convention that D0
∇M ,∇π(ξ) = ξ. We then have a map

Sm
∇M ,∇M,π ∶ JmE →

m

⊕
j=0

(Sj(T ∗M)⊗E)

jmξ(x) ↦ (ξ(x),D1
∇M ,∇π(ξ)(x), ...,Dm

∇M ,∇π(ξ)(x))

that can be verified to be an isomorphism of vector bundles (Jafarpour and Lewis,
2013, Lemma 2.1). Note that inner products on the components of a tensor products
induce an inner product on the tensor product in a natural way (Jafarpour and Lewis,
2013, Lemma 2.2). Then we have a fibre metric in all tensor spaces associated with
TM and E and their tensor products. We shall denote by GM,π any of these various
fibre metrics. In particular, we have a fibre metric GM,π on T j(T ∗M)⊗E for each
j ∈ Z≥0. This thus gives us a fibre metric GM,π,m on JmE defined by

GM,π,m(jmξ(x), jmη(x)) =
m

∑
j=0

GM,π (
1

j!
Dj

∇M ,∇π(ξ)(x),
1

j!
Dj

∇M ,∇π(η)(x)) . (2.1)

Associated to this inner product on fibres is the norm on fibres, which we denote
by ∥ ⋅ ∥GM,π,m

. We shall use these fibre norms continually in our descriptions of various
topologies in the next few sections.

2.2.3. Seminorms for spaces of finitely differentiable sections. In this section we
give a seminorm for sections of regularity ν =m ∈ Z≥0. We again take π ∶ E →M to
be smooth vector bundle. For the space Γm(E) of m-times continuously differentiable
sections, we define seminorms pmK , K ⊆M compact, for Γm(E) by

pmK(ξ) = sup{∥jmξ(x)∥GM,π,m
∣ x ∈K}.

We call the locally convex topology on Γm(E) defined by the family of seminorms pmK
where K ⊆M compact, the Cm-topology, and it is complete, Hausdorff, separable,
and metrizable (Jafarpour and Lewis, 2013, §3.4).
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2.2.4. Seminorms for spaces of Lipschitz sections. In this section we again work
with a smooth vector bundle π ∶ E →M . Different from defining the fibre metrics from
the last section, for the Lipschitz topologies the affine connection ∇M is required to be
the Levi-Civita connection for the Riemannian metric GM and the linear connection
∇πis required to be Gπ-orthogonal. Because we have the decomposition

JmE ≃
m

⊕
j=0

(Sj(T ∗M)⊗E),

it follows that the vector bundle JmE has a Cr-connection ∇πm , defined by

∇πmX jmξ = (Sm∇M ,∇π)−1(∇πXξ,∇M,π
X D1

∇M ,∇π(ξ), ...,∇M,π
X Dm

∇M ,∇π(ξ)).

By Rademacher’s Theorem (Federer, 1969, Theorem 3.1.6), if a section ξ is of class
Cm+lip, then its (m + 1)-th derivative exists almost everywhere. Then by Lemma 2.1,
we define

dil jmξ(x) = inf{sup{∥∇πmvy jmξ∥GM,π
∣ y ∈ cl(U), ∥vy∥G = 1, jmξ differentiable at y

∣ U is a relatively compact neighbourhood of x}.

which is the local sectional dilatation of ξ. Let K ⊆M be compact and define

λmK(ξ) = sup{diljmξ(x) ∣ x ∈K}

for ξ ∈ Γm+lip(E). We then can define a seminorm on ξ ∈ Γm+lip(E) by

pm+lipK (ξ) =max{λmK(ξ), pmK(ξ)}.

We call the locally convex topology on Γm+lip(E) defined by the family of seminorms
pm+lipK , K ⊆M compact, theCm+lip-topology, and it is complete, Hausdorff, separable,
and metrizable (Jafarpour and Lewis, 2014, §3.5).

2.2.5. Seminorms for spaces of smooth sections. Let π ∶ E → M be a smooth
vector bundle. Using the fibre norms from the preceding section, it is a straightforward
matter to define appropriate seminorms that define the locally convex topology for
Γ∞(E). For K ⊆M compact and for m ∈ Z≥0, define a seminorm p∞K,m on Γ∞(E) by

p∞K,m(ξ) = sup{∥jmξ(x)∥GM,π,m
∣ x ∈K}.

We call the locally convex topology on Γ∞(E) defined by the family of seminorms
p∞K,m, K ⊆ M compact, m ∈ Z≥0, the C∞-topology, and it is complete, Hausdorff,
separable, and metrizable (Jafarpour and Lewis, 2014, §3.2).
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2.2.6. Seminorms for spaces of holomorphic sections. For the topology of the
holomorphic sections, we consider an holomorphic vector bundle π ∶ E → M and
denote by Γhol(E) the space of holomorphic sections of E. Let Gπ be an Hermitian
metric on the vector bundle and denote by ∥ ⋅ ∥Gπ the associated fibre norm. For
K ⊆M compact, denote by pholK the seminorm on Γhol(E) defined by

pholK (ξ) = sup{∥ξ(z)∥Gπ ∣ z ∈K}.

The family of seminorms pholK where K ⊆M compact, defines a locally convex topology
for Γhol(E) we call the Chol-topology, and it is complete, Hausdorff, separable, and
metrizable (Jafarpour and Lewis, 2014, §4.2).

2.2.7. Seminorms for spaces of real analytic sections. The topology one considers
for real analytic sections does not have the same attributes as smooth, finitely differ-
entiable, Lipschitz, and holomorphic cases. There is a history to the characterisation
of real analytic topologies, and we refer to [Jafarpour and Lewis 2014, §5.2] for four
equivalent characterisations of the real analytic topology for the space of real analytic
sections of a vector bundle. Here we will give the most elementary of these definitions
to state, although it is probably not the most practical definition.

In this section we let π ∶ E →M be a real analytic vector bundle and let Γω(E) be
the space of real analytic sections. Here we need all of the data used to define the
seminorms in the finitely differentiable and smooth cases to topologise Γω(E), only
now we need this data to be real analytic. We refer to (Jafarpour and Lewis, 2014,
Lemma 2.4) for the existence of this data. Therefore, we can define real analytic fibre
metrics GM,π,m on the jet bundles JmE as in Section 2.2.2. To define seminorms for
Γω(E), we let c0(Z≥0;R>0) denote the space of sequences in R>0, indexed by Z≥0, and
converging to zero. We shall denote a typical element of c0(Z≥0;R>0) by a = (aj)j∈Z≥0 .
Now for K ⊆M compact, and a ∈ c0(Z≥0;R>0), we define a seminorm pωK,a on Γω(E)
by

pωK,a(ξ) = sup{a0a1...am∥jmξ(x)∥GM,π,m
∣ x ∈K, m ∈ Z≥0}.

The family of seminorms pωK,a, K ⊆M compact, a ∈ c0(Z≥0;R>0), defines a locally
convex topology on Γω(E) that we call theCω-topology, and it is complete, Hausdorff,
separable, but not metrizable (Jafarpour and Lewis, 2014, §5.3).

2.2.8. Summary and notation. The preceding developments have been made for
spaces of sections of a general vector bundle. We will primarily (but not solely) be
interested in spaces of vector fields and functions. For vector fields, the seminorms
above can be defined for an affine connection ∇M on M , as this also serves as a vector
bundle connection for πTM ∶ TM →M . For vector fields, the decomposition of the jet
bundle JmTM is

Sm
∇M ∶ JmTM → ⊕mj=0(Sj(T ∗M)⊗ TM)
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jmX(x) ↦ (X(x),Sym1 ⊗ idTM(∇MX)(x), ...,Symm ⊗ idTM(∇M,mX)(x)).

where
∇M,kX ≜ ∇M⋯∇M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

X

For the Lipschitz topologies, one needs for ∇M to be a metric connection, and so it
may as well be the Levi-Civita connection associated with a Riemannian metric G.
With the Riemannian metric G, this decomposition gives the various topologies for
spaces of vector fields. Functions are particular instances of sections of a vector bundle,
as we can identity a function with a section of the trivial line bundle FM = M × F.
We denote by Cν(M) the set of functions having the regularity ν coming from one
of the classes of regularity we consider. Note that this bundle has a canonical flat
connection ∇π which, when translated to functions, amounts to the requirement that
∇πXf =LXf . For f ∈ Cν(M) when ν ≥m, let us denote

∇M,0f = f, ∇M,1f = df, and ∇M,mf = ∇M,m−1df.

Then the decomposition of the jet bundle of FM looks like

Sm
∇M ∶ Jm(M ;R) → R⊕ (⊕mj=0Sj(T ∗M))

jmf(x) ↦ ((∇M,0f)(x), (∇M,1f)(x), ...,Symm(∇M,mf)(x)).

This decomposition can be used to define the locally convex topologies for the various
regularity classes of functions. Thus, if we suppose that we have a Riemannian metric
GM and affine connection ∇M on M , there is induced a natural fibre metric Gm on
Jm(M ;R) for each m ∈ Z≥0 by

GM,m(jmf(x), jmg(x)) =
m

∑
j=0

GM (
1

j!
Symj(∇M,jf)(x), 1

j!
Symj(∇M,jg)(x)) ,

and the associated norm we denote by ∥ ⋅ ∥GM,m
.

In the real case, the degrees of regularity are ordered according to

C0 ⊃ C lip ⊃ C1 ⊃ ⋯ ⊃ Cm ⊃ Cm+1 ⊃ ⋯ ⊃ C∞ ⊃ Cω, (2.2)

and in the complex case the ordering is the same, of course, but with an extra Chol

on the right.
With all the topologies for our various cases of regularities, we will, for K ⊆M be

compact, for k ∈ Z≥0, and for a ∈ c0(Z≥0;R>0), denote

pνK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pmK , ν =m,
pm+lipK , ν =m + lip,
p∞K,m, ν =∞,
pωK,a, ν = ω,
pholK , ν = hol.

(2.3)
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The convenience and brevity more than make up for the slight loss of preciseness in
this approach.

We comment that these seminorms make it clear that we have an ordering of the
regularity classes as

m1 <m1 + lip < ⋯ <m2 <m2 + lip < ⋯ <∞ < ω < hol

from least regular (coarser topology) to more regular (finer topology), and where
m1 <m2. There is also an obvious “arithmetic” of degrees of regularity that we will
use without feeling the need to explain it.

2.3. Time- and parameter-dependent sections and functions

In this section we introduce the classes of vector fields, depending on both time and
parameter, that we work with. In our presentation, we shall make use of measurable
and integrable functions with values in a locally convex topological vector space. This
is classical in the case of Banach spaces, but is not as fleshed out in the general case.

2.3.1. Time-dependent sections. We carefully introduce in this section the class of
time-dependent vector fields we consider, and which were quickly introduced in Section
1.2. First of all, since all topological vector spaces we consider are Suslin spaces, all
standard notions of measurability coincide (Thomas, 1975, Theorem 1). Thus, for
example, one can take as one’s notion of measurability the naive one that preimages
of Borel sets are measurable. The notion of integrability we use is “integrability by
seminorm,” and seems to originate in (Garnir, De Wilde, and Schmets, 1972). We
refer to (Lewis, 2021) for details and further references. For complete Suslin spaces,
such as we are working with, integrability by seminorm amounts to the requirement
that the application of any continuous seminorm to the vector-valued functions yields
a function in the usual scalar L1-space.

With these technicalities stowed away for safety and convenience, we now make
our definitions. Let m ∈ Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω,hol}, and let
r ∈ {∞, ω,hol}, as required. Let π ∶ E →M be a Cr-vector bundle and let T ⊆ R be
an interval. We say that ξ ∶ T → Γν(E) is locally integrally bounded if, for any
continuous seminorm p for Γν(E) and for S ⊆ T compact, p ○ (ξ∣S) ∈ L1(T;R). We
give a locally convex topology for the set of locally integrally bounded sections by the
seminorms

pνK,S(ξ) = ∫
S
pνK(ξ(t))dt, K ⊆M,S ⊆ T compact,

where pνK is the seminorm defined by (2.3). Thus, colloquially, the set of locally
integrally bounded mappings is just L1

loc(T; Γν(E)). We abbreviate this space by
ΓνLI(T;E). Explicit characterisations of these spaces are given by (Jafarpour and
Lewis, 2014).
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Definition 2.3 (Classes of time-varying sections). For a vector bundle π ∶ E →M
of class Cr and an interval T ⊆ R, let ξ ∶ T ×M → E satisfy ξ(t, x) ∈ Ex for each
(t, x) ∈ T ×M . Denote by ξt (t ∈ T), the map x↦ ξ(t, x) and suppose that ξt ∈ Γν(E)
for every t ∈ T. Then ξ is:

(i) a Carathéodory section of class Cν if the curve T ∋ t↦ ξt ∈ Γν(E) is measurable;

(ii) (locally) integrally Cν-bounded if the curve T ∋ t↦ ξt ∈ Γν(E) is (locally) Bochner
integrable;

(iii) (locally) essentially Cν-bounded if the curve T ∋ t ↦ ξt ∈ Γν(E) is (locally)
essentially von Neumann bounded.

We denote:

(iv) the set of Carathéodory sections of class Cν by ΓνCF(T;E);

(v) the set of (locally) integrally Cν-bounded sections by (ΓνLI(T;E)) ΓνI (T;E);

(vi) the set of (locally) essentially Cν-bounded sections by (ΓνLB(T;E)) ΓνB(T;E);
We shall also find some alternative, more expansive, notation profitable, notation

that is the “standard” adaptation from the usual notation for functions. For a
time-domain T we denote:

1. CF(T; Γν(E)): Carathéodory sections of class Cν ;

2. L1(T; Γν(E)): integrally Cν-bounded sections;

3. L1
loc(T; Γν(E)): integrally Cν-bounded sections;

4. L∞(T; Γν(E)): essentially Cν-bounded sections;

5. L∞loc(T; Γν(E)): locally essentially Cν-bounded sections.

The spaces of integrable or essentially bounded sections have natural topologies, which
we now describe.

1. The space L1(T; Γν(E)) has a locally convex topology defined by seminorms
pνK,1, K ⊆M compact, given by

pνK,1(ξ) = ∫
T
pνK ○ ξt dt,

where pνK is a seminorm for the topology on Γν(E). Here we make the abuse of
notation by possibly omitting extra bits of notation from the seminorm pνK , cf.
(2.3). We recall that

L1(T; Γν(E)) ≃ L1(T;R)⊗̂πΓν(E),

where ⊗̂π denotes the completed projective tensor product (Jarchow, 1981,
Corrolary 15.7.2).
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2. The space L1
loc(T; Γν(E)) has a locally convex topology defined by seminorms

pνK,S,1, K ⊆M compact, S ⊆ T compact, given by

pνK,S,1(ξ) = ∫
S
pνK ○ ξt dt, (2.1)

where seminorms pνK are as above. We note that L1
loc(T; Γν(E)) is the inverse

limit of the inverse system {L1
loc(S; Γν(E))}KT , where KT is the directed set of

compact subintervals of T ordered by S1 ⪯ S2 if S1 ⊆ S2.

3. The space L∞(T; Γν(E)) has a locally convex topology defined by seminorms
pνK,∞, K ⊆M compact, given by

pνK,∞(ξ) = ess sup{pνK ○ ξt ∣ t ∈ T},
where seminorms pνK are as above. We have

L∞(T; Γν(E)) ≃ L∞(T;R)⊗̂πΓν(E).

4. The space L∞loc(T; Γν(E)) has a locally convex topology defined by seminorms
pνK,S,∞ K ⊆M compact, S ⊆ T compact, given by

pνK,S,∞(ξ) = ess sup{pνK ○ ξt ∣ t ∈ S},
where seminorms pνK are as above. We note that L∞loc(T; Γν(E)) is the inverse
limit of the inverse system {L∞loc(S; Γν(E))}KT .

Our method of working with vector fields and their flows is to use general globally
defined functions to replace local coordinates. As such, functions assume an important
role in our presentation. Bearing in mind that functions are sections of the trivial line
bundle, the above general definitions for sections of vector bundles apply specifically to
functions, and yield the spaces Cν

LI(T;M) of time-dependent functions f ∶ T→ Cν(M).
The following lemma indicates how we will convert sections and vector fields into

functions.

Lemma 2.4 (Time-dependent functions from time-dependent sections and vector
fields). Let m ∈ Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω,hol}, and let r ∈ {∞, ω,hol},
as required. Let β ∶ B →M be a Cr-affine bundle modelled on the Cr- vector bundle
π ∶ E → M , and let T ⊆ R be an interval. When ν = hol, assume that M is a Stein
manifold. Then X ∈ ΓνLI(T;TM) if and only if Xf ∈ Cν

LI(T;B) for any f ∈ Cr(M).
Proof. We note that the seminorms on Γν(TM) provided by (2.3) give the initial
topology associated with the mappings X ↦LXf , f ∈ Cr(M) (Jafarpour and Lewis,
2014, Section 3). We observe that if πE ∶ E →M and πF ∶ F → N are Cr-vector bundles,
ν1, ν2 ∈ {m +m′,∞, ω,hol} are two regularity classes, and if ϕ ∶ Γν1(E)→ Γν2(F ) is a
continuous linear map, then

ϕ ○ ξ ∈ Γν1LI(T;F ), ξ ∈ Γν2LI(T;E),
since continuous linear maps preserve continuity of seminorms. The converse is true
by universal property of the initial topology. Then the desired conclusion follows.
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The following result gives a more familiar characterisation of locally integrally
bounded functions of class C lip, bearing in mind our policy of introducing a Riemannian
metric whenever it is convenient.

Lemma 2.5 (Property of time-varying locally Lipschitz functions). Let M be a smooth
manifold, let T be a time-domain, and let f ∈ C lip

LI (T;M). If K ⊆M is compact, then
there exists l ∈ L1

loc(T;R≥0) such that

∣f(t, x1) − f(t, x2)∣ ≤ l(t)dG(x1, x2), t ∈ T, x1, x2 ∈K.

Proof. Since functions are to be thought of as sections of the trivial line bundle
RM =M ×R, and since we use the flat connection on this bundle, we have, for any
compact set K ⊆M and for g ∈ C lip(M),

lK(g) = sup{
∣g ○ γ(1) − g ○ γ(0)∣

lG(γ)
∣ γ ∶ [0,1]→M,γ(0), γ(1) ∈K, γ(0) ≠ γ(1)}

= sup{∣g(x1) − g(x2)∣
dG(x1, x2)

∣ x1, x2 ∈K, x1 ≠ x2} .

Let K ⊆ M be compact. Let x ∈ K and let Ux be a neighbourhood of x such that,
by Lemma 2.2, for g ∈ C lip(M), we have λ0

cl(Ux)
(g) = lcl(Ux)(g). Since f ∈ C lip

LI (T;M),
there exists lx ∈ L1

loc(T;R≥0) such that

dilf(t, y) ≤ lx(t), (t, y) ∈ T × cl(Ux).

Thus, for x1, x2 ∈ Ux, we have

∣f(t, x1) − f(t, x2)∣ ≤ lx(t)dG(x1, x2), t ∈ T.

By compactness of K, there exist x1, ..., xm ∈ K such that K ⊆ ∪mj=1Uxj . By the
Lebesgue Number Lemma (D. Burago, Y. Burago, and Ivanov, 2001, Theorem 1.6.11),
there exists r ∈ R>0 with the property that, if x1, x2 ∈ K satisfy dG(x1, x2) < r, then
there exists j ∈ {1, ...,m} such that x1, x2 ∈ Uxj . Since C lip

LI (T;M) ⊆ C0
LI(T;M), there

exists κ ∈ L1
loc(T;R≥0) such that ∣f(t, x)∣ ≤ κ(t) for (t, x) ∈ T ×K. Let

l(t) =max{lx1(t), ..., lxm(t),
2κ(t)
r

, t ∈ T} ,

noting that l ∈ L1
loc(T;R≥0). Let x1, x2 ∈ K. If dG(x1, x2) < r, then let j ∈ {1, ...,m}

be such that x1, x2 ∈ Uxj , and then we have

∣f(t, x1) − f(t, x2)∣ ≤ lxj(t)dG(x1, x2) ≤ l(t)dG(x1, x2), t ∈ T.

If dG(x1, x2) ≥ r, then

∣f(t, x1) − f(t, x2)∣ ≤ ∣f(t, x1)∣ + ∣f(t, x2)∣ ≤ 2κ(t) ≤
2κ(t)
r

dG(x1, x2) ≤ l(t)dG(x1, x2),

which gives the result.
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2.3.2. Integrable sections along a curve.. We shall require the notion of a section
of a vector bundle over a curve. Thus we let r ∈ {∞, ω,hol} and let π ∶ E → M be
a Cr-vector bundle. Let T ⊆ R be an interval. We denote by Affr(E) ⊆ Cr(E) the
set of Cr-functions G on the manifold E for which G∣Ex is affine for each x ∈M . We
denote by L1

loc(T;E) the mappings Γ ∶ T → E for which G ○ Γ ∈ L1
loc(T;F) for every

G ∈ Affr(E). Note that, if Γ ∈ L1
loc(T;E), then there is a mapping γ ∶ T→M specified

by the requirement that the diagram

T E

M

γ

Γ

β

commute. We can think of Γ as being a section of E over γ. We topologise L1
loc(T;E)

by giving it the initial topology associated with the mappings

αF ∶ L1
loc(T;E) → L1(S;F)

Γ ↦ G ○ Γ∣S,

where G ∈ Affr(E) and S ⊆ T a compact subinterval.
Associated to these spaces of integrable sections over a curve, we have a few

constructions and technical results whose importance will be made apparent at various
points during the subsequent presentation. We consider the space C0(T;M) with the
topology (indeed, uniformity) defined by the family of semimetrics

dS,M(γ1, γ2) = sup{dG(γ1(t), γ2(t)) ∣ t ∈ S}, S ⊆ T a compact interval. (2.2)

We consider this in the following context. We consider Cr-vector bundles πE ∶ E →M
and πF ∶ F → N . We abbreviate

E∗ ⊗ F = pr∗1E∗ ⊗ pr∗2F,

where pr1 ∶M ×N →M and pr2 ∶M ×N → N are the projections. We regard E∗ ⊗ F
as a vector bundle over M ×N . The fibre over (x, y) we regard as

E∗x ⊗ Fy ≃ HomF(Ex;Fy).

Note that the total spaces E and F of these vector bundles, and so also E∗ ⊗ F ,
inherit a Riemannian metric from a Riemannian metrics on their base spaces and fibre
metrics (Lewis, 2020, §4.1). Thus E∗⊗F possess the associated distance function, and
we shall make use of this to define, as in (2.2), a topology on the space C0(T;E∗⊗F ).
If Γ ∈ C0(T;E∗ ⊗ F ), then we have induced mappings

γM ∈ C0(T;M), γN ∈ C0(T;N)

obtained by first projecting to M ×N , and then projecting onto the components of
the product. Note that Γ(t) ∈ HomF(EπE○Γ(t);FπF ○Γ(t)), t ∈ T.
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If ξ ∶ T ×M → E satisfies ξ(t, x) ∈ Ex and if Γ ∶ T→ E∗ ⊗ F , then we can define

ξΓ ∶ T → F

t ↦ Γ(t)(ξ(t, γM(t))).

We call ξΓ the composite section associated with ξ and Γ. The following lemma shows
that this mapping is integrable, under suitable hypotheses on ξ and Γ.

Lemma 2.6 (Integrability of composite section). Let πE ∶ E →M and πF ∶ F →M
be C∞-vector bundles and let T ⊆ R be an interval. If ξ ∈ Γ0

LI(T;E) and if Γ ∈
C0(T;E∗ ⊗ F ), then ξΓ ∈ L1

loc(T;F ).

Proof. Let G ∈ Aff∞(F ). We first show that t↦ G ○ ξΓ is measurable on T. Note that

t↦ G ○ Γ(s)(ξ(t, γM(s)))

is measurable for each s ∈ T and that

s↦ G ○ Γ(s)(ξ(t, γM(s))) (2.3)

is continuous for each t ∈ T. Let [a, b] ⊆ T be compact, let k ∈ Z>0, and denote

tk,j = a +
j − 1
k
(b − a), j ∈ {1, ..., k + 1}.

Also denote
Tk,j = [tk,j, tk,j+1), j ∈ {1, ..., k − 1},

and Tk,k = [tk,k, tk,k+1]. Then define gk ∶ T→ R by

gk(t) =
k

∑
j=1

G ○ Γ(tk,j)(ξ(t, γM(tk,j)))χtk,j .

Note that gk is measurable, being a sum of products of measurable functions (Cohn,
2013, Proposition 2.1.7). By continuity of (2.3) for each t ∈ T, we have

lim
k→∞

gk(t) = G ○ Γ(t)(ξ(t, γM(t))), t ∈ [a, b],

showing that t ↦ G ○ Γ(t)(ξ(t, γM(t))) is measurable on [a, b], as pointwise limits
of measurable functions are measurable (Cohn, 2013, Proposition 2.1.5). Since the
compact interval [a, b] ⊆ T is arbitrary, we conclude that t↦ G ○ Γ(t)(ξ(t, γM(t))) is
measurable on T.

Let S ⊆ T be compact and let K ⊆ M be a compact set for which γM(S) ⊆ K.
Since ξ ∈ Γ0

LI(T;M) and since Γ is continuous, there exists h ∈ L1(S;R≥0) be such that

∣G ○ Γ(t)(ξ(t, x))∣ ≤ h(t) (t, x) ∈ S ×K,

In particular, this shows that t↦ G○Γ(t)(ξ(t, γM(t))) is integrable on S and so locally
integrable on T.
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The following simplified version of the lemma will be useful.

Corollary 2.7 (Integrability of composite section). Let M be a C∞-manifold and let
T ⊆ R be an interval. If f ∈ C0

LI(T;M), if γ ∈ C0(T;M), and if we define fγ ∶ T → R
by fγ(t) = f(t, γ(t)), then fγ ∈ L1

loc(T;R).

Proof. Apply the lemma with E = F = M × R (so that sections are identified with
functions) and Γ(t) = ((γ(t), γ(t)), idR).

We also have the mapping

ΨT,E,ξ ∶ C0(T;E∗ ⊗ F ) → L1
loc(T;F )

Γ ↦ ξΓ,

which is well-defined by Lemma 2.6. The following lemma gives the continuity of this
mapping.

Lemma 2.8 (Continuity of curve to composite section map). Let πE ∶ E →M and
πF ∶ F → M be C∞-vector bundles, let T ⊆ R be an interval, and let ξ ∈ Γ0

LI(T;E).
Then ΨT,E,ξ is continuous.

Proof. Let G ∈ Aff∞(F ) and let S ⊆ T be a compact interval. Let Γj ∈ C0(T;E∗ ⊗ F ),
j ∈ Z>0, be a sequence of curves converging to Γ ∈ C0(T;E∗ ⊗ F ). Since Γ(S) is
compact and E∗ ⊗ F is locally compact, we can find a precompact neighbourhood W
of Γ(S). Then, for N ∈ Z>0 sufficiently large, we have Γj(S) ⊆W, j ≥ N by uniform
convergence. Therefore, we can find a compact set L ⊆ E∗ ⊗ F such that Γj(S) ⊆ L,
j ∈ Z>0, and Γ(S) ⊆ L. Let g ∈ L1(S;R≥0) be such that

∣G ○ Γ(t)(ξ(t, x))∣ ≤ h(t) (t, x) ∈ S ×K,

this since ξ ∈ Γ0
LI(T;M) and since Γ is continuous. Then, for fixed t ∈ S, continuity of

x↦ G ○ Γ(t)(ξ(t, x)) ensures that

lim
j→∞

G ○ Γ(t)(ξ(t, γM,j(t))) = G ○ Γ(t)(ξ(t, γM(t))).

We also have
∣G ○ Γ(t)(ξ(t, γM,j(t)))∣ ≤ g(t), t ∈ S.

Therefore, by the Dominated Convergence Theorem (Cohn, 2013, Theorem 2.4.5)

lim
j→∞
∫
S
G ○ Γ(t)(ξ(t, γM,j(t)))dt = ∫

S
G ○ Γ(t)(ξ(t, γM(t)))dt,

which gives the desired continuity.
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2.3.3. Time- and parameter-dependent sections.. Now we turn our attention to
vector fields depending on both parameter and time, as we outlined in Section 1.2.

Definition 2.9. Let m ∈ Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω,hol}, and let
r ∈ {∞, ω,hol}, as required. Let π ∶ E →M be a vector bundle of class Cr, let T ⊆ R
be a time interval, and let P be a topological space. Consider a map ξ ∶ T×M ×P → E
with the property that ξ(t, x, p) ∈ Ex for each (t, x, p) ∈ T ×M × P. Denote by
ξp ∶ T ×M → E the map ξp(t, x) = ξ(t, x, p). Then ξ is a:

(i) separately continuous parameter-dependent, (locally) integrally
bounded section of class Cν if ξp ∈ ΓνI (T;E) (ΓνLI(T;E)) for each p and
p→ ξp(t, x) is continuous for each (t, x) ∈ T ×M ;

(ii) parameter-dependent, (locally) integrally bounded section of class
Cν if it is a separately continuous parameter-dependent, (locally) integrally
bounded section of class Cν and if the map P ∋ p→ ξp ∈ ΓνI (T;E) (ΓνLI(T;E)) is
continuous;

(iii) separately continuous parameter-dependent, (locally) essentially
bounded section of class Cν if ξp ∈ ΓνB(T;E) (ΓνLB(T;E)) for each p ∈ P and
if p→ ξp(t, x) is continuous for each (t, x) ∈ T ×M ;

(iv) parameter-dependent, (locally) essentially bounded section of class
Cν if it is a separately continuous parameter-dependent, (locally) essentially
bounded section of class Cν and if the map P ∋ p→ ξp ∈ ΓνB(T;E) (ΓνLB(T;E))
is continuous.

We denote:

(v) the set of parameter-dependent, (locally) integrally bounded section of class Cν

by ΓνPLI(T;E;P);

(vi) the set of parameter-dependent, (locally) essentially bounded section of class
Cν by (ΓνPLB(T;E;P)) ΓνPB(T;E;P).

As with solely parameter-dependent and solely time-varying sections, we have more
fulsome notation for time-varying, parameter-dependent sections that is sometimes
useful. To see this, we first observe that the spaces

L1(T; Γν(E)), L1
loc(T; Γν(E)), L∞(T; Γν(E)), L∞loc(T; Γν(E))

have topologies, as described above. We then have the spaces

1. C0(P; L1(T; Γν(E))),

2. C0(P; L1
loc(T; Γν(E))),

3. C0(P; L∞(T; Γν(E))), and
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4. C0(P; L∞loc(T; Γν(E))).

This notation is sufficiently obvious that it does not warrant explanation. As in the
solely time-varying case, we shall not always state result in all four cases of “integrable,”
“locally integrable,” “essentially bounded,” and “locally essentially bounded,” although
all of the obvious results hold, and we shall use them.

To give a slightly explicit characterisation of membership in ΓνPLI(T;E;P), we note
that the conditions for such membership on ξ are, just by definition: for each p0 ∈ P ,
for each compact K ⊆M and S ⊆ T, and for each ϵ ∈ R>0, there exists a neighbourhood
O ⊆ P of p0 such that

∫
S
pνK(ξpt − ξp0t )dt < ϵ, p ∈ O, (2.4)

where seminorms pνK are as above. We can, moreover, topologise these spaces. The
compact open topology on C0(P; L1(T; Γν(E))) is the locally convex topology
defined by the family of seminorms pνK,T,1,L, L ⊆ P compact and K ⊆ M compact,
given by

pνK,T,1,L(ξ) = sup{pνK,T,1 ○ ξp ∣ p ∈ L},

where pνK,T,1 is a seminorm for the topology on L1(T; Γν(E)). Similarly, the compact

open topology on C0(P; L1
loc(T; Γν(E))) is the locally convex topology defined by

the family of seminorms pνK,S,1,L, L ⊆ P compact, K ⊆M compact, and S ⊆ T compact
given by

pνK,S,1,L(ξ) = sup{pνK,S,1 ○ ξp ∣ p ∈ L},

where pνK,S,1 is a seminorm for the topology on L1
loc(T; Γν(E)).

The following result then characterises time-and parameter-dependent Lipschitz
functions, just as in the time-dependent case.

Lemma 2.10 (Property of time- and parameter-dependent locally Lipschitz functions).
Let M be a smooth manifold, let T be a time-domain, let P be a topological space, and
let f ∈ C lip

PLI(T;M ;P). If K ⊆ M is compact, if S ⊆ T is a compact interval, and if
p0 ∈ P, then there exists C ∈ R>0 and a neighbourhood O of p0 such that

∫
S
∣f(t, x1, p) − f(t, x2, p)∣dt ≤ C dG(x1, x2), x1, x2 ∈K, p ∈ O.

Proof. Let K ⊆M and S ⊆ T be compact, and let p0 ∈ P. Let x ∈ K and, as in the
proof of Lemma 2.5, let Ux be a neighbourhood of x and let ℓx ∈ L1(S;R≥0) be such
that

dil f(t, y, p0) ≤ ℓx(t)dG(x1, x2), (t, y) ∈ S × cl(Ux).
According to (2.4), there exists a neighbourhood Ox of p0 such that

∫
S
dil (fp − fp0)(t, y)dt < 1, (t, y, p) ∈ S × Ux ×Ox.
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Therefore, by the triangle inequality,

∫
S
dil fp(t, y)dt ≤ ∫

S
dil (fp − fp0)(t, y)dt + ∫

S
dil fp0(t, y)dt < 1 + ∫

S
ℓx(t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cx

for all (t, y, p) ∈ S × Ux ×Ox. Thus, by Lemma 2.2, there exists Cx ∈ R>0 such that

∫
S

f(t, x1, p) − f(t, x2, p)
dG(x1, x2)

dt ≤ ∫
S
λ0cl(Ux)(f

p
t )dt ≤ Cx

for x1, x2 ∈ Ux distinct and for p ∈ Ox. By compactness of K, there exists x1, ..., xm ∈K
such that K ⊆ ∪mj=1Uxj . By the Lebesgue Number Lemma (D. Burago, Y. Burago,
and Ivanov, 2001, Theorem 1.6.11), there exists r ∈ R>0 with the property that, if
x1, x2 ∈K satisfies dG(x1, x2) < r, then there exists j ∈ {1, ...,m} such that x1, x2 ∈ Uxj .
Since C0

LI(T;M ;P) ⊆ C lip
LI (T;M ;P), by (2.4) there exists a neighbourhood O′ of p0

such that

∫
S
∣f(t, x, p)∣dt < 1, (t, y, p) ∈ S ×K ×O′.

Let

C =max{Cx1 , ...,Cxm ,
r

2
}

and let O = O′ ∩ (∩mj=1Oxj). Let x1, x2 ∈ K and p ∈ O. If dG(x1, x2) < r, then let
j ∈ {1, ...,m} be such that x1, x2 ∈ Uxj , and then we have

∫
S
∣f(t, x1, p) − f(t, x2, p)∣dt ≤ Cxj dG(x1, x2) ≤ C dG(x1, x2).

If dG(x1, x2) ≥ r, then

∫
S
∣f(t, x1, p) − f(t, x2, p)∣dt ≤ ∫

S
∣f(t, x1, p)∣dt + ∫

S
∣f(t, x2, p)∣dt

< 2 ≤ 2

r
dG(x1, x2) ≤ C dG(x1, x2),

which gives the result.



Chapter 3

Vector fields and flows

For the class of time- and parameter-dependent vector fields introduced in the previous
section, we give a geometric characterisation of their integral curves and flows, and
prove the more standard results on the manner in which the flow depends on its
arguments. While the arguments used in the proofs bear an unsurprising similarity to
the standard proofs, we highlight four important points of departure:

1. in the time-dependent setting, we are using a class of vector fields that is new,
so the proofs necessarily reflect this by being different than standard proofs;

2. as throughout the chapter, we eschew the use of coordinates in favour of globally
defined functions, as this is an important ingredient in our approach.

3. give geometric proofs for standard results, globally expressed, concerning con-
tinuous (and more regular, when appropriate) dependence of terminal state on
initial state, initial and final time.

4. prove a new type of continuity result for the “parameter to local flow” mapping.

3.1. Integral curves for vector fields

In this section, we will give geometric definitions and characterisations of integral
curves and flows. We begin by defining and characterising integral curves in our global
framework.

Definition 3.1 (Integral curve). Let m ∈ Z≥0, let m′ ∈ {0, lip}, let ν ∈ {m +
m′,∞, ω,hol}, and let r ∈ {∞, ω,hol}, as required. Let M be a Cr-manifold, let
T ⊆ R be an interval, let X ∈ ΓνLI(T;TM). An integral curve for X is a locally
absolutely continuous curve ξ ∶ T′ →M such that

(i) T′ ⊆ T and

(ii) ξ′(t) =X(t, ξ(t)) for almost every t ∈ T′.

24
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An integral curve ξ ∶ T′ →M is maximal if, given any other integral curve η ∶ T′′ →M
for which η(t) = ξ(t) for some t ∈ T′ ∩T′′, we have T′′ ⊆ T′.

The following result, while admittedly simple, characterises integral curves in a
way that will be of essential use to our approach.

Lemma 3.2 (“Weak” characterisation of integral curves). Let m ∈ Z≥0, let m′ ∈ {0, lip},
let ν ∈ {m+m′,∞, ω,hol}, and let r ∈ {∞, ω,hol}, as required. Let M be a Cr manifold,
Stein when ν = hol, let T ⊆ R be an interval, and let X ∈ ΓνLI(T;TM). For a curve
ξ ∶ T′ →M , the following statements are equivalent:

(i) ξ is a integral curve for X;

(ii) for any t0 ∈ T′ and any f ∈ C∞(M),

f ○ ξ(t) = f ○ ξ(t0) + ∫
t

t0
Xf(s, ξ(s))ds;

(iii) for any t0 ∈ T′ and any f ∈ Cr(M),

f ○ ξ(t) = f ○ ξ(t0) + ∫
t

t0
Xf(s, ξ(s))ds.

Proof. (i)Ô⇒ (ii). Let t0 ∈ T′ and f ∈ C∞(M). Then we have

f ○ ξ(t0) + ∫
t

t0
Xf(s, ξ(s))ds = f ○ ξ(t0) + ∫

t

t0
⟨df(ξ(s)); ξ′(s)⟩ds

= f ○ ξ(t0) + ∫
t

t0

d

ds
f ○ ξ(s)ds = f ○ ξ(t),

as claimed.
(ii) Ô⇒ (iii). This follows since real analytic and holomorphic functions are

smooth.
(iii)Ô⇒ (i). Let t0 ∈ T′ and let χ1, ..., χn ∈ Cr(M) be such that

(dχ1(ξ(t0)), ...,dχ1(ξ(t0)))
is a basis for T ∗

ξ(t0)
M . The existence of such functions follows from the existence

of globally defined Cr-coordinate functions about any point in M for smooth, real
analytic, and Stein manifolds. One then argues, just as in the proof of the first
implication above, that

χj ○ ξ(t) = χj ○ ξ(t0) + ∫
t

t0
Xχj(s, ξ(s))ds

for each j ∈ {1, ..., n}. This gives
(χj ○ ξ)′(t) =Xξj(t, ξ(t)), j ∈ {1, ..., n}, a.e. t ∈ T′.

The linear independence of dχ1, ...,dχn in a neighbourhood of ξ(t0) gives ξ′(t) =
X(t, ξ(t)) for almost every t in some neighbourhood of t0. As this holds for every
t0 ∈ T′, we conclude that ξ is an integral curve for X.
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The next lemma is an adaptation of the preceding lemma for curves that are not
necessarily integral curves of vector fields. In the statement of the result, we make
use of the notation

Tt0,α = T ∩ [t0 − α, t0 + α].

Lemma 3.3 (Curves determined by functions). Let M be a manifold of class C∞,
let T ⊆ R be an interval, and let ηj ∈ C0(T;R). Let x0 ∈ M and suppose that
χ1, ..., χn ∈ C∞(M) are such that (dχ1(x0), ...,dχn(x0)) is a basis for T ∗x0M . If
ηj(t0) = χj(x0), then the following statements hold:

(i) there exists α ∈ R>0 and γ ∈ C0(Tt0,α;M) such that

χj ○ γ(t) = ηj(t), j ∈ {1, ..., n}, t ∈ Tt0,α;

(ii) with χ1, ..., χn and γ as in part (i), α can be chosen so that the curve γ is unique
in that any two such curves agree on the intersection of their domains.

Proof. Consider the map

f ∶M → Rn

x ↦ (χ1(x), ..., χn(x)).

By the Inverse Function Theorem, f is a diffeomorphism from a neighbourhood U of
x0 onto a neighbourhood V of f(x0). Let α ∈ R>0 be sufficiently small that

(η1(t), ..., ηn(t)) ∈ V , j ∈ {1, ..., n}, t ∈ Tt0,α.

Thus there is a unique continuous curve γ ∶ Tt0,α → U satisfying χj ○ γ(t) = ηj(t) for
j ∈ {1, ..., n} and t ∈ Tt0,α.

The next step should be that of existence and uniqueness of integral curves for
time-dependent vector fields (or time- and parameter-dependent vector fields with the
parameter fixed). This, however, requires no special measures since the condition that
Γlip
LI (T;TM) returns exactly the condition required for existence and uniqueness of

local integral curves, and, hence, also maximal integral curves, i.e., those defined on
the largest possible time interval. Thus we shall not give an independent proof here.
However, we will give a a precise formulation for this in the presence of parameters,
with our particular form of parameter-dependence, and we shall take for granted the
usual existence and uniqueness results for maximal integral curves.
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3.2. Flows for vector fields

With the notion of an integral curve at hand, we can define flows of time-varying
vector fields.

Definition 3.4 (Domain of a vector field, flow of a vector field). Let m ∈ Z≥0, let
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω,hol}, and let r ∈ {∞, ω,hol}, as required. Let M
be a Cr manifold, let T ⊆ R be a time-domain, let P be a topological space, and let
X ∈ ΓνPLI(T;TM ;P).

(i) For (t0, x0, p0) ∈ T ×M ×P, denote

JX(t0, x0, p0) =⋃{J ⊆ T ∣ J is an interval and there exists an integral curve

ξ ∶ J →M for Xp0 satisfying ξ(t0) = x0}.

The interval jX(t0, x0, p0) is the interval of existence for Xp0 for the initial
condition (t0, x0).

(ii) For (t1, x0, p0) ∈ T ×M ×P, denote

IX(t1, x0) = {t0 ∈ T ∣ t1 ∈ JX(t0, x0, p0)}.

(iii) For For (t1, x0, p0) ∈ T ×M ×P, denote

DX(t1, t0, p0) = {x ∈M ∣ t1 ∈ JX(t0, x, p0)}.

(iv) Denote

DX = {(t0, t0, x0, p0) ∈ T ×T ×M ×P ∣ t1 ∈ JX(t0, x0, p0)}.

(v) The flow for X is the mapping

ΦX ∶DX → M

(t1, t0, x0, p0) ↦ ξ(t1),

where ξ is the integral curve for Xp0 satisfying ξ(t0) = x0.

We will work with time-varying vector fields both with and without parame-
ter dependence. When we work with vector fields that are time-dependent but
not parameter-dependent, we will simply omit the argument corresponding to the
parameter without further mention. We shall also use the notation

ΦXp

t1,t0 ∶DX(t1, t0, p)→M

when convenient.
The flow has the following elementary properties that follow from the definitions

and by the uniqueness of integral curves:
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(i) for each (t0, x0) ∈ T ×M , (t0, t0, x0) ∈DX and ΦX(t0, t0, x0) = x0;

(ii) if (t2, t1, x) ∈ DX , then (t3, t2,ΦX(t2, t1, x)) ∈ DX if and only if (t3, t1, x) ∈ DX

and, if this holds, then

ΦX(t3, t1, x) = ΦX(t3, t2,ΦX(t2, t1, x));

(iii) if (t2, t1, x) ∈ DX , then (t1, t2,ΦX(t2, t1, x)) ∈ DX and ΦX(t1, t2,ΦX(t2, t1, x)) =
x.

We can now state a “standard” theorem in our nonstandard framework. In the
statement and proof of the result, we will find the notation

∣t0, t1∣ =
⎧⎪⎪⎨⎪⎪⎩

[t0, t1], t1 ≥ t0,
[t1, t0], t1 ≤ t0.

useful, for t0, t1 ∈ T. We also denote by LocFlowν(S′;S;U) the set of local flows defined
on S′ × S × U ⊆ T ×T ×M , and

VνS′×S×U = {X ∈ ΓνLI(T;TM) ∣ S′ × S × U ⊆DX , S ⊆ S′},

the space of time-verying sections whose flows are defined on S′ × S × U .

Theorem 3.5 (Continuous dependence of flows). Let M be a C∞-manifold, let T ⊆ R
be an interval, let P be a topological space, and let X ∈ Γlip

PLI(T;TM ;P). Then the
following statements hold:

(i) for (t0, x0, p0) ∈ T ×M ×P, JX(t0, x0, p0) is a relatively open subinterval of T;

(ii) for (t0, x0, p0) ∈ T ×M ×P, the curve

γ(t0,x0,p0) ∶ JX(t0, x0, p0) → M

t ↦ ΦX(t, t0, x0, p0)

is well-defined and locally absolutely continuous;

(iii) for (t1, x0, p0) ∈ T ×M ×P, IX(t1, x0, p0) is a relatively open subinterval of T;

(iv) for (t1, x0, p0) ∈ T ×M ×P, the curve

ι(t1,x0,p0) ∶ IX(t1, x0, p0) → M

t ↦ ΦX(t1, t, x0, p0)

is well-defined and locally absolutely continuous;

(v) for t1, t0 ∈ T and p0 ∈ P, DX(t1, t0, p0) is open in M;
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(vi) for t1, t0 ∈ T and p0 ∈ P for which DX(t1, t0, p0) ≠ ∅, ΦX
p0

t1,t0
is a locally bi-Lipschitz

homeomorphism onto its image;

(vii) Dx is relatively open in T ×T ×M ×P;

(viii) the map

ΦX ∶DX →M

is continuous;

(ix) for (t0, x0, p0) ∈ T×M ×P, and for ϵ ∈ R>0, there exists α ∈ R>0, a neighbourhood
U of x0, and a neighbourhood O of p0 such that

supJX(t, x, p) > supJX(t0, x0, p0) − ϵ, inf JX(t, x, p) < inf JX(t0, x0, p0) + ϵ

for all (t, x, p) ∈ int(Tt0,α) × U ×O;

(x) for (t1, t0, x0, p0) ∈DX , the curves

∣t0, t1∣ ∋ t↦ ΦX(t, t0, x, p) ∈M

converge uniformly to

∣t0, t1∣ ∋ t↦ ΦX(t, t0, x0, p0) ∈M

as (x, p)→ (x0, p0).

Proof. (i) Since JX(t0, x0, p0) is a union of intervals, each of which contains t0, it
follows that it is itself an interval. To show that it is an open subset of T, we show
that, if t ∈ JX(t0, x0, p0), there exists ϵ ∈ R > 0 such that Tt,ϵ ⊆ JX(t0, x0, p0).

First let us consider the case when t is not an endpoint of T, in the event that
T contains one or both of its endpoints. In this case, by definition of JX(t0, x0, p0),
there is an open interval J ⊆ T containing t0 and t, and an integral curve ξ ∶ J →M
for Xp0 satisfying ξ(t0) = x0. In particular, there exists ϵ ∈ R>0 such that (t− ϵ, t+ ϵ) ⊆
J ⊆ JX(t0, x0, p0), which gives the desired conclusion in this case.

Next suppose that t is the right endpoint of T, which we assume is contained in
T, of course. In this case, by definition of JX(t0, x0, p0), there is an interval J ⊆ T
containing t0 and t, and an integral curve ξ ∶ J →M for Xp0 satisfying ξ(t0) = x0. In
this case, there exists ϵ ∈ R>0 such that

Tt,ϵ = (t − ϵ, t] ⊆ JX(t0, x0, p0),

which gives the desired conclusion in this case. A similar argument gives the desired
conclusion when t is the left endpoint of T.

(ii) That γ(t0,x0,p0) is defined in JX(t0, x0, p0) was proved as part of the preceding
part of the proof. The assertion that γ(t0,x0,p0) is locally absolutely continuous follows
from the usual existence and uniqueness theorem.
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(iii) This follows similarly to part (ii).
We will defer the proof of part (iv) to the end of the proof.
We shall prove the assertions (v) and (vi) of the theorem together, first by proving

that these conditions hold locally, and then giving an extension argument to give the
global version of the statement. Let us first prove a few technical lemmata that will
be useful to us. First we give the initial part of the local version of the theorem.

Lemma 3.6. Let M be a C∞-manifold, let T ⊆ R be a time domain, let P be a
topological space, and let X ∈ Γlip

LI(T, TM ;P). For each (t0, x0, p0) ∈ T ×M ×P, there
exist α ∈ R>0, a neighborhood U ⊆M of x0 and a neighborhood O ⊆ P of p0 such that,
(t, t0, x, p) ∈ DX for each t ∈ Tt0,α, x ∈ U and p ∈ O. Moreover, α, U and O can be
chosen such that:

(i) the map
U ∋ x↦ ΦXp

t1,t0(x)
is Lipschitz for every p ∈ O and every t1 ∈ Tt0,α;

(ii) the map
Tt0,α × U ×O ∋ (t, x, p)↦ ΦX(t, t0, x, p)

is continuous.

Proof. We first essentially prove the local existence and uniqueness result, including
the role of parameters. We make use of an arbitrarily selected Riemannian metric G.
Let χ1, ..., χn ∈ C∞(M) be such that {dχ1(x0), ...,dχn(x0)} is a basis for T ∗x0M . Let
R ∈ R>0 be such that

U ∶= {x ∈M ∣ dG(x,x0) < R}
is geodesically convex (Kobayashi and Nomizu, 1963, Proposition IV.3.4). We choose
R sufficiently small that dχ1, ...,dχn are linearly independent at points in U . By
Lemma A.1, there exists C ∈ R>0, such that

C−1 sup{∣χj(x1) − χj(x2)∣ ∣ j ∈ {1, ..., n}}
≤ dG(x1, x2) ≤ C sup{∣χj(x1) − χj(x2)∣ ∶ j ∈ {1, ..., n}}, x1, x2 ∈ U . (3.1)

For x ∈M and a ∈ R>0, we denote by

U(a, x) ⊆ ∩nj=1(χj)−1(χj(x) − a,χj(x) + a)

the connected component of the set on the right containing x. With U chosen above,
note that U(a, x) is a neighborhood, homeomorphic to an n-dimensional ball, of x for
x ∈ U and for a sufficiently small that U(a, x) ⊆ U .

Following from (Jafarpour and Lewis, 2014, Theorem 6.4:(v) and (vi)) and making
use of the universal property of the initial topology, one can easily see that Xχj ∈
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C lip
PLI(T;M ;P) for j ∈ {1, ..., n}. Let r′ ∈ R>0 be such that U(r′, x0) ⊆ U . Let r = r′

2 ,
and let λ ∈ (0,1). There exists α ∈ R>0 s.t.

∫
Tt0,α

∣Xχj(s, x, p0)∣ds <
r

2
(3.2)

and

∫
Tt0,α

dil(Xχj)(s, x, p0)ds <
λ

2C
(3.3)

for x ∈ U(r′, x0) and j ∈ {1, ..., n}. Since Xχj ∈ C lip
PLI(T;M ;P), j ∈ {1, ..., n}, there

exists a neighbourhood O of p0 such that

∫
Tt0,α

∣Xχj(s, x, p) −Xχj(s, x, p0)∣ds <
r

2
(3.4)

and

∫
Tt0,α

dil((Xχj)p − (Xχj)p0)(s, x)ds < λ

2C
(3.5)

for x ∈ U(r′, x0), p ∈ O, and j ∈ {1, ..., n}.
Applying triangle inequality to (3.2)-(3.5), we have

∫
Tt0,α

∣Xχj(s, x, p)∣ds < r (3.6)

and

∫
Tt0,α

dil(Xχj)(s, x, p)ds < λ
C

(3.7)

for all x ∈ U(r′, x0), p ∈ O, and j ∈ {1, ..., n}.
The inequality (3.7), with the aid of Lemma 2.10, give,

∫
∣t0,t∣
∣Xχj(s, x1, p) −Xχj(s, x2, p)∣ds <

λ

C
dG(x1, x2) (3.8)

for x1, x2 ∈ U(r′, x0), j ∈ {1, ..., n}, and p ∈ O.
If y ∈ U(r, x0), then U(r, y) ⊆ U(r′, x0). Therefore, (3.6) and (3.8) hold for all

x,x1, x2 ∈ U(r, y), t ∈ Tt0,α, j ∈ {1, ..., n} and p ∈ O.
Denote U ∶= U(r, x0), and let x ∈ U . For each j ∈ {1, ..., n}, we denote by ϕj0 ∈

C0(Tt0,α,R) the constant mapping ϕj0 = χj(x), and denote by B(r, ϕj0) the closed ball
of radius r about ϕj0. For each p ∈ O, we have the mapping

F j
Xp ∶ B(r, ϕj0)→ C0(Tt0,α,R)

ϕj ↦ χj(x) + ∫
∣t0,t∣

Xχj(s, γϕ(s), p)ds,

for j ∈ {1, ..., n}, and where γϕ ∈ C0(Tt0,α,M) is the unique curve satisfying

χj ○ γϕ = ϕj(t), t ∈ Tt0,α, j ∈ {1, ..., n},
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cf. Lemma 3.3. Note that the definition of r ensures that γϕ so defined takes values in
U .

Now we claim that Im(γϕ) ⊆ U(r′, x0). Indeed, since x ∈ U = U(r, x0), then

U(r, x) ⊆ ∩nj=1(χj)−1(χj(x) − r,χj(x) + r) ⊆ U(r′, x0).

Since ϕj ∈ B(r, ϕj0) and γϕ(t) = (χj)−1 ○ ϕj(t) for all j ∈ {1, ..., n}, then

γϕ(t) ∈ ∩nj=1(χj)−1(ϕj0(t) − r, ϕ
j
0(t) + r) = ∩nj=1(χj)−1(χj(x) − r,χj(x) + r) ⊆ U(r′, x0).

We then claim that F j
Xp(B(r, ϕj0)) ⊆ B(r, ϕ

j
0), j ∈ {1, ..., n}, p ∈ O. Indeed, if

ϕj ∈ B(r, ϕj0), j ∈ {1, ..., n}, we have

∣F j
Xp ○ ϕj(t) − ϕj0(t)∣ ≤ ∫

∣t0,t∣
∣Xχj(s, γϕ(s), p)∣ds < r.

We also claim that the mapping

n

∏
j=1

B(r, ϕj0) ∋ (ϕ1, ..., ϕn)↦ (F 1
Xp ○ ϕ1, ..., F n

Xp ○ ϕn) ∈
n

∏
j=1

B(r, ϕj0) (3.9)

is a contraction mapping for each p ∈ O, where
n

∏
j=1
B(r, ϕj0) is given the product

metric. Indeed, let ϕj1, ϕ
j
2 ∈ B(r, ϕ

j
0), j ∈ {1, ..., n}. Let γ1, γ2 ∈ C0(Tt0,α,M) be the

corresponding curves satisfying

χj ○ γa(t) = ϕja(t), t ∈ Tt0,α, j ∈ {1, ..., n}, a ∈ {1,2},

cf. Lemma 3.3. Then we have, for each j ∈ {1, ..., n},

∣F j
Xp ○ ϕj1(t) − F

j
Xp ○ ϕj2(t)∣ ≤ ∫

∣t0,t∣
∣Xχj(s, γ1(s), p) −Xχj(s, γ2(s), p)∣ds

≤ λ

C
sup{dG(γ1(s), γ2(s)) ∣ s ∈ ∣t0, t∣}

≤ λ sup{∣ϕk1(s) − ϕk2(s)∣ ∣ k ∈ {1, ..., n}}, s ∈ Tt0,α,

from which the desired conclusion follows.
By the Contraction Mapping Theorem (Abraham, Marsden, and Ratiu, 1988,

Theorem 1.2.6) there exists a unique fixed point for the mapping (3.9) in
n

∏
j=1
B(r, ϕj0);

let us denote the components of this unique fixed point by ϕj, j ∈ {1, ..., n}. Let us
also denote by ξ ∈ C0(Tt0,α;M) the corresponding curve in M , noting that

χj ○ ξ(t) = χj(x) + ∫
∣t0,t∣

Xχj(s, ξ(s), p)ds

for all p ∈ O, cf. Lemma 3.3. It remains to show that ξ is an integral curve for Xp

satisfying ξ(t0) = x. Observe that ξ(t0) = x is obvious. We can, then, follow the proof
of part (iii) of Lemma 3.2 to see that ξ is an integral curve for Xp.
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We next prove uniqueness of this integral curve on Tt0,α. Suppose that η ∶ Tt0,α →M
is another integral curve satisfying η(t0) = x0. By Lemma 3.2 we have

f ○ η(t) = f(x) + ∫
∣t0,t∣

Xf(s, η(s))ds

for every f ∈ C∞(M). It then follows that, if we define

ϕj ∶ Tt0,α → R
t ↦ χj ○ η(t),

then (ϕ1, ..., ϕn) is a fixed point of the mapping (3.9). Since this fixed point is unique,
we must have

χj ○ η(t) = χj ○ ξ(t), j ∈ {1, ..., n}, t ∈ Tt0,α.
By Lemma 3.3 we conclude that η = ξ. One can also prove global uniqueness of
integral curves using the standard arguments.

From the above, we conclude that

Tt0,α × {t0} × U ×O ⊆DX

and that
f ○ΦX(t, t0, x, p) = f(x) + ∫

∣t,t0∣
Xf(s,ΦX(s, t0, x, p), p)ds

for (t, x, p) ∈ Tt0,α × U ×O and f ∈ C∞(M). This proves the existential part of the
lemma.

(i) Fix p ∈ O. By (3.1) and (3.8), we have

∫
∣t0,t∣
∣Xpχj(s, x1) −Xpχj(s, x2)∣dt

≤ λmax{∣χl(x1) − χl(x2)∣ ∣ l ∈ {1, ..., k}}, t ∈ Tt0,α, x1, x2 ∈ U .

Let t ∈ Tt0,α be such that t ≥ t0 and let x1, x2 ∈ U . We then have

f ○ΦXp(t, t0, xa) = f(xa) + ∫
∣t,t0∣

Xf(s,ΦXp(s, t0, xa))ds, a ∈ {1,2}, f ∈ C∞(M).

Thus, for j ∈ {1, ..., n},

∣χj ○ΦXp(t, t0, x1) − χj ○ΦXp(t, t0, x2)∣
≤ ∣χj(x1) − χj(x2)∣ + ∫

∣t0,t∣
∣Xpχj(s,ΦXp(s, t0, x1)) −Xpχj(s,ΦXp(s, t0, x2))∣ds

≤ ∣χj(x1) − χj(x2)∣
+λ sup{∣χl ○ΦXp(s, t0, x1) − χl ○ΦXp(s, t0, x2)∣ ∣ s ∈ [t0, t], l ∈ {1, ..., n}}

Abbreviate

ξp(s) =max{∣χl ○ΦXp(s, t0, x1) − χl ○ΦXp(s, t0, x2)∣ ∣ l ∈ {1, ..., n}}
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and
δp = sup{ξp(s) ∣ s ∈ Tt0,α}

The definitions then give

δp ≤ ξp(t0) + λδp Ô⇒ δp ≤ (1 − λ)−1ξp(t0).

Since
ξp(t0) =max{∣χj(x1) − χj(x2)∣ ∣ j ∈ {1, ..., n}} ,

together with (3.1), we have

dG(ΦXp(t, t0, x1),ΦXp(t, t0, x2)) ≤ Cξp(t) ≤ Cδp ≤ (1 − λ)−1 dG(x1, x2),

which shows that ΦXp

t,t0
∣U is Lipschitz. Incidentally, the Lipschitz constant is indepen-

dent of t ∈ Tt0,α and p ∈ O.
(ii) Let t1, t2 ∈ Tt0,α be such that t0 ≤ t1 ≤ t2, let x1, x2 ∈ U , and let p1, p2 ∈ O. We

first have, for t ∈ [t0, t1],

∣χj ○ΦX(t, t0, x1, p1) − χj ○ΦX(t, t0, x2, p2)∣
≤ ∣χj(x1) − χj(x2)∣
+∫

∣t0,t∣
∣Xχj(s,ΦX(s, t0, x1, p1), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds

≤ ∣χj(x1) − χj(x2)∣
+∫

∣t0,t∣
∣Xχj(s,ΦX(s, t0, x1, p1), p1) −Xχj(s,ΦX(s, t0, x2, p2), p1)∣ds

+∫
∣t0,t∣
∣Xχj(s,ΦX(s, t0, x2, p2), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds

for j ∈ {1, ..., n}. Hence, for j ∈ {1, ..., n} and t ∈ [t0, t1], we use (3.1) and (3.8) to give

∫
∣t0,t∣
∣Xχj(s,ΦX(s, t0, x1, p1), p1) −Xχj(s,ΦX(s, t0, x2, p2), p1)∣ds

≤ λmax{∣χl ○ΦX(s, t0, x1, p1) − χl ○ΦX(s, t0, x2, p2)∣ ∣ l ∈ {1, ..., n}} .

We also clearly have

∫
∣t0,t∣
∣Xχj(s,ΦX(s, t0, x2, p2), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds ≤ ρ ≜

max{∫
Tt0,α

∣Xχj(s,ΦX(s, t0, x2, p2), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds

∣j ∈ {1, ..., n}}.

Let us denote

ξ(s) =max{∣χl ○ΦXp(s, t0, x1, p1) − χl ○ΦX(s, t0, x2, p2)∣ ∣ l ∈ {1, ..., n}}
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and
δ = sup{ξ(s) ∣ s ∈ Tt0,α}

so that
δ ≤ ξ(t0) + λδp Ô⇒ δ ≤ (1 − λ)−1ξ(t0).

As per (3.1), let C ∈ R>0 be such that

ξ(t0) ≤ C−1 dG(x1, x2).

Then we have

∣χj ○ΦX(t1, t0, x1, p1) − χj ○ΦX(t2, t0, x2, p2)∣
≤ ∣χj ○ΦX(t1, t0, x1, p1) − χj ○ΦX(t1, t0, x2, p2)∣
+∣χj ○ΦX(t2, t0, x2, p2) − χj ○ΦX(t1, t0, x2, p2)∣
≤ ξ(t0) + λδ + ρ + ∫

∣t1,t2∣
∣Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds

≤ C−1

1 − λ dG(x1, x2) + ρ + ∫
∣t1,t2∣
∣Xχj(s,ΦX(s, t0, x2, p2), p1)∣ds

+∫
∣t1,t2∣
∣Xχj(s,ΦX(s, t0, x2, p2), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds

Now we choose a neighbourhood V of x1, σ ∈ R>0, and and a neighbourhood O′ ⊆ O
of p1 such that

C−1

1 − λ dG(x1, x2) <
ϵ

4
, x2 ∈ V ;

∫
∣t1,t2∣
∣Xχj(s,ΦX(s, t0, x2, p2), p1)∣ds <

ϵ

4
, ∣t1 − t2∣ < σ;

∫
∣t1,t2∣
∣Xχj(s,ΦX(s, t0, x2, p2), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds <

ϵ

4
, p2 ∈ O′;

∫
Tt0,α

∣Xχj(s,ΦX(s, t0, x2, p2), p1) −Xχj(s,ΦX(s, t0, x2, p2), p2)∣ds <
ϵ

4
, p2 ∈ O′.

The last inequality implies that ρ < ϵ
4 . Thus we have

∣χj ○ΦX(t1, t0, x1, p1) − χj ○ΦX(t2, t0, x2, p2)∣ < ϵ, x2 ∈ V , p2 ∈ O′, ∣t1 − t2∣ < σ,

which gives the continuity of (t, x, p) ↦ χj ○ΦX(t, t0, x, p), and so the continuity of
(t, x, p)↦ ΦX(t, t0, x, p). ∇

The next lemma is a refinement of the preceding one, giving the local version of
the theorem statement.

Lemma 3.7. Let M be a C∞-manifold, let T ⊆ R be a time domain, let P be a
topological space, and let X ∈ Γlip

LI(T, TM ;P). For each (t0, x0, p0) ∈ T ×M ×P, there
exist α ∈ R>0, a neighborhood U ⊆M of x0, and a neighborhood O ⊆ P of p0 such that
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(i) Tt0,α × {t0} × U ×O ⊆DX ,

(ii) the map
Tt0,α × U ×O ∋ (t, x, p)↦ ΦX(t, t0, x, p)

is continuous, and

(iii) the map
U ∋ x↦ ΦXp

t,t0(x) ∈M
is s bi-Lipschitz homeomorphism onto its image for every p ∈ O and every
t ∈ Tt0,α.

Proof. (i) and (ii) can be proven by Lemma 3.6.
(iii) Let α′, U ′ and O′ be as in Lemma 3.6, and let α ∈ (0, α′], U ⊆ U ′, and O ⊆ O′

be such that
ΦX(t, t0, x, p) ∈ U ′, (t, x, p) ∈ Tt0,β × U ×O,

this is possible by Lemma 3.6 (i). Let t ∈ Tt0,α, x ∈ U , p ∈ O, and denote

V = ΦXp

t,t0(U) ⊆ U ′.

Since y ≜ ΦX(t, t0, x, p) ∈ U ′ and t ∈ Tt0,α, there exists a neighborhood V ′ of y such that,
if y′ ∈ V ′, then (t, t0, y′, p) ∈DX . Moreover, since ΦX

p

t0,t
is continuous and Lipschitz, we

can choose V ′ sufficiently small that ΦXp

t0,t
(y′) ∈ U if y′ ∈ V ′. By Lemma 3.6, ΦXp

t0,t
∣V ′ is

Lipschitz. Therefore, there is a neighborhood of x on which the restriction of ΦXp

t0,t
is

invertible, Lipschitz, and with a Lipschitz inverse. ∇

We now need to show that parts (v) and (vi) of the theorem hold globally. Let
(t0, x0, p0) ∈ T ×M ×P , and denote by J+(t0, x0, p0) ⊆ T the set of b > t0 such that, for
each b′ ∈ [t0, b), there exists a relatively open interval J ⊆ T, a neighborhood U of x0,
and a neighborhood O of p0 such that

1. b′ ∈ J ,

2. J × {t0} × U ×O ⊆DX ,

3. J × U ×O ∋ (t, x, p)↦ ΦX(t, t0, x, p) ∈M is continuous, and

4. the map U ∋ x↦ ΦX(t, t0, x, p) is locally bi-Lipschitz homeomorphism onto its
image for every p ∈ O and every t ∈ J .

Proof. By Lemma 3.7, J+(t0, x0, p0) ≠ ∅. Then we consider two cases.
The first case is J+(t0, x0, p0) ∩ [t0,∞) = T ∩ [t0,∞). In this case, for each t ∈ T

with t ≥ t0, there exists a relatively open interval J ⊆ T, a neighborhood U of x0, and
a neighborhood O of p0 such that

1. t ∈ J ,
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2. J × {t0} × U ×O ⊆DX ,

3. J × U ×O ∋ (τ, x, p)↦ ΦX(τ, t0, x, p) ∈M is continuous, and

4. the map U ∋ x↦ ΦX(τ, t0, x, p) is locally bi-Lipschitz homeomorphism onto its
image for every p ∈ O and every τ ∈ J .

The second case is J+(t0, x0, p0) ∩ [t0,∞) ⊊ T ∩ [t0,∞). Now we show this is
impossible. In this case we let t1 = supJ+(t0, x0, p0) and note that t1 ≠ supT. We
claim that t1 ∈ JY (t0, x0, p0). If this were not the case, then we must have b ≜
supJX(t0, x0, p0) < t1. Since b ∈ J+(t0, x0, p0), there must be a relatively open interval
J ⊆ T containing b such that t ∈ JX(t0, x0, p0) for all t ∈ J . But, since there are
t′s in J larger than b, this contradicts the definition of b, and so we conclude that
t1 ∈ JX(t0, x0, p0).

We denote x1 = ΦX(t1, t0, x0, p0). By Lemma 3.7, there exists α1 ∈ R>0, a neighbor-
hood V1 of x1 such that (t, t1, x, p) ∈ DX for every t ∈ Tt1,α1 , x ∈ V1, and p ∈ O1, and
such that the map

Tt1,α1 × V1 ×O1 ∋ (t, x, p)↦ ΦX(t, t1, x, p)

is continuous, and the map

V1 ∋ x↦ ΦX(t, t1, x, p)

is a locally bi-Lipschitz homeomorphism onto its image for every t ∈ Tt1,α1 and p ∈ O1.
Let V ′1 ⊆ V1 be such that cl(V ′) ⊆ V1. Since t ↦ ΦX(t, t0, x0, p0) is continuous and
ΦX(t1, t0, x0, p0) = x1, let δ ∈ R>0 be such that δ < α

2 and ΦX(t, t0, x0, p0) ∈ V ′1 for
t ∈ (t1 − δ, t1). Now let τ1 ∈ (t1 − δ, t1) and, by our hypotheses on t1, there exists an
open interval J , a neighborhood U ′1 of x0, and a neighborhood O′1 of p0 such that

1. τ1 ∈ J ,

2. J × {t0} × U ′1 ×O′1 ⊆DX ,

3. J × U ′1 ×O′1 ∋ (τ, x, p)↦ ΦX(τ, t0, x, p) ∈M is continuous, and

4. the map U ′1 ∋ x↦ ΦX(τ, t0, x, p) is a locally bi-Lipschitz homeomorphism onto
its image for every τ ∈ J and p ∈ O′1.

We choose J , U ′1 and O′1 sufficiently small that

{ΦX(t, t0, x, p) ∣ t ∈ J, x ∈ U ′1, p ∈ O′1} ⊆ V ′1

This is possible by the continuity of the flow. We, moreover, assume that O′1 is
sufficiently small as to be a subset of O1.

We claim that
Tτ1,α1 × {t0} × U ′1 ×O′1 ⊆DX .
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We first show that

[τ1, τ1 + α1) × {t0} × U ′1 ×O′1 ⊆DX . (3.10)

For x ∈ U ′1 and p′ ∈ O′1, we have (τ1, t0, x, p) ∈ DX since τ1 ∈ J . By definition of J ,
ΦX(τ1, t0, x, p) ∈ V ′1. By definition of τ1, t1 − τ1 < δ < α1

2 . Then, by definition of α1 and
V1,

(t1, τ1,ΦX(τ1, t0, x, p′), p) ∈DX

for every x ∈ U ′1, p′ ∈ O′1, and p ∈ O1. From this we conclude that (t1, t0, x, p) ∈ DX

for every x ∈ U ′1 and p ∈ O′1. Now, since

t ∈ [τ1, τ1 + α1) Ô⇒ t ∈ Tt1,α1 ,

we have (t, t1,ΦX(t1, t0, x, p), p) ∈DX for every t ∈ Tτ1,α1 , x ∈ U ′1, and p ∈ O′1. Since

ΦX(t, t1,ΦX(t1, t0, x, p), p) = ΦX(t, t0, x, p),

we conclude (3.10). A similar argument gives

Tτ1,α1 × {t0} × U ′1 ×O′1 ⊆DX .

Now we claim the map

Tτ1,α1 × U ′1 ×O′1 ∋ (t, x, p)↦ ΦX(t, t0, x, p)

is continuous. This map is continuous at

(t, x, p) ∈ (τ1 − α1, τ1] × U ′1 ×O′1
by definition of τ1. For t ∈ (τ1, τ1 + α1) we have

ΦX(t, t0, x, p) = ΦX(t, τ1,ΦX(τ1, t0, x, p), p)

and continuity follows since the composition of continuous maps is continuous.
Next we claim the map

U ′1 ∋ x↦ ΦY (t, t0, x, p)

is a locally bi-Lipschitz homeomorphism onto its image for every t ∈ Tτ1,α1 and p ∈ O′1.
By definition of τ1, the map

ΦXp

t,t0 ∶ U ′1 ↦ V ′1
is locally bi-Lipschitz onto its image for t ∈ (τ1 −α1, τ1] and p ∈ O′1. We also have that

ΦY
t,τ1 ∶ V1 ↦M

is a locally bi-Lipschitz homeomorphism onto its image for t ∈ (τ1, τ1 + α1). Since
the composition of locally bi-Lipschitz homeomorphisms onto their image is a locally
bi-Lipschitz homeomorphism onto its image, our assertion follows.

By our arguments, we have an open interval J ′, a neighborhood U ′ of x0, and a
neighbourhood O′1 of p0 such that
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1. t1 ∈ J ′,

2. J ′ × {t0} × U ′1 ×O′1 ⊆DX ,

3. J ′ × U ′1 ×O′1 ∋ (t, x, p)↦ ΦX(t, t0, x, p) ∈M is continuous, and

4. the map U ′1 ∋ x↦ ΦX(t, t0, x, p) is locally bi-Lipschitz homeomorphism onto its
image for every t ∈ J ′ and p ∈ O′1.

This contradicts the fact that t1 = supJ+(t0, x0, p0) and so the condition

J+(t0, x0, p0) ∩ [t0,∞) ⊊ T ∩ [t0,∞)

cannot obtain.
One similar shows that it must be the case that J−(t0, x0, p0) ∩ (−∞, t0] = T ∩

(−∞, t0], where J−(t0, x0) has the obvious definition. ∇

Finally, we note that ΦX
t,t0

is injective by uniqueness of solutions for X. Now, asser-
tions (v) and (vi) of the theorem follow, since the notions of “locally bi-Lipschitz
homeomorphism” can be tested locally, i.e., in a neighbourhood of any point. We
have shown something more, in fact, namely that, along with parts (v) and (vi) of the
theorem, the set

{(t, x, p) ∈ T ×M ×P ∣ (t, t0, x, p) ∈DX}
is open for each t0, and that the mapping (t, x, p)↦ ΦX(t, t0, x, p) is continuous. We
shall now use this fact and a lemma, to prove assertions (vii) and (viii) together.

Lemma 3.8. Let (t1, t0, x0, p0) ∈ DX . As Lemma 3.7, there exist α1 ∈ R>0, a neigh-
borhood U1 of x0, and a neighborhood O1 of p0 such that

Tt1,α1 × {t0} × U1 ×O1 ⊆DX ,

and the map (t, x, p)↦ ΦX(t, x0, x, p) is continuous on this domain. Then the map

(t, x, p)↦ ΦX(t0, t, x, p)

is continuous for (t, x, p) nearby (t0, x0, p0).

Proof. To see this, we proceed rather as in the proof of Lemma 3.6. Let U , χ1, ..., χn,
and C be just as in the initial part of the proof of Lemma 3.6. We also choose
α, r ∈ R>0 and a neighbourhood O of p0 such that U(r, x0) ∈ U ∩ U1 and such that

∫
∣t,t0∣
∣Xχj(s, x, p)∣ds < r

2
(3.11)

and

∫
∣t,t0∣
∣Xχj(s, x1, p) −Xχj(s, x2, p)∣ds <

λ

C
dG(x1, x2), (3.12)

for all t ∈ Tt0,α, x,x1, x2 ∈ U , j ∈ {1, ..., n} and p ∈ O.
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Let x ∈ U(r/2, x0). For each j ∈ {1, ..., n}, we denote by ϕj0 ∈ C0(Tt0,α,R) the
constant mapping ϕj0 = χj(x0), and denote by B(r, ϕj0) the closed ball of radius r
about ϕj0. For each p ∈ O, we have the mapping

F j
Xp ∶ B(r, ϕj0)→ C0(Tt0,α,R)

ϕj ↦ χj(x) + ∫
∣t,t0∣

Xχj(s, γϕ(s), p)ds,

for j ∈ {1, ..., n}, and where γϕ ∈ C0(Tt0,α,M) is the unique curve satisfying

χj ○ γϕ = ϕj(t), t ∈ Tt0,α, j ∈ {1, ..., n},

cf. Lemma 3.3. Note that similar to the proof in Lemma 3.6, the definition of r ensures
that γϕ so defined takes values in U ′.

We then claim that F j
Xp(B(r, ϕj0)) ⊆ B(r, ϕ

j
0), j ∈ {1, ..., n}, p ∈ O. Indeed, if

ϕj ∈ B(r, ϕj0), j ∈ {1, ..., n}, we have

∣F j
Xp ○ ϕj(t) − ϕj0(t)∣ ≤ ∣χj(x) − χj(x0)∣ + ∫

∣t,t0∣
∣Xχj(s, γϕ(s))∣ds < r.

We also claim that the mapping

n

∏
j=1

B(r, ϕj0) ∋ (ϕ1, ..., ϕn)↦ (F 1
Xp ○ ϕ1, ..., F n

Xp ○ ϕn) ∈
n

∏
j=1

B(r, ϕj0) (3.13)

is a contraction mapping for each p ∈ O, where
n

∏
j=1
B(r, ϕj0) is given the product

metric. Indeed, let ϕj1, ϕ
j
2 ∈ B(r, ϕ

j
0), j ∈ {1, ..., n}. Let γ1, γ2 ∈ C0(Tt0,α,R) be the

corresponding curves satisfying

χj ○ γa(t) = ϕja(t), t ∈ Tt0,α, j ∈ {1, ..., n}, a ∈ {1,2},

using Lemma 3.3. Then we have, for each j ∈ {1, ..., n},

∣F j
Xp ○ ϕj1(t) − F

j
Xp ○ ϕj2(t)∣ ≤ ∫

∣t0,t∣
∣Xχj(s, γ1(s), p) −Xχj(s, γ2(s), p)∣ds

≤ λ

C
dG(γ1(s), γ2(s))

≤ λ sup{∣ϕk1(s) − ϕk2(s)∣ ∣ k ∈ {1, ..., n}}, s ∈ Tt0,α

from which the desired conclusion follows.
By the Contraction Mapping Theorem, there exists a unique fixed point for the

mapping (3.13), which gives rise to a curve ξ ∶ Tt0,α ↦ U satisfying

f ○ ξ(t) = f(x) + ∫
∣t,t0∣

Xf(s, ξ(s), p)ds.
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Differentiating with respect to t shows that ξ is an integral curve for X and ξ(t0) = x.
This shows that, if t ∈ Tt0,α, x ∈ U(r/2, x0), and p ∈ O, then we have ΦX(t0, t, x, p) ∈
U(r, x0) and

f ○ΦX(t0, t, x, p) = f(x) + ∫
∣t,t0∣

Xf(s,ΦY (t0, s, x, p), p)ds

for f ∈ C∞(M). We conclude that there exists α0, r0 ∈ R>0 and a neighbourhood O of
p0 such that

ΦX(t0, t, x, p) ∈ U1, (t, x, p) ∈ Tt0,α0 × U(r0, x0) ×O.

We then show that the map (t, x, p)↦ ΦX(t0, t, x, p) is continuous on Tt0,α0×U(r0, x0)×
O, just as in the proof of Lemma 3.6.

Finally, if
(t′, t′0, x, p) ∈ Tt,α ×Tt0,α0 × U(r0, x0) ×O′,

then
ΦX(t′, t′0,ΦX(t0, t′0, x, p), p) = ΦX(t′, t′0, x, p),

which shows both that DX is open and that ΦX is continuous, since that composition
of continuous mappings is continuous. ∇

(ix) Let T+ = supJX(t0, x0, p0). Then (T+ − ϵ, t0, x0, p0) ∈ DX . Since DX is open,
there exists a neighbourhood U of x0 and a neighbourhood O of p0 such that

{T+ −
ϵ

2
} ×Tt0,α × U ×O ⊆DX .

In other words, [t0, T+ − ϵ
2] ⊆ JX(t, x, p) for every (t, x, p) ∈ Tt0,α × U ×O. Thus, for

such (t, x, p),

supJX(t, x, p) ≥ T+ −
ϵ

2
> T+ − ϵ = supJX(t0, x0, p0) − ϵ,

as claimed. A similar argument holds for the left endpoint of intervals of existence.
(x) Let t ∈ ∣t0, t1∣ and let ϵ ∈ R>0. Following the argument and using notation inspired

by the proof of part (ii) of Lemma 3.6, there is an interval Tt ⊆ T, a neighbourhood
Vt,ϵ of x0, a neighbourhood Ot,ϵ ⊆ P of p0, and χ

j
t ∈ C∞(M), j ∈ {1, ..., n}, (n being

the dimension of M) such that

∣χjt ○ΦX(t′, t,ΦX(t, t0, x, p), p) − χjt ○ΦX(t′, t,ΦX(t, t0, x0, p0), p0)∣ ≤ C−1t ϵ,
(t′, x, p) ∈ Tt × Vt,ϵ ×Ot,ϵ, j ∈ {1, ..., n},

where Ct ∈ R>0 is such that

dG(x1, x2) ≤ Ctmax{∣χjt(x1) − χjt(x2)∣ ∣ j ∈ {1, ..., n}, x1, x2 ∈ Vt,ϵ} .
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Let t1, ..., tk ∈ ∣t0, t1∣ be such that ∣t0, t1∣ ⊆ ∪kj=1Ttj . For t ∈ ∣t0, t1∣, let jt ∈ {1, ..., k} be
such that t ∈ Ttjt , and let x ∈ ∩kj=1Vtj ,ϵ and p ∈ ∩kj=1Otj ,ϵ. Let C = max{Ct1 , ...,Ctk}.
Then, if t ∈ ∣t0, t1∣ and with j ∈ {1, ..., k} such that t ∈ Ttj ,

dG(ΦX(t, t0, x, p),ΦX(t, t0, x0, p0)) ≤ C ∣χjt ○ΦX(t, t0, x, p) − χjt ○ΦX(t, t0, x0, p0)∣ < ϵ,

which gives the desired uniform convergence.
(ix) Since the parameter-dependence plays no role here, we suppose we are in the

parameter-independent case to simplify the notation. By definition of IX(t1, x0), the
curve ι(t1,x0) is well-defined. We will show that it is locally absolutely continuous.
We first prove this locally, and so work with a time-varying vector field X. Let
(t0, x0) ∈ T ×M and let α ∈ R>0 and U be a neighbourhood of x0 such that

f ○ ι(t1,x0)(t) = f ○ΦX(t1, t, x0) = f(x0) + ∫
∣t,t1∣

Xf(s,ΦY (s, t, x0))ds,

for t ∈ Tt0,α and x ∈ U . Following our constructions in the preceding parts of the proof,
we work with functions χ1, ..., χn ∈ C∞(M) whose differentials are linearly independent
on U . We also let g, l ∈ L1

loc(T;R≥0) be such that

∣Xχj(t, x)∣ ≤ g(t)

and

∣Xχj(t, x1) −Xχj(t, x2)∣ ≤ l(t)max{∣χm(x1) − χm(x2)∣ ∣ m ∈ {1, ..., n}}

for t ∈ T, x,x1, x2 ∈ U , and j ∈ {1, ..., n}, this because Xχj ∈ C lip
LI (T;M) by Lemma 2.5,

(3.1), and (Jafarpour and Lewis, 2014, Theorem 6.4: (v) and (vi)).
Let δ ∈ R>0 be such that, if (al, bl), l ∈ {1, ..., k}, is a collection of pairwise disjoint

subintervals of Tt0,α satisfying
k

∑
l=1

∣bl − al∣ < δ,

then
k

∑
l=1
∫

bl

a1
g(s)ds < ϵ exp(−∫

Tt0,α

l(s)ds) .

Let t1 ∈ Tt0,α and j ∈ {1, ..., n}, and compute

k

∑
l=1

∣χj ○ ι(t1,x0)(bl) − χj ○ ι(t1,x0)(al)∣

=
k

∑
l=1

∣χj ○ΦX(t1, bl, x0) − χj ○ΦX(t1, al, x0)∣

≤
k

∑
l=1

∣∫
t1

bl
Xχj(s,ΦX(s, bl, x0))ds − ∫

t1

al
Xχj(s,ΦX(s, al, x0))ds∣
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≤
k

∑
l=1

∣∫
t1

bl
Xχj(s,ΦX(s, bl, x0))ds − ∫

t1

al
Xχj(s,ΦX(s, bl, x0))ds∣

+
k

∑
l=1

∣∫
t1

al
Xχj(s,ΦX(s, bl, x0))ds − ∫

t1

al
Xχj(s,ΦX(s, al, x0))ds∣

≤
k

∑
l=1
∫

al

bl
∣Xχj(s,ΦX(s, bl, x0))∣ds

+
k

∑
l=1
∫

t1

al
∣Xχj(s,ΦX(s, bl, x0)) −Xχj(s,ΦX(s, al, x0))∣ds

≤
k

∑
l=1
∫

al

bl
g(s)ds

+
k

∑
l=1
∫

t1

al
l(s)max{∣χm ○ΦX(s, bl, x0) − χm ○ΦX(s, al, x0)∣ ∣ m ∈ {1, ..., n}}ds

≤
k

∑
l=1
∫

al

bl
g(s)ds

+
k

∑
l=1
∫

t1

al
l(s)max{∣χm ○ΦX(s, bl, x0) − χm ○ΦX(s, al, x0)∣ ∣ m ∈ {1, ..., n}}ds

+
k

∑
l=1
∫

al

t0−α
l(s)max{∣χm ○ΦX(s, bl, x0) − χm ○ΦX(s, al, x0)∣ ∣ m ∈ {1, ..., n}}ds

≤
k

∑
l=1
∫

al

bl
g(s)ds

+∫
t1

t0−α
l(s)

k

∑
l=1

max{∣χm ○ΦX(s, bl, x0) − χm ○ΦX(s, al, x0)∣ ∣ m ∈ {1, ..., n}}ds.

For t ∈ Tt0,α, let us denote

κ(t) =
k

∑
l=1

max ∣χj ○ ι(t,x0)(bl) − χj ○ ι(t,x0)(al)∣ ∣ j ∈ {1, ...,m}.

Our computations above show that

κ(t) ≤
k

∑
l=1
∫

al

bl
g(s)ds + ∫

t1

t0−α
l(s)κ(s)ds.

Thus, by Gronwall’s inequality (Sontag, 1998, Lemma C.3.1), we have

κ(t1) ≤ exp(∫
t1

t0−α
l(s)ds)

k

∑
l=1
∫

al

bl
g(s)ds.

This shows that, for every t1 ∈ Tt0,α,
k

∑
l=1

∣χj ○ ι(t,x0)(bl) − χj ○ ι(t,x0)(al)∣ < ϵ.
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Thus, in particular, ι(t1, x0) is absolutely continuous on Tt0,α for each t1 ∈ Tt0,α. Now
we prove the suitable conclusion globally. Here we make use of another lemma.

Lemma 3.9. Let U ⊆ Rn and U ⊆ Rm be open, let T ⊆ R be a time-domain, let
Φ ∶ U → V be locally Lipschitz, and let γ ∶ T → U have locally absolutely continuous
components. Then Φ ○ γ has locally absolutely continuous components.

Proof. Let [a, b] ⊆ T be a compact subinterval. Since γ([a, b]) is compact and Φ is
locally Lipschitz, there exists L ∈ R>0 such that

∣∣Φ ○ γ(t1) −Φ ○ γ(t2)∣∣ ≤ L∣∣γ(t1) − γ(t2)∣∣, t1, t2 ∈ [a, b].

Let ϵ ∈ R>0 and let δ ∈ R>0 be such that, if ((aj, bj))j∈{1,...,k} is a family of disjoint
intervals such that

k

∑
j=1

∣bj − aj ∣ < δ,

then
k

∑
j=1

∣γa(bj) − γa(aj)∣ <
ϵ

L
√
n
, a ∈ {1, ..., n}.

Then, for any a ∈ {1, ..., n} and α ∈ {1, ...,m}, and using standard relationships between
the 2-norm and the 1-norm for Rn,

k

∑
j=1

∣Φα ○ γ(bj) −Φα ○ γ(aj)∣ ≤
k

∑
j=1

∣∣Φ ○ γ(bj) −Φ ○ γ(aj)∣∣ ≤
k

∑
j=1

L∣∣γ(bj) − γ(aj)∣∣

≤ L
√
nmax{

k

∑
j=1

∣γa(bj) − γa(aj)∣ ∣ j ∈ {1, ..., n}} < ϵ

whenever
k

∑
j=1

∣bj − aj ∣ < δ.

∇

Now let (t1, t0, x0) ∈DX and let α ∈ R>0 and U be as above. For t ∈ Tt0,α we have

f ○ ι(t1,x0)(t) = f ○ΦX(t1, t, x0) = f ○ΦX
t1,t0 ○ΦX

t0,t(x0).

By our computations above, the curve t↦ ΦXt0,t(x0) is absolutely continuous on Tt0,α.
Since x↦ ΦXt1,t0(x) is locally Lipschitz by part (vi), it follows from the previous lemma
that t↦ f ○ ι(t1,x0)(t) is absolutely continuous on Tt0,α. Since local absolute continuity
is a local property, i.e., it only needs to hold in any neighbourhood of any point, it
follows that t ↦ f ○ ι(t1,x0)(t) is locally absolutely continuous. Thus, by definition,
ι(t1,x0) is locally absolutely continuous.

∇
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The reader will note that a substantial portion of the proof is taken up with the
extension of the usual local statements—such as one normally finds in presentations
of ordinary differential equations—to global statements valid on the whole of the
domain of the vector field. We feel as if it worth doing this carefully once, since it is
not easy to find, and impossible to find in the generality we give here. A few useful
consequences of the theorem follow.

Corollary 3.10 (Images of compact subsets of initial conditions are compact). Let
M be a C∞-manifold, let T ⊂ R be an interval, and let X ∈ Γlip

LI(T;TM). Let K ⊆M
be compact and let t0, t1 ∈ T be such that

∣t0, t1∣ × {t0} ×K ⊆DX . (3.14)

Then

⋃
(t,x)∈∣t0,t1∣×K

ΦX(t, t0, x) (3.15)

is compact.

Proof. This follows since the set (3.15) is the image of the compact set (3.14) under
the continuous (by part (viii) of the theorem) map ΦX .

Corollary 3.11 (Robustness of compactness by variations of parameters). Let M
be a C∞-manifold, let T ⊆ R be an interval, let P be a topological space, and let
X ∈ Γlip

PLI(T;TM ;P). Let K ⊆M be compact, let t0, t1 ∈ T, and let p0 ∈ P be such that

∣t0, t1∣ × {t0} ×K × {p0} ⊆DX .

Then there exists a neighbourhood O ⊆ P of p0 such that

⋃
(t,x,p)∈∣t0,t1∣×K×O

ΦX(t, t0, x, p)

is well-defined and precompact.

Proof. By the previous corollary,

K0 ≜ ⋃
(t,x)∈∣t0,t1∣×K

ΦX(t, t0, x)

is compact. Since M is locally compact, let V be a precompact neighbourhood of K0.
By part (x) of the theorem, for x ∈K, let Ux be a neighbourhood of x and let Ox be a
neighbourhood of p0 such that

⋃
(t,x,p)∈∣t0,t1∣×(K∩Ux)×Ox

ΦX(t, t0, x, p) ⊆ V .

By compactness of K, let x1, ..., xm ∈ K be such that K = ∪mj=1K ∩ Uxj and let

O = ∩kj=1Oxj . Then

ΦX(t, t0, x, p) ⊆ V , (t, x, p) ∈ ∣t0, t1∣ ×K ×O,

as desired.
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Corollary 3.12 (Uniform Lipschitz character of flows). Let M be a C∞-manifold, let
T ⊆ R be an interval, let P be a topological space, and let X ∈ Γlip

PLI(T;TM ;P). Let
K ⊆M be compact, let t0, t1 ∈ T, and let p0 ∈ P be such that

∣t0, t1∣ × {t0} ×K × {p0} ⊆DX .

Then there exists a neighbourhood O ⊆ P of p0 and C ∈ R>0 such that

dG(ΦX(t, t0, x1, p),ΦX(t, t0, x2, p)) ≤ C dG(x1, x2), t ∈ ∣t0, t1∣, x1, x2 ∈K, p ∈ O.

Proof. As in the proof of Lemma 3.6(i) from the theorem (see, especially, the last few
lines of that part of the proof), for (t, x) ∈ ∣t0, t1∣ ×K, there exists an open interval
T(t,x) ⊆ ∣t0, t1∣ containing t, a neighbourhood U(t,x) ⊆ M of x, and a neighbourhood
O(t,x) of p0 such that

T(t,x) × {t0} × U(t,x) ×O(t,x) ⊆DX ,

and such that there exists C(t,x) ∈ R>0 for which

dG(ΦX(t′, t0, x1, p),ΦX(t′, t0, x2, p)) ≤ C(t,x) dG(ΦX(t, t0, x1, p),ΦX(t, t0, x2, p)),
t ∈ ∣t0, t1∣, x1, x2 ∈K, p ∈ O. (3.16)

Denote
N(t,x) = {ΦX(t′, t0, x′, p) ∣ (t′, x′, p) ∈ T(t,x) × U(t,x) ×O(t,x)},

noting that N(t,x) is a neighbourhood of ΦX(t, t0, x, p0). By compactness of

Kx ≜ {ΦX(t, t0, x, p0) ∣ t ∈ ∣t0, t1∣},

there exist tx,1, ..., tx,mx ∈ ∣t0, t1∣ such that

Kx ⊆
mx

⋃
j=1

int(N(tx,j ,x)).

Let us also choose tx,0 = t0 and so add to this finite cover the set N(tx,0,x) associated
with t = t0. Let Ox = ∩mx

j=0O(tx,j ,x) and Ux = ∩mx
j=0U(tx,j ,x), and note that

∣t0, t1∣ × {t0} ×K ∩ Ux ×Ox ⊆DX .

Also note that

Vx ≜ {ΦX(t, t0, x′, p) ∣ (t, x′, p) ∈ ∣t0, t1∣ × Ux ×Ox}

is a filter neighbourhood of Kx. Since the intervals T(tx,j ,x), j ∈ {0, ...,mx}, cover ∣t0, t1∣
and since tx,0 = t0, for any j ∈ {1, ...,m} we can write

ΦX(tx,j, t0, x, p) = ΦX
tx,jm ,tx,jm−1

○ΦX
tx,j1 ,t0

(3.17)
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for some j1, ..., jm ∈ {1, ...,mx} satisfying tx,jl ∈ Tx,jl−1 , l ∈ {1, ...,m}. Moreover, we can
do this with at most mx compositions.

Now let x1, x2 ∈ Ux and note that, for t ∈ ∣t0, t1∣, t ∈ T(tx,j ,x) for some j ∈ {0, 1, ...,mx}.
We also have x1, x2 ∈ U(tx,j ,x). Therefore, with this j chosen and for p ∈ Ox,

dG(ΦX(t, t0, x1, p),ΦX(t, t0, x2, p)) ≤ Ctj ,x dG(ΦX(tx,j, t0, x1, p),ΦX(tx,j, t0, x2, p)).

Using the composition (3.17) and the bound (3.16) for each term in the composition,
we have

dG(ΦX(t, t0, x1, p),ΦX(t, t0, x2, p)) ≤ Cx dG(x1, x2), t ∈ ∣t0, t1∣,

taking
Cx =max{C(tx,1,x), ...,C(tx,mx ,x)}mx+1

Choose x1, ..., xm ∈ K so that K = ∪mj=1(K ∩ Uxj). Let O = ∩mj=1Oxj . If necessary and
by Corollary 3.11, shrink O so that

{ΦX(t, t0, x, p) ∣ t ∈ ∣t0, t1∣, x ∈K,p ∈ O}

is precompact. Let M ∈ R>0 and x0 ∈K be such that

dG(x,x0) ≤M, x ∈K.

Note that

{ΦX(t, t0, x, p) ∣ t ∈ ∣t0, t1∣, x ∈K,p ∈ O} ⊆
m

⋃
j=1

Vxj .

By the Lebesgue Number Lemma (D. Burago, Y. Burago, and Ivanov, 2001, Theorem
1.6.11), let r ∈ R>0 be such that, if x1, x2 ∈K satisfy dG(x1, x2) < r, then there exists
j ∈ {1, ...,m} such that x1, x2 ∈ Uxj . Let

C =max{Cx1 , ...,Cxm ,
2M

r
} .

Finally, let t ∈ ∣t0, t1∣, let x1, x2 ∈ K, and let p ∈ O. If dG(x1, x2) < r, let j ∈ {1, ...,m}
be such that x1, x2 ∈ Uxj . Then we have

dG(ΦX(t, t0, x1, p),ΦX(t, t0, x2, p)) ≤ Cxj dG(x1, x2) ≤ C dG(x1, x2).

If dG(x1, x2) ≥ r, then

dG(ΦX(t, t0, x1, p),ΦX(t, t0, x2, p))
≤ dG(ΦX(t, t0, x1, p), x0) + dG(ΦX(t, t0, x2, p), x0)

≤ 2M

r
r ≤ C dG(x1, x2),

as desired.



48 Y. Zhang

3.3. Continuous dependence of fixed-time flow on parameter

Theorem 3.13. Let m ∈ Z≥0, let ν ∈ {m,∞,hol} satisfy ν ≥ lip, and let r ∈ {∞,hol}as
appropriate. Let M be a Cr-manifold, let T ⊆ R be an interval, and let P be a
topological space. For X ∈ ΓνPLI(T;TM ;P), let t0, t1 ∈ T and p0 ∈ P be such that there
exists a precompact open set U ⊆M such that cl(U) ⊆ DX(t1, t0,p0). Then there exists
a neighbourhood O ⊆ P of p0 such that mapping

O ∋ p↦ ΦXp

t1,t0 ∈ Cν(U ;M)

is well-defined and continuous.

Proof. We break down the proof into the various classes of regularity. The proofs
bear a strong resemblance to one another, so we go through the details carefully in
the first case we prove, the locally Lipschitz case, and then merely outline where the
arguments differ for the other regularity classes.

3.3.1. The C0-case. Note that cl(U) is compact. Therefore, by Corollary 3.11, there
exists a compact set K ′ ⊆M and a neighbourhood O of p0 such that

ΦXp

t1,t0(x) ∈ int(K ′), (x, p) ∈ cl(U) ×O.

This gives the well-definedness assertion of the theorem. Note, also, that it gives the
well-definedness assertion for all ν ∈ {m,∞, ω,hol}, and so we need not revisit this for
the remainder of the proof. The compact set K ′ ⊆M and the neighbourhood O of p0
will be used in all parts of the proof without necessarily referring to our constructions
here.

For continuity, first we show that the mapping

O ∋ p↦ ΦXp

t1,t0 ∈ C0(U ;M)

is continuous. The topology for C0(U ;M) is the uniform topology defined by the
semimetrics

d0
K,f(Φ1,Φ2) = sup{∣f ○Φ1(x) − f ○Φ2(x)∣ ∣ x ∈K}, f ∈ C∞(M), K ⊆ U compact.

Thus, we must show that, for f1, ..., fm ∈ C∞(M), for K1, ...,Km ⊆ U compact, and for
ϵ1, ..., ϵm ∈ R>0, there exists a neighborhood O of p0 such that

∣fj ○ΦXp

t1,t0(xj) − fj ○ΦXp0

t1,t0(xj)∣ < ϵj, xj ∈Kj, p ∈ O, j ∈ {1, ...,m}.

It will suffice to show that, for f ∈ C∞(M), for K ⊆ U compact, and for ϵ ∈ R>0, we
have

∣f ○ΦXp

t1,t0(x) − f ○ΦXp0

t1,t0(x)∣ < ϵ, x ∈K, p ∈ O.
Indeed, if we show that then, taking K = ∪kj=1Kj and ϵ =min{ϵ1, ..., ϵm}, we have

∣fj ○ΦXp

t1,t0(x) − fj ○ΦXp0

t1,t0(x)∣ < ϵ, x ∈K, p ∈ O, j ∈ {1, ...,m}
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for a suitable O. This suffices to give the desired conclusion.
It is useful to consider the space C0(T;M) with the topology (indeed, uniformity)

defined by the family of semimetrics

dS,M(γ1, γ2) = {dG(γ1(t), γ2(t)) ∣ t ∈ S}, S ⊆ T a compact interval.

For g ∈ C0
LI(∣t0, t1∣;M), we also have the mapping

Ψ∣t0,t1∣,M,g ∶ C0(∣t0, t1∣;M) → L1
loc(∣t0, t1∣;R)

γ ↦ (t↦ gt(γ(t))).

By Corollary 2.7 and Lemma 2.8, this map is well-defined and continuous. Now
consider the following mapping

ΦT,K,O ∶K ×O → C0(T;M)
(x, p) ↦ (t↦ ΦX(t, t0, x, p)).

By Theorem 3.5(x), this mapping is continuous. We also have the continuous mapping

ι∣t0,t1∣ ∶ C0(T;M) → C0(∣t0, t1∣;M)
γ ↦ γ∣∣t0, t1∣.

Let f ∈ C∞(M), let ϵ > 0, and let x ∈K. Combining the observations of two previous
paragraphs, the mapping

Ψ∣t0,t1∣,M,Xp0f ○ ι∣t0,t1∣ ○ΦT,K,O ∶K ×O → L1(∣t0, t1∣;R)

is continuous. Thus there exists a relative neighbourhood Vx ⊆ K of x and a neigh-
bourhood Ox ⊆ O of p0 such that

∫
∣t0,t1∣
∣Xp0f(s,ΦXp

s,t0(x′)) −Xp0f(s,ΦXp0

s,t0 (x′))∣ ds <
ϵ

2
x′ ∈ Vx, p ∈ Ox.

Let x1, ..., xm ∈K be such that K = ∪mj=1Vxj and define a neighbourhood O1 = ∩kj=1Oxj
of p0. Then we have

∫
∣t0,t1∣
∣Xp0f(s,ΦXp

s,t0(x)) −Xp0f(s,ΦXp0

s,t0 (x))∣ ds <
ϵ

2
, x ∈K, p ∈ O1. (3.1)

By (2.4), we can further shrink O1 if necessary so that

∫
∣t0,t1∣
∣Xpf(s, x) −Xp0f(s, x)∣ ds < ϵ

2
x′ ∈K, p ∈ O1.

Then we have

∣f ○ΦXp

t1,t0(x) − f ○ΦXp0

t1,t0(x)∣
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≤ ∫
∣t0,t1∣
∣Xpf(s,ΦXp

s,t0(x)) −Xp0f(s,ΦXp0

s,t0 (x))∣ ds

≤ ∫
∣t0,t1∣
∣Xpf(s,ΦXp

s,t0(x)) −Xp0f(s,ΦXp

s,t0(x))∣ ds

+∫
∣t0,t1∣
∣Xp0f(s,ΦXp

s,t0(x)) −Xp0f(s,ΦXp0

s,t0 (x))∣ ds

≤ ϵ
2
+ ϵ
2
= ϵ,

for x ∈K and p ∈ O1, as desired.
Therefore, for every compact K ⊆ U , every f ∈ C∞(M), and every ϵ ∈ R>0, if

p ∈ O1 ∩O2, then we ave

p0K(f ○ΦXp

t1,t0 − f ○ΦXp0

t1,t0) < ϵ,

which gives the desired result.

3.3.2. The Cm-case. The topology for Cm(U ;M) is the uniform topology defined
by the semimetrics

dmK,f(Φ1,Φ2) = sup{∥jm(f ○Φ1)(x) − jm(f ○Φ2)(x)∥GM,m
∣ x ∈K},

f ∈ C∞(M), K ⊆ U compact.

As in the preceding section when we proved C0 continuity, it suffices to show that, for
f ∈ C∞(M), K ⊆ U compact, and for ϵ ∈ R>0, there exists a neighbourhood O′ of p0
such that

∥jm(f ○ΦXp

t1,t0)(x) − jm(f ○ΦXp0

t1,t0)(x)∥GM,m
< ϵ, x ∈K, p ∈ O′.

Thus let f ∈ C∞(M), K ⊆ U compact, and let ϵ ∈ R>0. Consider the mapping

Φ∣t0,t1∣,K,O ∶K ×O → C0(∣t0, t1∣;Jm(U ;M))
(x, p) ↦ (t↦ jmΦ

Xp

t,t0(x)),

which is well-defined and continuous, c.f. Theorem 3.5(x). For (x, p) ∈K ×O and for
t ∈ ∣t0, t1∣, we can think of jmΦXp

t,t0
(x)) as a linear mapping

jmΦ
Xp

t,t0(x) ∶ Jm(M ;R)ΦXp
t,t0
(x) → Jm(M ;R)x

jmg(ΦXp

t,t0(x)) ↦ jm(g ○ΦXp

t,t0)(x).

Now, fixing (x, p) ∈ U ×O for the moment, recall the constructions of Section 2.3.2,
particularly those preceding the statement of Lemma 2.6. We consider the notation
from those constructions with

1. N =M ,
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2. E = F = Jm(M ;R),

3. Γ(t) = jmΦXp

t,t0
(x) ∈ HomR(Jm(M,R)ΦXp

t,t0
(x);J

m(M ;R)x), and

4. ξ = jm(Xp0f).

Thus, again in the notation from Section 2.3.2, we have

γM(t) = ΦXp

t,t0(x), γN(t) = x.

We then have the integrable section of E = Jm(M ;R) given by

ξΓ ∶ ∣t0, t1∣ → E

t ↦ (t↦ jm(Xp
t f ○ΦXp

t,t0)(x))

to obtain continuity of the mapping

Ψ∣t0,t1∣,Jm(M ;R),jm(Xp0f) ∶ C0(∣t0, t1∣;Jm(U ;M)) → L1
loc(∣t0, t1∣;Jm(M ;R))

Γ ↦ (t↦ Γ(t)(jm(Xp0
t f)(γM(t)))),

and so of the composition

Ψ∣t0,t1∣,Jm(M ;R),jm(Xp0f) ○Φ∣t0,t1∣,K,O ∶K ×O → L1
loc(∣t0, t1∣;Jm(M ;R)).

Note that this is precisely the continuity of the mapping

K ×O ∋ (x, p)↦ (t↦ jm(Xp0f ○ΦXp

t,t0(x))) ∈ L1
loc(∣t0, t1∣;Jm(M ;R)).

In order to convert this continuity into a continuity statement involving the fibre norm
for Jm(M ;R), we note that for x ∈ K, there exists a neighbourhood Vx and affine
functions F 1

x , ..., F
n+k
x ∈ Aff∞(Jm(M ;R)) which are coordinates for ρ−1m (Vx). We can

choose a Riemannian metric for Jm(M ;R), whose restriction to fibres agrees with
the fibre metric (2.1) (Lewis, 2020, §4.1). It follows, therefore, from Lemma A.1 that
there exists Cx ∈ R>0 such that

∥jmg1(x′) − jmg2(x′)∥GM,m
≤ Cx∣F l

x ○ jmg1(x′) − F l
x ○ jmg2(x′)∣,

for g1, g2 ∈ C∞(M), x′ ∈ Vx, l ∈ {1, ..., n+k}. By the continuity proved in the preceding
paragraph, we can take a relative neighbourhood Vx ⊆K of x sufficiently small and a
neighbourhood Ox ⊆ O of p0 such that

∫
∣t0,t1∣
∣F l
x ○ jm(Xp0f ○ΦXp

t,t0(x′)) − F l
x ○ jm(Xp0f ○ΦXp0

t,t0 (x′))∣dt <
ϵ

2Cx
,

for all x′ ∈ Vx, p ∈ Ox, and l ∈ {1, ..., n + k}, recalling from Section 2.3.2 the definition
of the topology for L1(∣t0, t1∣;Jm(M ;R). Therefore,

∫
∣t0,t1∣
∥jm(Xp0f ○ΦXp

t,t0(x′)) − jm(Xp0f ○ΦXp0

t,t0 (x′))∥GM,m
ds < ϵ

2
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for all x′ ∈ Vx, p ∈ Ox. Now let x1, ..., xs ∈ K be such that K = ∪sr=1Vxr and define a
neighbourhood O′ = ∩sr=1Oxr of p0. Then we have

∫
∣t0,t1∣
∥jm(Xp0

s f ○ΦXp

s,t0)(x′) − jm(Xp0
s f ○ΦXp0

s,t0 )(x′)∥GM,m
ds < ϵ

2
(3.2)

for all x′ ∈K, p ∈ O′. By (2.4), we can further shrink O′ if necessary so that

∫
∣t0,t1∣
∥jm(Xpf)(s, y) − jm(Xp0f)(s, y)∥GM,m

ds < ϵ
2

y′ ∈K ′, p ∈ O′.

Then we have

∥jm(f ○ΦXp

t1,t0)(x) − jm(f ○ΦXp0

t1,t0)(x)∥GM,m

≤ ∫
∣t0,t1∣
∥jm(Xpf ○ΦXp

t,t0)(x) − jm(Xp0f ○ΦXp0

t,t0 )(x)∥GM,m
ds

≤ ∫
∣t0,t1∣
∥jm(Xpf ○ΦXp

t,t0)(x) − jm(Xp0f ○ΦXp

t,t0)(x)∥GM,m
ds

+∫
∣t0,t1∣
∥jm(Xp0f ○ΦXp

t,t0)(x) − jm(Xp0f ○ΦXp0

t,t0 )(x)∥GM,m
ds

≤ ϵ
2
+ ϵ
2
= ϵ,

for x ∈K and p ∈ O′, as desired.

3.3.3. The C∞-case. From the result in the Cm-case for m ∈ Z≥0, the mapping

O ∋ p↦ ΦXp

t1,t0 ∈ Cm(U ;M)

is continuous for each m ∈ Z≥0. From the diagram

C∞(U ;M) Cm(U ;M)

O

↪

p↦ΦXp

t1,t0

p↦
jmΦ

X
p

t1
,t0

and noting that the diagonal mappings in the diagram are continuous, we obtain the
continuity of the vertical mapping as a result of the fact that the C∞-topology is the
initial topology induced by the Cm-topologies, m ∈ Z≥0.

3.3.4. The Chol-case. Since the Chol-topology is the C0-topology, with the scalars
extended to be complex and the functions restricted to be holomorphic, the analysis
in Section 3.3.1 can be carried out verbatim to give the theorem in the holomorphic
case. ∇



Chapter 4

The exponential map

For the development of the exponential map, we shall use the language of category
theory and sheaf theory. For both vector fields and flows, we will work with presheaves
defined by prescribing local sections over a basis for the topology. We also wish to
talk about classes of vector fields with various properties, e.g., certain regularity or
geometric properties.

In the last section, we have shown that exponential maps are defined locally on
open cubes S′ × S ×U ⊆ T ×T ×M . More precisely, we established the well-definedness
of the map

exp ∶ L1
loc(T; Γν(TM)) ⊇ Vν(S′ × S × U)→ LocFlowν(S′;S;U)

from Vν(S′ × S × U), the space of time-varying sections whose flows are defined on
S′ × S × U , to the space of their local flows of regularity ν. This plays a key role in
constructing the ultimate localisation of the map exp between the presheaves of such
spaces,

exp ∶ {presheaves of vector fields}→ {presheaves of local flows}.

4.1. Categories of time-varying sections

We will define what we shall call a “time-varying local section.” This is nothing
more than a time-varying section, defined locally.

Definition 4.1 (Cν-time-varying local section). Let m ∈ Z≥0, let m′ ∈ {0, lip}, let
ν ∈ {m +m′,∞, ω,hol}, and let r ∈ {∞, ω,hol}, as required. A (locally) integrally
bounded local section of class Cν is a quadruple (T,E,U , ξ) where

(i) T ⊆ R is an interval,

(ii) π ∶ E →M is a Cr-vector bundle,

(iii) U ⊆M is open, and
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(iv) ξ ∈ ΓνI (T;E∣U) (∈ ΓνLI(T;E∣U)).

We denote L1
loc(T; Γν(E∣U)) the set of integrally bounded local sections of class

Cν . The reader may notice that we have duplicated constructions we have already
made in Section 2.3, the only difference being that we have introduced an open subset
U ⊆M . The reason for this is simply for the purpose of pedagogy so that we have
symmetry with our categories of flows in 4.3.

Equipped with the seminorms defined by (2.1), the category we are building in
this section is a subcategory of the category LCT VS of locally convex topological
vector spaces.

Now let us consider morphisms in the category we are building. We give the
definition in the locally integrable case, but the obvious definition can also be made
in the integrable case.

Definition 4.2 (Morphisms of sets of local time-varying sections). Let m ∈ Z≥0, let
m′ ∈ {0, lip}, let ν ∈ {m +m′,∞, ω,hol}, and let r ∈ {∞, ω,hol}, as required. Let
T,S ⊆ R be intervals. A mapping

α ∶ L1
loc(T; Γν(E∣U))→ L1

loc(S; Γν(F ∣V))

is a morphism of sets of Cν-local time-varying sections if

(i) α is continuous, and

(ii) there exists a mapping τα ∶ T → S and a Cr-vector bundle mapping Φα ∈
VBr(E;F ) over Φα,0 ∈ Cr(M ;N) such that:

(a) τα is the restriction to T of a nonconstant affine mapping,

(b) Φα,0(U) ⊆ V , and
(c) Φα ○ ξ(t, x) = α(ξ)(t,Φα,0(x)) for t ∈ T and x ∈ U .

Let us give some examples of morphisms of sets of time-varying local sections.

Example 4.3 (Morphisms of sets of local time-varying sections). If E = F , and if
S ⊆ T and V ⊆ U , then the “restriction morphism”

ρT×U,S×V ∶ L1
loc(T; Γν(E∣U))→ L1

loc(S; Γν(E∣V))

is given by
ρT×U,S×V(ξ)(t, x) = ξ(t, x), (t, x) ∈ S × V .

In this case we have “τα = ιT,S” and “Φα = ιE∣U ,E∣V” where ιT,S and ιE∣U ,E∣V are the
inclusions. Of course, an entirely similar construction holds in the integrable case.

One can directly verify that morphisms can be composed and that composition is
associative. One also has an identity morphism

id ∶ L1
loc(T; Γν(E∣U))→ L1

loc(T; Γν(E∣U))
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given by “τid = idT” and “Φid = idE∣U .” This, then, gives the category GνLI of locally inte-
grally bounded local sections of class Cν whose objects are the sets L1

loc(T; Γν(E∣U)).
of locally integrable local sections of class Cν and whose morphisms are as defined
above. This category is a subcategory of LCT VS. As we shall see, we like the category
LCT VS because direct limits exist in this category. One similarly denotes by GνI the
category of integrable local sections of class Cν .

4.2. Presheaves of time-varying vector fields

Throughout the following studies, we will investigate the open and connected
subsets (thus a domain) W ⊆ T ×T ×M such that all the points p1 = (t1, t0, x0) ∈W
satisfy the following properties:

(a) if t1 = t0, then there exists p2 = (t2, t0, x0) ∈W where t2 ≠ t0, and the segment from
p1 to p2 must also be contained in W;

(b) if t1 ≠ t0, then there exists p0 = (t0, t0, x0) ∈ W, and the segment from p1 to p0
must also be contained in W .

For convenience, we will call the subsets of T × T ×M with this property flow
admissible. Note that for cubes S′ ×S×U ⊆ T×T×M , flow admissible simply means
S ⊆ S′.

We have the following lemma.

Lemma 4.4. Let W ⊆ T × T ×M be open and flow admissible. Then there exists a
countable cover {S′i × Si × Ui}i∈Z>0 that is flow admissible for each S′i × Si × Ui, i ∈ Z>0.

Proof. Let p1 = (t1, t0, x0) ∈W be an arbitrary point, then p1 is an interior point as
W is open. Hence there exists an open ball Br(p1) of radius r cantered at p1 that lies
inside W.

(i) When t1 = t0, then p1 can be covered by an open cube T ×T ×U ⊂ T×T×U that
lies inside Br(p1), and this cube is flow admissible.

(ii) When t1 ≠ t0, since W is flow admissible, there exists a p0 = (t0, t0, x0) ∈W and
the line segment from p1 to p0 lies inside W . Since this line segment is compact,
there is a finite open cover {T ′k × Tk ×Uk}nk=1 such that ⋃nk=1 T ′k × Tk ×Uk ⊂W.

Now denote

T ′ =
n

⋃
k=1

T ′k, T =
n

⋂
k=1

Tk, U =
n

⋂
k=1

Uk.

Hence T ′ × T ×U is flow admissible, and covers the line segment from p0 to p1.
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Now consider the product space ∏
i∈Z>0
VνS′i×Si×Ui with the initial topology, i.e., the

coarsest topology such that the following map

πk ∶ ∏
i∈Z>0
VνS′i×Si×Ui → V

ν
S′k×Sk×Uk

is continuous for each k ∈ Z>0.
Properties of this topology:

(i) It is Hausdorff (as the product of Hausdorff spaces is Hausdorff).

(ii) It is complete (as the product of complete spaces is complete).

(iii) It is separable (as the countable product of separable spaces is separable).

(iv) It is Suslin (as the countable product of Suslin spaces is Suslin).

For any open subset W ⊆ T × T ×M , we will define the presheaf of sets over W,
denoted by G ν

LI(T;TM)(W). Let W be covered by a family {S′i × Si × Ui}i∈Z>0 that is
flow admissible for each i ∈ Z>0. We assign

G ν
LI(T;TM)(W) ⊆ ∏

i∈Z>0
VνS′i×Si×Ui

consisting of all sequences (Xi)i∈Z>0 , Xi ∈ VνS′i×Si×Ui for which ΦXj ∣R = ΦXk ∣R whenever
R = (S′j × Sj × Uj) ∩ (S′k × Sk × Uk) for some j, k ∈ Z>0. For convenience, we call this
the “overlap condition.”

Lemma 4.5. Let S′ × S × U , S̃′ × S̃ × Ũ ⊆ T ×T ×M be flow admissible with nonempty
intersection. Let X ∈ VνS′×S×U and Y ∈ Vν

S̃′×S̃×Ũ
satisfy the overlap condition. Then there

exists a Z ∈ Vν
(S′×S×U)∪(S̃′×S̃×Ũ)

such that ΦZ ∣S′×S×U = ΦX and ΦZ ∣S̃′×S̃×Ũ = ΦY .

Proof. Denote (S′ × S × U) ∩ (S̃′ × S̃ × Ũ) = R. Since X ∈ VνS′×S×U and Y ∈ Vν
S̃′×S̃×Ũ

, the
flow for X is the mapping

ΦX ∶ S′ × S × U → M

(t, t0, x0) ↦ ξ(t),

where ξ is a locally absolutely continuous curve ξ ∶ I ⊆ T→M satisfying ξ(t0) = x0 for
every (t0, x0) ∈ S × U and ξ′(t) = X(t, ξ(t)) for almost every t ∈ S′; the flow for Y is
the mapping

ΦY ∶ S̃′ × S̃ × Ũ → M

(t, t0, x0) ↦ η(t),

where η is a locally absolutely continuous curve η ∶ I′ ⊆ T →M satisfying η(t0) = x0
for every (t0, x0) ∈ S̃ × Ũ and η′(t) = Y (t, η(t)) for almost every t ∈ S̃′.
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Since X and Y satisfy the overlap condition, ΦX ∣R = ΦY ∣R, i.e., ξ(t) = η(t) for each
(t, t0, x0) ∈ R. Now let Ψ be a flow such that

Ψ ∶ (S′ × S × U) ∪ (S̃′ × S̃ × Ũ) → M

(t, t0, x0) ↦ ζ(t),

and Ψ∣S′×S×U = ΦX and Ψ∣S̃′×S̃×Ũ = ΦY , i.e., ζ is a locally absolutely continuous curve
ζ ∶ T′ ⊆ T→M satisfying

(a) if (t0, x0) ∈ S × U , then ζ(t0) = x0 and ζ(t) = ξ(t) for almost every t ∈ S′;

(b) if (t0, x0) ∈ S̃ × Ũ , then ζ(t0) = x0 and ζ(t) = η(t) for almost every t ∈ S̃′.

Then let Z be a vector field such that ζ ′(t) = Z(t, ζ(t)) for almost every t ∈ T̃′. Then
it is obvious that Ψ is the flow for Z such that Ψ∣S′×S×U = ΦX and Ψ∣S̃′×S̃×Ũ = ΦY .

Lemma 4.6. Let S′ × S × U , S̃′ × S̃ × Ũ ⊆ T ×T ×M be flow admissible and such that
S̃′ × S̃ × Ũ ⊆ S′ × S × U . Then the map

ρS′×S×U ,S̃′×S̃×Ũ ∶ VνS′×S×U → VνS̃′×S̃×Ũ
given by

ρS′×S×U ,S̃′×S̃×Ũ(X) =X
is an homeomorphism onto its image.

Proof. Let X ∈ VνS′×S×U , i.e., S′ × S × U ⊆DX . Then S̃′ × S̃ × Ũ ⊆DX , whence VνS′×S×U ⊆
Vν
S̃′×S̃×Ũ

. Therefore, ρS′×S×U ,S̃′×S̃×Ũ is an inclusion map, hence a homeomorphism onto
its image.

Theorem 4.7. G ν
LI(T;TM)(W) is unique up to homeomorphisms, i.e., it is indepen-

dent of the choices of the covers for W.

Proof. Let {S′i×Si×Ui}i∈Z>0 and {S̃′j × S̃j × Ũj}j∈Z>0 be two flow admissible open covers
of W , and let P ⊆ ∏

i∈Z>0
VνS′i×Si×Ui and Q ⊆ ∏

j∈Z>0
VνS̃′j×S̃j×Ũj be the subsets that satisfy the

overlap condition. Consider the map

T ∶ P → Q
(X1,X2, ...) ↦ (Y1, Y2, ...),

where Xi ∈ VνS′i×Si×Ui , i ∈ Z>0, and Yj ∈ V
ν
S̃′j×S̃j×Ũj

, j ∈ Z>0, satisfy the overlap condition,

and if R = (S′k × Sk × Uk) ∩ (S̃′l × S̃l × Ũl) ≠ ∅, then ΦXk ∣R = ΦYl ∣R. Consider the map

T ′ ∶ Q → P
(Y1, Y2, ...) ↦ (X1,X2, ...),
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where Xi ∈ VνS′i×Si×Ui , i ∈ Z>0 and Yj ∈ VνS̃′j×S̃j×Ũj , j ∈ Z>0 satisty the overlap condition,

and if R = (S′k × Sk × Uk) ∩ (S̃′l × S̃l × Ũl) ≠ ∅, then ΦXk ∣R = ΦYl ∣R.
By the overlap condition, T ○ T ′ = T ′ ○ T = Id, thus T is an isomorphism with

T −1 = T ′. Now we need to show that T is a homeomorphism.
Let {S̃′nl

× S̃nl
× Ũnl

}l∈Z>0 be an open cover for S′k × Sk × Uk for some nl ∈ {1, 2, ...},
such that (S′k × Sk × Uk) ∩ (S̃′nl

× S̃nl
× Ũnl

) ≠ ∅ for each l ∈ Z>0. Denote Rkl =
(S′k × Sk × Uk) ∩ (S̃′nl

× S̃nl
× Ũnl

). Consider the following diagram

∏
i∈Z>0
VνS′i×Si×Ui ⊇ P πk(P) ⊆ VνS′k×Sk×Uk

∏
j∈Z>0
VνS̃′j×S̃j×Ũj ⊇ Q

ϕ

πk

ϕ′
ψ

where ψ is the map

ψ ∶ Q → πk(P) ⊆ VνS′k×Sk×Uk
(X1,X2, ...) ↦ Y

such that Y ∈ VνS′k×Sk×Uk satisfies ΦY ∣Rkl
= ΦXnl ∣Rkl

for all l ∈ Z>0. Lemma 4.5 shows
that ψ is well-defined.

We then claim that ψ is continuous. To prove this claim, consider the following
diagram:

∏
j∈Z>0
VνS̃′j×S̃j×Ũj ⊇ Q Vν

S̃′nl
×S̃nl

×Ũnl

VνRkl

VνS′k×Sk×Uk

π′k

ψ

T

ρS̃′nl
×S̃nl

×Ũnl
,Rkl

ρS′k×Sk×Uk,Rkl

Let us describe the map ρS′k×Sk×Uk,Rkl
,

ρS′k×Sk×Uk,Rkl
∶ VνS′k×Sk×Uk → VνRkl

X ↦ Y,

where ΦX ∣Rkl
= ΦY . It is clear that this diagram commutes. Let O ⊆ Im(ψ) ⊆ VνS′k×Sk×Uk

be open. Since ρS′k×Sk×Uk,Rkl
is an open map, ρS′k×Sk×Uk,Rkl

(O) is open in VνRkl
. Denote

T ∶= ρS̃′nl
×S̃nl

×Ũnl
,Rkl
○ π′k. Since ρS̃′nl

×S̃nl
×Ũnl

,Rkl
and π′k are both continuous, so is T .

Then there exists an open set U ⊆ Q such that T (U) ⊆ ρS′k×Sk×Uk,Rkl
(O). Since for any

map f ∶ A→ B, D ⊆ f−1(f(D)) for all subsets D ⊆ A, we have

U ⊆ T −1 ○ T (U) ⊆ T −1 ○ ρS′k×Sk×Uk,Rkl
(O).
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Since T = ρS′k×Sk×Uk,Rkl
○ ψ, T −1 = ψ−1 ○ (ρS′k×Sk×Uk,Rkl

)−1. Hence

ψ(U) ⊆ ψ ○ T −1 ○ ρS′k×Sk×Uk,Rkl
(O)

= ψ ○ (ψ−1 ○ (ρS′k×Sk×Uk,Rkl
)−1) ○ ρS′k×Sk×Uk,Rkl

(O)
= (ψ ○ ψ−1) ○ [(ρS′k×Sk×Uk,Rkl

)−1 ○ ρS′k×Sk×Uk,Rkl
](O)

= (ρS′k×Sk×Uk,Rkl
)−1 ○ ρS′k×Sk×Uk,Rkl

(O) = O,

provided that (ρS′k×Sk×Uk,Rkl
)−1 ○ ρS′k×Sk×Uk,Rkl

(O) = Id(O). Indeed, this is true under
the condition that ρS′k×Sk×Uk,Rkl

(O) is injective. Hence ψ is continuous.
Since ι, ι′, πk, ψ are continuous, by the universal property of products and

subspaces, there exist ϕ and ϕ′ such that

ψ ○ ι′ ○ ϕ = πk ○ ι and (4.1)

πk ○ ι ○ ϕ′ = ψ ○ ι′. (4.2)

Now we need to show that T = ϕ and T ′ = ϕ′. Indeed, T has the property that satisfies
(4.1), hence T = ϕ by the uniqueness of the map ϕ. Similarly, T ′ has the property that
satisfies (4.2), hence T = ϕ′ by the uniqueness of the map ϕ′.

4.3. Category of time-varying local flows

We have thoroughly developed in Section 4.1 and 4.2 our presheaf theoretic notion
of what a time-dependent vector field is. In this section we begin to develop the
presheaf point of view for flows. What we do in this section is develop the space that
will be the codomain of the exponential map. We do this by developing a vector
field independent theory of flows that is analogous to our theory of vector fields in
Section 4.1, we develop a notion of “category of flows” that we will use as the basis
for defining the “flow presheaf.”

Definition 4.8 (Cν-local flow). Letm ∈ Z≥0, letm′ ∈ {0, lip}, let ν ∈ {m+m′,∞, ω,hol},
and let r ∈ {∞, ω,hol}, as required. A “Cν-local flow” is a quintuple (T′,T,M,U ,Φ)
where

(i) T ⊆ T′ ⊆ R are intervals,

(ii) M is a Cr-manifold,

(iii) U ⊆M is open, and

(iv) Φ ∶ T′ ×T × U →M is such that:

(a) Φ(t0, t0, x) = x, (t0, t0, x) ∈ T′ ×T × U ;
(b) Φ(t2, t1,Φ(t1, t0, x)) = Φ(t2, t0, x), t0, t1, ∈ T, t2 ∈ T′ x ∈ U ;
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(c) the map x ↦ Φ(t1, t0, x) is a Cν-diffeomorphism onto its image for every
t0 ∈ T and t1 ∈ T′;

(d) the map t0 ↦ Φt1,t0 ∈ Cν(U ;M) is continuous for a fixed t1 ∈ T′, and the
map t1 ↦ Φt1,t0 ∈ Cν(U ;M) is absolutely continuous for a fixed t0 ∈ T, where
Φt1,t0(x) = Φ(t1, t0, x).

We denote

LocFlowν(S′;S;U) = {Φ ∶ S′ × S × U →M ∣ (S′,S,M,U ,Φ) is a Cν-local flow},

We will work with a category whose objects are the sets of local flows LocFlowν(S′;S;U).
We shall think of this category as a subcategory of the category Top of topological
spaces and continuous maps. In particular, we shall place topologies on the spaces
LocFlowν(S′;S;U). This we do as follows.

Let M be a Cr-manifold and let T ⊆ R be an interval. Let S,S′ ⊆ T be subintervals,
S ⊆ S′, and let U ⊆M be open. Note that a local flow Φ ∈ LocFlowν(S′;S;U) defines
absolutely continuous curves with respect to its final time,

Φ̂ ∈ AC(S′;C0(S;Cν(U ;M)))

by Φ̂(t)(t0)(x) = Φ(t, t0, x). Then we topologise LocFlowν(S′;S;U) as follows.
First, we give C0(S;Cν(U)) the topology defined by the seminorms

pνK,I(g) = sup{pνK ○ g(t0) ∣ t0 ∈ I)},

I ⊆ S a compact interval, pνK is the appropriate seminorm defined by (2.3) for Cν(U).
Second, we give AC(S′;C0(S;Cν(U))) the topology defined by the seminorms

qνK,I,I′(g) =max{pνK,I,I′,∞(g), p̂νK,I,I′,1(g)}

where

pνK,I,I′,∞(g) = sup{pνK,I ○ g(t) ∣ t ∈ I′} and p̂νK,I,I′,1(g) = ∫
I′
pνK,I ○

dg

dt
(t)dt,

I ⊆ S, I′ ⊆ S′ compact intervals.
Finally, we give AC(S′;C0(S;Cν(U ;M))) the initial topology associated with the

mappings

Ψf ∶ AC(S′;C0(S;Cν(U ;M))) → AC(S′;C0(S;Cν(U)))
Φ ↦ f ○Φ,

for f ∈ Cν(M).
More explicitly for the topology of the space AC(S′;C0(S;Cν(U))), given f ∈

Cν(M) and Φ ∈ LocFlowν(S′;S;U),

pνK,I,I′,∞(f ○Φ) = sup{pνK(f ○Φt1,t0) ∣ (t1, t0) ∈ I′ × I}
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and

p̂νK,I,I′,1(f ○Φ) = ∫
I′
pνK,I (

d

dt
(f ○Φt,t0)) dt

= ∫
I′
pνK,I (⟨df(Φt,t0),

d

dt
Φt,t0⟩) dt

= ∫
I′
sup{pνK (⟨df(Φt,t0),

d

dt
Φt,t0⟩) ∣ t0 ∈ I} dt,

where K ⊆ M and I ⊆ I′ ⊆ T are compact. The topology defined above for flows is
important as it allows us to consider such spaces in the category of topological spaces,
which allows us to construct the presheaf of local flows.

Definition 4.9 (Morphisms of sets of local flows). Let m ∈ Z≥0, let m′ ∈ {0, lip},
let ν ∈ {m +m′,∞, ω,hol}, and let r ∈ {∞, ω,hol}, as required. Let M and N be
Cr-manifolds, and let T ⊆ R be a time interval. Let S′ × S × U ⊆ T × T ×M and
S̃′ × S̃ × Ũ ⊆ T ×T ×N be flow admissible. A mapping

α ∶ LocFlowν(S′;S;U)→ LocFlowν(S̃′; S̃; Ũ)

is a morphism of sets of Cν-local flows if

(i) α is continuous, and

(ii) there exist mappings τα ∶ S→ S̃, τ ′α ∶ S′ → S̃′, and ϕα ∈ Cν(M ;N) such that:

(a) τα and τ ′α are the restrictions to S̃ and S̃′ of nonconstant affine mappings,
respectively;

(b) ϕα(U) ⊆ V ;
(c) ϕα ○Φ(t1, t0, x) = α(Φ)(τ ′α(t1), τα(t0), ϕα(x)) for every Φ ∈ LocFlowν(T;U)

for t0, t1 ∈ T and x ∈ U .

Let us give some examples of morphisms of sets of flows.

Example 4.10. (Morphisms of sets of local time-varying sections) If N =M , and if
S̃′ × S̃ × Ũ ⊆ S′ × S × U , then the “restriction morphism”

ρS′×S×U ,S̃′×S̃×Ũ ∶ LocFlowν(S′;S;U)→ LocFlowν(S̃′; S̃; Ũ)

given by

ρS′×S×U ,S̃′×S̃×Ũ(Φ)(t1, t0, x) = Φ(t1, t0, x), (t1, t0, x) ∈ S̃′ × S̃ × Ũ .

In this case we have “τα = ιS′,S̃′” and “ϕα = ιE∣U ,E∣V” where ιT,S and ιE∣U ,E∣Ũ are the
inclusions.
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4.4. Presheaves of time-varying flows

The manner in which we construct the presheaves of time-varying flows is similar
to the manner in which we constructed the presheaves of vector fields in Section 4.2.
For any open flow admissible subset W ⊆ T ×T ×M , let {S′i × Si × Ui}i∈Z>0 be an open
cover of W and is flow admissible for each i ∈ Z>0. We will define the presheaf of
sets over W, denoted by L F ν(T;T;M)(W), the subset of ∏

i∈Z>0
LocFlowν(S′i;Si;Ui)

consisting of all sequences (Φi)i∈Z>0 , Φi ∈ LocFlowν(S′i;Si;Ui) for which Φj ∣R = Φk∣R
whenever R = (S′j × Sj × Uj) ∩ (S′k × Sk × Uk) for some j, k ∈ Z>0.

Theorem 4.11. L F ν(T;T;M)(W) is unique up to homeomorphisms, i.e., it is
independent of the choices of the covers for W.

Proof. Same argument as Theorem 4.7.

4.5. The exponential map

To establish the exponential map properly, we will use the language of category
theory. Consider the following commutative diagram in the category of topological
spaces:

G ν
LI(T;TM)(W)

exp
L F ν(T;T;M)(W)

πj

VνS′j×Sj×Uj ⊇ Qj

prj

Pj ⊆ LocFlowν(S′j;Sj;Uj)
expS′j×Sj×Uj

expS ′
j×S

j×U
j ○ π

j

where πj and prj are the canonical projections hence continuous. Suppose that
expS′j×Sj×Uj are continuous, then by the universal property of the subspace of product
spaces, there exists a well-defined continuous mapping

exp ∶ ∏
i∈Z>0
VνS′i×Si×Ui ⊇ G ν

LI(T;M)(W) Ð→ L F ν(T;T;M)(W).

Moreover, we have an explicit description of this map by

exp((X1, ...,Xk, ...)) = (expS′1×S1×U1(X1), ..., expS′k×Sk×Uk(Xk), ...)

We have shown in Section 3.2 that, for each (t0, x0) ∈ T ×M , there exist S′,S ⊆ T,
U ⊆M such that (t0, x0) ∈ S × U , and an open subset VνS′×S×U ⊆ ΓνLI(T;TM) such that
the map

expS′×S×U ∶ VνS′×S×U → LocFlowν(S′;S;U)
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X ↦ ΦX (4.1)

is well-defined. We will show that this map is a homeomorphism onto its image by
showing it is a continuous map with an continuous inverse. Then the continuity of
exp will follow by the following elementary lemma.

Lemma 4.12. Let {Ai}i∈Z>0 and {Bi}i∈Z>0 be collections of topological spaces, let
fi ∶ Ai → Bi be continuous maps. Then the map

∏
i∈Z>0

fi ∶ ∏
i∈Z>0

Ai → ∏
i∈Z>0

Bi

given by
(∏
i∈Z>0

fi)(x1, x2, ...) = (f1(x1), f2(x2), ...)

is continuous.

We, then, consider the continuity on cubes S′ × S × U ⊆ T ×T ×M .

4.5.1. Continuity.

Proposition 4.13. Let m ∈ Z≥0, let ν ∈ {m,∞,hol}, and let r ∈ {∞,hol}, as required.
Let M be a Cr-manifold and let T ⊆ R be an interval. Let S, S′ ⊆ T and U ⊆M be
open. The map

expS′×S×U ∶ N ⊆ VνS′×S×U → LocFlowν(S′;S;U)
X ↦ ΦX

is continuous.

Proof. Consider the following mappings

N ⊆ VνS′×S×U
expS′×S×UÐÐÐÐÐ→ LocFlowν(S′;S;U)

ΨfÐ→ AC(S′;C0(S;Cν(U))).

Since LocFlowν(S′;S;U) is equipped with the initial topology with Ψf , it is enough
to show the continuity of Ψf ○ exp for a fixed f ∈ Cν(M).

Let {Ki}i∈Z>0 ⊂M be compact neighborhoods of x0 and such that Kj ⊂ int(Kj+1)
and x0 ∈ int(K1), and M = ⋃

i∈Z>0
Ki. Denote K = ⋂

i∈Z>0
Ki. Similarly, let {Ii}i∈Z>0

be compact neighborhoods of t0 and such that Ij ⊂ int(Ij+1) and t0 ∈ int(I1), and
T = ⋃

i∈Z>0
Ii.

For each f ∈ Cν(M) and X ∈ VνS′×S×U , let R be a neighborhood of exp(X).
Then there exist increasing sequences {i1, i2, ..., im} ⊂ Z>0, {j′1, j′2, ..., j′n} ⊂ Z>0 and
{j1, j2, ..., jn} ⊂ Z>0 such that Ijk ⊆ Ij′k for all k ∈ {1,2, ..., n} and such that

m

⋂
k=1

n

⋂
l=1

{Φ ∈ LocFlowν(S′;S;U) ∣ qνKik
,Ijl ,Ij′l

,f(Φ −ΦX) < r} ⊆R
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forms a neighborhood of ΦX .
Observe, ia < ib implies Kia ⊂Kib which gives

(qνKib
,Ijl ,Ij′l

,f)−1([0, r)) ⊆ (qνKia ,Ijl ,Ij′l
,f)−1([0, r)),

and ja < jb (thus j′a < j′b ) implies Ija ⊂ Ijb and Ij′a ⊂ Ij′b , which gives

(qνKik
,Ijb ,Ij′b

,f)−1([0, r)) ⊆ (qνKik
,Ija ,Ij′a ,f

)−1([0, r)).

Observe that
Ij1 ⊆ Ij2 ⊆ ... ⊆ Ijn

⊆ ⊆ ⊆ ⊆

Ij′1 ⊆ Ij′2 ⊆ ... ⊆ Ij′n
and

Ki1 ⊆ Ki2 ⊆ ... ⊆ Kim .

Let K ∶=Kim , I ∶= Ijn and I′ ∶= Ij′n , then I ⊆ I′. Now, let

Q ∶= {Φ ∈ LocFlowν(S′;S;U) ∣ qνK,I,I′,f(Φ −ΦX) < r} .

By (3.1-3.2), there exist a neighborhood N of X and a compact K ′ ⊆M such that
ΦY (t1, t0, x) ∈K ′ for all (t1, t0, x) ∈ I′ × I ×K and Y ∈ N , and that

sup{∫
I′
pνK (Xf(s,ΦX

s,t0) −Xf(s,ΦY
s,t0))ds ∣ t0 ∈ I} ≤

r

2

for all Y ∈ N . Let

N ′ ∶= {Y ∈ VνS′×S×U ∣ pνK′,I′,f(Y −X) <
r

2
} ,

and denote O ∶= N ∩N ′. We claim that expS′×S×U(O) ⊆ Q. Indeed, for any Y ∈ O,

pνK,I,I′,∞(f ○ΦX − f ○ΦY )
= sup{pνK(f ○ (ΦX −ΦY )(t1, t0)) ∣ (t1, t0) ∈ I′ × I}

= sup{pνK (∫
∣t0,t1∣

Xf(s,ΦX
s,t0) − Y f(s,ΦY

s,t0)ds) ∣ (t1, t0) ∈ I′ × I}

≤ sup{pνK (∫
∣t0,t1∣

Xf(s,ΦX
s,t0) −Xf(s,ΦY

s,t0)ds) ∣ (t1, t0) ∈ I′ × I}

+ sup{pνK (∫
∣t0,t1∣

Xf(s,ΦY
s,t0) − Y f(s,ΦY

s,t0)ds) ∣ (t1, t0) ∈ I′ × I}

≤ sup{∫
I′
pνK (Xf(s,ΦX

s,t0) −Xf(s,ΦY
s,t0))ds ∣ t0 ∈ I}
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+ sup{pνK′ (∫
∣t0,t1∣

Xf(s, y) − Y f(s, y)ds) ∣ (t1, t0) ∈ I′ × I}

≤ r
2
+ ∫

I′
pνK′(Xf(s, y) − Y f(s, y))ds (I ⊆ I′)

≤ r
2
+ pνK′,I′,f(X − Y ).

< r
2
+ r
2
= r

and

p̂νK,I,I′,1(f ○ΦX − f ○ΦY )

= ∫
I′
pνK,I (

d

dt
(f ○ΦX(t, t0, x0) − f ○ΦY (t, t0, x0)))dt

= ∫
I′
sup{pνK (⟨df(ΦX

t,t0),
d

dt
ΦX
t,t0⟩ − ⟨df(ΦY

t,t0),
d

dt
ΦY
t,t0⟩) ∣ t0 ∈ I}dt

= ∫
I′
sup{pνK (Xf(t,ΦX

t,t0) − Y f(t,ΦY
t,t0
) ∣ t0 ∈ I}dt

≤ ∫
I′
sup{pνK (Xf(t,ΦX

t,t0) −Xf(t,ΦY
t,t0)) ∣ t0 ∈ I}dt

+∫
I′
sup{pνK (Xf(t,ΦY

t,t0) − Y f(t,ΦY
t,t0)) ∣ t0 ∈ I}dt

≤ r
2
+ ∫

I′
pνK′(Xf(s, y) − Y f(s, y))ds

≤ r
2
+ pνK′,I′,f(X − Y ).

< r
2
+ r
2
= r.

Hence

qνK,I,I′,f(f ○ΦX −f ○ΦY ) =max{pνK,I,I′,∞(f ○ΦX −f ○ΦY ), p̂νK,I,I′,1(f ○ΦX −f ○ΦY )} < r

for all Y ∈ O. Therefore expS′×S×U(Y ) ∈ Q, whence the continuity of Ψf ○ expS′×S×U
holds true.

4.5.2. Openness. To show the openness, it is useful to consider the parameter-
dependent local flows, i.e., the continuous maps

P ∋ p↦ Φp ∈ LocFlowν(S′;S;U),

where P is a topological space. We denote this set by LocFlowν(S′;S;U ;P).
We start by showing the following lemmata which helps us to establish the

continuity of the inverse of (4.1).
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Lemma 4.14. Let f ∈ C∞(M) and p0 ∈ P be fixed. Define a map

g ∶ T ×M → R

(t, x) ↦ d

dτ
∣
τ=t

f ○Φp0
τ,t0
(x).

Then, for γ ∈ C0(T;M), the mapping

ΨT,M,g ∶ C0(T;M) → L1
loc(T;R)

γ ↦ (s↦ g(s, γ(s)))

is well-defined and continuous.

Proof. Denote gx ∶ t ↦ g(t, x) and gt ∶ x ↦ g(t, x). We first note that gx ∈ L1
loc(T;R)

since f ○ Φp0
τ,t0

is locally absolutely continuous. We first show that t ↦ g(t, γ(t)) is
measurable on T. Note that

t↦ g(t, γ(s))
is measurable for each s ∈ T and that

s↦ g(t, γ(s)) (4.2)

is continuous for each t ∈ T (this since both x ↦ gt(x) and γ are continuous). Let
[a, b] ⊆ T be compact, let k ∈ Z>0, and denote

tk,j = a +
j − 1
k
(b − a), j ∈ {1, ..., k + 1}.

Also denote
Tk,j = [tk,j, tk,j+1), j ∈ {1, ..., k − 1},

and Tk,k = [tk,k, tk,k+1]. Then define gk ∶ T→ R by

gk(t) =
k

∑
j=1

g(t, γ(tk,j))χtk,j .

Note that gk is measurable, being a sum of products of measurable functions (Cohn,
2013, Proposition 2.1.7). By continuity of (4.2) for each t ∈ T, we have

lim
k→∞

gk(t) = g(t, γ(t)), t ∈ [a, b],

showing that t↦ g(t, γ(t)) is measurable on [a, b], as pointwise limits of measurable
functions are measurable (Cohn, 2013, Proposition 2.1.5). Since the compact interval
[a, b] ⊆ T is arbitrary, we conclude that t↦ g(t, γ(t)) is measurable on T.

Let S ⊆ T be compact and let K ⊆M be a compact set for which γ(S) ⊆K. Since
gx ∈ L1

loc(T;R), there exists C ∈ R>0 be such that

∫
S
∣g(t, x)∣dt ≤ C x ∈K.
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In particular, this shows that t↦ g(t, γ(t)) is integrable on S and so locally integrable
on T. This gives the well-definedness of ΨT,M,g.

For continuity, let γj ∈ C0(S;M), j ∈ Z>0, be a sequence of curves converging
uniformly to γ ∈ C0(S;M). Let S ⊆ T be a compact interval and let K ⊆ M be
compact. Since image(γ) ∪K is compact and M is locally compact, we can find a
precompact neighbourhood U of image(γ) ∪K. Then for N ∈ Z>0 0 sufficiently large,
we have image(γj) ⊆ U for all j ≥ N by uniform convergence. Therefore, we can find a
compact set K ′ ⊆M such that image(γj) ⊆K ′ for all j ≥ N and image(γ) ⊆K ′. Then
for fixed t ∈ S, continuity of x ↦ g(t, x) ensures that limj→∞ g(t, γj(t)) = g(t, γ(t)).
We also have

∫
S
∣g(t, γj(t))∣dt ≤ C t ∈ S

for some C ∈ R>0. Therefore, by the Dominated Convergence Theorem

lim
j→∞
∫
S
g(t, γj(t)) dt = ∫

S
g(t, γ(t)) dt,

which gives the desired continuity.

Lemma 4.15. Let m ∈ Z≥0, let ν ∈ {m,∞,hol} satisfy ν ≥ lip, and let r ∈ {∞,hol}
as appropriate. Let M be a Cr-manifold, let T ⊆ R be an interval, and let P be a
topological space. Let S ⊆ S′ ⊆ T and U ⊆M be open. Let Φ ∈ LocFlowν(S′;S;U ;P),
let f ∈ Cr(M), and let (t1, t0, p0) ∈ S′ × S × P be fixed and t0 < t1. Then, for any
ϵ ∈ R>0, there exists a neighborhood O ⊆ P of p0 and a compact K ⊆ M such that
Φp
t,t0
(x) ∈ int(K) for all (x, p) ∈ U ×O and that

∫
∣t0,t1∣

pνK (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1(x) − d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1(x))ds < ϵ

x ∈K, p ∈ O.

Or, equivalently, the map

O ∋ p↦ d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1 ∈ Cν(U ;R)

is continuous.

Proof. (The C0-case). Now consider the following mapping

ΦT,M,P ∶M ×P → C0(T;M)
(x, p) ↦ (t↦ Φp(t, t0, x)).

By Theorem 3.5(x), this mapping is continuous. It is obvious that

Φ∗T,M,P ∶M ×P → C0(T;M)
(x, p) ↦ (t↦ (Φp

t,t0
)−1(x))
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is also continuous.
Denote the following continuous mapping

ι∣t0,t1∣ ∶ C0(T;M) → C0(∣t0, t1∣;M)
γ ↦ γ∣∣t0, t1∣.

Then the mapping

Ψ∣t0,t1∣,M,g ○ ι∣t0,t1∣ ○ΦT,M,P ∶M ×P → L1
loc(∣t0, t1∣;R)

is continuous, being a composition of continuous maps.
Let K ⊆ M be compact. Then, for f ∈ C∞(M), ϵ > 0, and x ∈ K, there exist a

neighbourhood Vx ⊆K of x and a neighbourhood Ox ⊆ O of p0 such that

∫
∣t0,t1∣
∣ d
dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1(x′) − d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1(x′)∣ds < ϵ,

x′ ∈ Vx, p ∈ Ox.

Let x1, ..., xm ∈K be such that K = ∪mj=1Vxj and define a neighbourhood O = ∩kj=1Oxj
of p0. Then we have

∫
∣t0,t1∣
∣ d
dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1(x) − d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1(x)∣ds < ϵ (4.3)

for x ∈K, p ∈ O. Hence, from (4.3) we ascertain that, for every compact K ⊆ U , every
f ∈ C∞(M), and every ϵ ∈ R>0, if p ∈ O, then we ave

∫
∣t0,t1∣

p0K (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1 − d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1)ds < ϵ

which gives the desired result.

(The Cm-case). The topology for Cm(U ;M) is the uniform topology defined by
the semimetrics

dmK,f(Φ1,Φ2) = sup{∥jm(f ○Φ1)(x) − jm(f ○Φ2)(x)∥GM,m
∣ x ∈K},

f ∈ C∞(M), K ⊆ U compact.

Consider the mapping

Φ∣t0,t1∣,M,P ∶M ×P → C0(∣t0, t1∣;Jm(U ;M))
(x, p) ↦ (t↦ jm(Φp

t,t0
)−1(x)),

which is continuous, c.f. Theorem 3.5(x). For (x, p) ∈M ×P and for t ∈ ∣t0, t1∣, we can
think of jm(Φp

t,t0
)−1(x) as a linear mapping

jm(Φp
t,t0
)−1(x) ∶ Jm(M ;R)(Φp

t,t0
)−1(x) → Jm(M ;R)x
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jmg((Φp
t,t0
)−1(x)) ↦ jm(g ○ (Φp

t,t0
)−1)(x).

For a fixed f ∈ C∞(M) and some γ ∈ C0(T;M), define a map

g ∶ T ×M → R

(s, x) ↦ jm (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
)(x).

Denote gx ∶ s ↦ g(s, x) and gs ∶ x ↦ g(s, x). Then gx ∈ L1
loc(T;R) since f ○ Φ

p0
τ,t0

is
locally absolutely continuous, and gs ∈ C0(M,R) since for a fixed s ∈ T,

d

dτ
∣
τ=s

f ○Φp0
τ,t0
∈ Cm(M ;R).

Now, fixing (x, p) ∈M ×P for the moment, recall the constructions of Section 2.3.2,
particularly those preceding the statement of Lemma 2.6. We consider the notation
from those constructions with

1. N =M ,

2. E = F = Jm(M ;R),

3. Γ(s) = jm(Φp
s,t0
)−1(x) ∈ HomR(Jm(M,R)(Φp

s,t0
)−1(x);J

m(M ;R)x), and

4. ξ = jm( ddτ ∣τ=sf ○Φ
p0
τ,t0
).

Thus, again in the notation from Section 2.3.2, we have

γM(s) = (Φp
s,t0
)−1(x), γN(s) = x.

We then have the integrable section of E = Jm(M ;R) given by

ξΓ ∶ ∣t0, t1∣ → E

s ↦ (s↦ jm (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1)(x))

to obtain continuity of the mapping

Ψ
∣t0,t1∣,Jm(M ;R),jm( d

dτ
∣
τ=s

f○Φ
p0
τ,t0
)
∶ C0(∣t0, t1∣;Jm(U ;M))→ L1

loc(∣t0, t1∣;Jm(M ;R))

Γ↦ (s↦ Γ(s) (jm (
d

dτ
∣
τ=s
f ○Φp0

τ,t0
) (γM(s)))) ,

and so of the composition

Ψ
∣t0,t1∣,Jm(M ;R),jm( d

dτ
∣
τ=s

f○Φ
p0
τ,t0
)
○Φ∣t0,t1∣,M,P ∶M ×P → L1

loc(∣t0, t1∣;Jm(M ;R)).
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Note that this is precisely the continuity of the mapping

M ×P ∋ (x, p)↦ (t↦ jm (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1)(x)) ∈ L1

loc(∣t0, t1∣;Jm(M ;R)).

In order to convert this continuity into a continuity statement involving the fibre norm
for Jm(M ;R), we note that, for x ∈ K, there exists a neighbourhood Vx and affine
functions F 1

x , ..., F
n+k
x ∈ Aff∞(Jm(M ;R)) which are coordinates for ρ−1m (Vx). We can

choose a Riemannian metric for Jm(M ;R), whose restriction to fibres agrees with
the fibre metric (2.1) (Lewis, 2020, §4.1). It follows, therefore, from Lemma A.1 that
there exists Cx ∈ R>0 such that

∥jmg1(x′) − jmg2(x′)∥GM,m
≤ Cx∣F l

x ○ jmg1(x′) − F l
x ○ jmg2(x′)∣,

for g1, g2 ∈ C∞(M), x′ ∈ Vx, l ∈ {1, ..., n+k}. By the continuity proved in the preceding
paragraph, we can take a relative neighbourhood Vx ⊆K of x sufficiently small and a
neighbourhood Ox ⊆ O of p0 such that

∫
∣t0,t1∣
∣F l

x ○ jm(
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1)(x′)

− F l
x ○ jm(

d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1)(x′)∣ds < ϵ

2Cx
,

for all x′ ∈ Vx, p ∈ Ox, and l ∈ {1, ..., n + k}. Therefore,

∫
∣t0,t1∣
∥jm (

d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1)(x′)

− jm (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1)(x′)∥

GM,m

ds < ϵ
2

for all x′ ∈ Vx, p ∈ Ox. Now let x1, ..., xs ∈ K be such that K = ∪sr=1Vxr and define a
neighbourhood O′ = ∩sr=1Oxr of p0. Then we have

∫
∣t0,t1∣
∥jm (

d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1)(x′)

− jm (
d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp0

s,t0
)−1)(x′)∥

GM,m

ds < ϵ
2

for all x′ ∈K, p ∈ O′, as desired.
(The C∞-case). From the result in the Cm-case for m ∈ Z≥0, the mapping

O ∋ p↦ d

dτ
∣
τ=s

f ○Φp0
τ,t0
○ (Φp

s,t0
)−1(x) ∈ Cν(U ;R)

is continuous for each m ∈ Z≥0. From the diagram
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C∞(U ;R) Cm(U ;R)

O

↪

p↦ d
dτ
∣
τ=s

f○Φ
p0
τ,t0
○(Φp

s,t0
)−1

p↦
jm
(
d
dτ
∣
τ=s
f○

Φ
p0
τ,t0
○(
Φ
p
s,t0
)
−1 )

and noting that the diagonal mappings in the diagram are continuous, we obtain the
continuity of the vertical mapping as a result of the fact that the C∞-topology is the
initial topology induced by the Cm-topologies, m ∈ Z≥0.

(The Chol-case). Since the Chol-topology is the C0-topology, with the scalars
extended to be complex and the functions restricted to be holomorphic, the analysis
in Section 3.3.1 can be carried out verbatim to give the theorem in the holomorphic
case.

Proposition 4.16. Let m ∈ Z≥0, let ν ∈ {m,∞,hol}, and let r ∈ {∞,hol}, as required.
Let M be a Cr-manifold and let T ⊆ R be an interval. Let S ⊆ S′ ⊆ T and U ⊆M be
open. The map

expS′×S×U ∶ N ⊆ VνS′×S×U → LocFlowν(S′;S;U)
X ↦ ΦX

is open.

Proof. Since expS′×S×U is one-to-one and onto its image, it is enough to show the
continuity of the inverse map, denoted by

exp−1S′×S×U ∶ LocFlowν(S′;S;U) → VνS′×S×U
Φ ↦ XΦ

where

XΦ(t, x) =XΦ(t,Φ(t, t0, x0)) =
d

dτ
∣
τ=t

Φ(τ, t0, x0) =
d

dτ
∣
τ=t

Φτ,t0(x0)

= d

dτ
∣
τ=t

Φτ,t0 ○Φ−1t,t0(x)

and (t, t0, x0) ∈ S′ × S × U . Hence exp−1S′×S×U ○ expS′×S×U = Id.
The topology of VνS′×S×U is generated by the family of seminorms

pνK′,I′,f(X) = ∫
I′
pνK′(Xtf) dt,

where pνK′ is the appropriate seminorm from (2.3). For a fixed Φ ∈ LocFlowν(S′;S;U),
XΦ ∈ VνS′×S×U .
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Let {K ′i}i∈Z>0 ⊂M be compact neighborhoods of x0 and such that K ′j ⊂ int(K ′j+1)
and x0 ∈ int(K ′1), and M = ⋃

i∈Z>0
K ′i . Denote K ′ = ⋂

i∈Z>0
K ′i . Similarly, let {I′i}i∈Z>0

be compact neighborhoods of t0 and such that I′j ⊂ int(I′j+1) and t0 ∈ int(I′1), and
T = ⋃

i∈Z>0
I′i.

For a fixed Φ ∈ LocFlowν(S′;S;U), let R be a neighborhood of XΦ ∈ VνS′×S×U . Then
there exist increasing sequences {i1, i2, ..., im} ⊂ Z>0, {j1, j2, ..., jn} ⊂ Z>0 and a finite
collection of functions f1, f2, ...fp ∈ Cν(M) such that

p

⋂
s=1

m

⋂
k=1

n

⋂
l=1

{Y ∈ VνS′×S×U ∣ pνK′ik ,I′jl ,fs(Y −XΦ) < r} ⊆R

forms a neighborhood of XΦ.
Observe, ia < ib implies K ′ia ⊂K ′ib which gives

pν
−1

K′ib
,I′jl ,fs
([0, r)) ⊆ pν−1K′ia ,I

′
jl
,fs
([0, r)),

and ja < jb implies I′ja ⊂ I′jb , which gives

pν
−1

K′ik
,I′jb ,fs
([0, r)) ⊆ pν−1K′ik

,I′ja ,fs
([0, r)).

Observe that I′j1 ⊆ I′j2 ⊆ ... ⊆ I′jn and K ′i1 ⊆ K ′i2 ⊆ ... ⊆ K ′im . Denote K ′ ∶= K ′im and
I′ ∶= I′jn , and let

Q ∶=
p

⋂
s=1

{Y ∈ VνS′×S×U ∣ pνK′,I′,fs(Y −XΦ) < r} .

The topology on LocFlowν(S′;S;U) is defined by the semi-metrics

qνK,I,I′,f(Φ1 −Φ2) =max{pνK,I,I′,∞(f ○ (Φ1 −Φ2)), p̂νK,I,I′,1(f ○ (Φ1 −Φ2))} .

By Proposition (4.15), for a fixed fj ∈ {f1, ..., fp}, there exist Kj ⊆ M and Ij ⊆ I′
compact with t0 as interior, and a neighborhood Nj of Φ, such that Ψ−1t,t0(x) ∈ int(Kj)
for all Ψ ∈ Nj and (t, t0, x) ∈ I′ × Ij ×K ′ and that

∫
I′
pνK′ (

d

dτ
∣
τ=s

fj ○Ψτ,t0 ○Ψ−1s,t0(x) −
d

dτ
∣
τ=s

fj ○Ψτ,t0 ○Φ−1s,t0(x))ds <
r

2
. (4.4)

Now denote K ∶=
p

⋂
j=1
Kj, I ∶=

p

⋂
j=1

Ij. Let

N ′ ∶=
p

⋂
j=1

{Ψ ∈ LocFlowν(S′;S;U) ∣ qνK,I,I′,fj(Ψ −Φ) <
r

2
} ,

and denote O ∶= (
p

⋂
j=1
Nj)∩N ′. We claim that exp−1S′×S×U(O) ⊆ Q. Indeed, for any Ψ ∈ O

and for fixed (t, t0) ∈ I′ × I, we have that for each s ∈ {1, ..., p},

pνK′ (XΨfs(t, x) −XΦfs(t, x))
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= pνK′ ((
d

dτ
∣
τ=t

Ψτ,t0 ○Ψ−1t,t0 −
d

dτ
∣
τ=t

Φτ,t0 ○Φ−1t,t0) fs)

≤ pνK′ ((
d

dτ
∣
τ=t

Ψτ,t0(Ψ−1t,t0(x)) −
d

dτ
∣
τ=t

Ψτ,t0(Φ−1t,t0(x))) fs)

+pνK′ ((
d

dτ
∣
τ=t

Ψτ,t0(Φ−1t,t0(x)) −
d

dτ
∣
τ=t

Φτ,t0(Φ−1t,t0(x))) fs)

≤ pνK′ (
d

dτ
∣
τ=t

fs ○Ψτ,t0(Ψ−1t,t0(x)) −
d

dτ
∣
τ=t

fs ○Ψτ,t0(Φ−1t,t0(x)))

+pνK (
d

dτ
∣
τ=t

fs ○Ψτ,t0(y) −
d

dτ
∣
τ=t

fs ○Φτ,t0(y)) ,

which implies

pνK′,I′,fs(XΨ −XΦ)

= ∫
I′
pνK′ (XΨfs(t, x) −XΦfs(t, x))dt

≤ ∫
I′
pνK′ (

d

dτ
∣
τ=t

fs ○Ψτ,t0(Ψ−1t,t0(x)) −
d

dτ
∣
τ=t

fs ○Ψτ,t0(Φ−1t,t0(x)))dt

+∫
I′
pνK (

d

dτ
∣
τ=t

fs ○Ψτ,t0(y) −
d

dτ
∣
τ=t

fs ○Φτ,t0(y))dt

≤ r
2
+ ∫

I′
sup{pνK (

d

dτ
∣
τ=t

fs ○Ψτ,t0(y) −
d

dτ
∣
τ=t

fs ○Φτ,t0(y)) ∣t0 ∈ I}dt

= r
2
+ p̂νK,I,I′,1(fs ○Ψ − fs ○Φ)

≤ r
2
+ qνK,I,I′,fs(Ψ −Φ)

≤ r
2
+ r
2
= r,

as desired.
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Summary

The general question about the existence of the exponential map is addressed in
this thesis by considering, not vector fields and diffeomorphisms, but presheaves of
vector fields and presheaves of local diffeomorphisms of various of regularities, i.e.,
Lipschitz, finitely differentiable, smooth, and holomorphic. This allows for systematic
localisation of the components of what becomes the exponential map, i.e.,

exp ∶ {presheaf of vector fields}→ {presheaf of local diffeomorphisms}

Moreover, the homeomorphism of this map is established upon the suitable topologies
for sets of vector fields and flows using geometric decompositions of various jet bundles
by various connections. This framework is interesting in that it allows an elegant and
uniform treatment of vector fields across various regularity classes, understands vector
fields and local flows from a topological perspective, and studies control systems in a
more general and categorical point of view.

These results give us many applications in geometric control theory. The most
important application is that one can define a control system from these presheaves,
i.e., a control system, denoted by C, is a sub-presheaf

C ⊆ G ν
LI(T;TM) or C ⊆L F ν(T;T;M)

with the integral curves for local sections over an open set as its controlled trajectory.
This definition of control systems generalises the classical definition of a control system.
It is convincing that it is easier to do all the control theoretic things one is used to
using flows other than using vector fields, e.g., talk about controllability, optimality,
and stabilisability. Now one can formulates theorems using properties of flows and
diffeomorphisms, rather than vector fields. In the case of flows defined by vector fields,
one translates conditions on flows to conditions on vector fields by the homeomorphism
of the exponential map. Moreover, by studying the stuctures and topologies in the
space of presheaves, one can obtain controllability under the certain assumptions of
the structure of the presheaf given by the following conjecture.

Conjecture 5.1. A control system C is controllable if and only if the control system
generates a open neighborhood of the identity.
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This definition of control systems is more general in the sense that it captures
both locally and globally defined control systems, whereas classical definition only
captures the globally defined control systems.
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Appendix A

Riemannian metrics

The following results are used for the proof of different theorems in this thesis.

Lemma A.1 (Comparison of Riemannian distance for different Riemannian metrics)).
If G1 and G2 are smooth Riemannian metrics onM with metrics d1 and d2, respectively,
and if K ⊆M is compact, then there exists c ∈ R>0 such that

c−1d1(x1, x2) ≤ d2(x1, x2) ≤ cd1(x1, x2)

for every x1, x2 ∈K.

Proof. We shall prove the result in increments. The first step is simple linear algebra.

Sublemma 1. If G1 and G2 are inner products on a finite-dimensional R-vector
space V , then there exists c ∈ R>0 such that

c−1G1(v, v) ≤ G2(v, v) ≤ cG1(v, v)

for all v ∈ V .

Proof. Let GZj ∈ HomR(V ;V ∗) and G
\
j ∈ HomR(V ∗;V ), j ∈ {1, 2}, be the induced linear

maps. Note that

G1(G
\
1 ○G

Z
2(v1), v2) = G2(v1, v2) = G2(v2, v1) = G1(G

\
1 ○G

Z
2(v2), v1),

showing that G
\
1 ○G

Z
2 is G1-symmetric. Let (e1, ..., en) be a G1-orthonormal basis for

V that is also a basis of eigenvectors for G
\
1 ○G

Z
2. The matrix representatives of G1

and G2 are then

[G1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, [G2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where λ1, ..., λn ∈ R>0. Let us assume without loss of generality that λ1 < ⋯ < λn. Then
taking c =max{λn, λ−11 } gives the result, as one can verify directly. ∇
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Next let us give the local version of the result.

Sublemma 2. Let G1 and G2 be smooth Riemannian metrics on a manifold M with
metrics d1 and d2, respectively. For each x ∈M , there exists a neighbourhood Ux of x
and cx ∈ R>0 such that

c−1x d1(x1, x2) ≤ d2(x1, x2) ≤ cxd1(x1, x2)

for every x1, x2 ∈ Ux.

Proof. Let x ∈M . Let N1 and N2 be geodesically convex neighbourhoods of x with
respect to the Riemannian metrics G1 and G2, respectively [Kobayashi and Nomizu
1963, Proposition IV.3.4]. Thus every pair of points in N1 can be connected by a
unique distanceminimising geodesic for G1 that remains in N1, and similarly with N2

and G2. By Sublemma 1, let cx ∈ R>0 be such that

c−2x G1(vx, vx) ≤ G2(vx, vx) ≤ c2xG1(vx, vx), vx ∈ TxM.

By continuity of G1 and G2, we can choose N1 and N2 sufficiently small that

c−2x G1(vy, vy) ≤ G2(vy, vy) ≤ c2xG1(vy, vy), vy ∈ N1 ∪N1.

Now define Ux = N1 ∩N1. Then every pair of points in Ux can be connected with
a unique distance-minimising geodesic of both G1 and G2 that remains in N1 ∪N1.
Now let x1, x2 ∈ Ux. Let γ ∶ [0, 1]→M be the unique distance-minimising G1-geodesic
connecting x1 and x2. Then

d2(x1, x2) ≤ ℓG2(γ) = ∫
1

0

√
G2(γ′(t), γ′(t))dt

≤ cx∫
1

0

√
G1(γ′(t), γ′(t))dt

≤ cxℓG1(γ) = cxd1(x1, x2).

One similarly shows that d1(x1, x2) ≤ cxd2(x1, x2). ∇

Now let K ⊆M be compact and, for each x ∈K, let Ux be a neighbourhood of x
and let cx ∈ R>0 be as in the preceding sublemma. Then (Ux)x∈K is an open cover of
K. Let x1, ..., xk ∈K be such that

K ⊆ ∪kj=1Uxj .

Let
Da = sup{da(x, y) ∣ x, y ∈K}, a ∈ {1,2}.

By the Lebesgue Number Lemma (D. Burago, Y. Burago, and Ivanov, 2001, Theorem
1.6.11), let ra ∈ R>0 be such that, if x ∈ K, then there exists j ∈ {1, ..., k} for which
Ba(r, x) ∈ Uxj (Ba(r, x) is the ball with respect to the metric da). Let us denote

c =max{cx1 , ..., cxk ,
D1

r2
,
D2

r1
} .
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Now let x1, x2 ∈ K. If d1(x1, x2) < r1, then let j ∈ {1, ..., k} be such that x1, x2 ∈ Uj.
Then

d2(x1, x2) ≤ cd1(x1, x2).
If d1(x1, x2) ≥ r1, then

d2(x1, x2)r1
D2

≤ d2(x1, x2)r1
d2(x1, x2)

≤ d1(x1, x2).

This gives d2(x1, x2) ≤ cd1(x1, x2). Swapping the roles of G1 and G2 gives d1(x1, x2) ≤
cd2(x1, x2), giving the lemma. ∎
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