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Notes for Slide 0

Although there has been some work done on control of mechanical systems, a fundamental,
systematic study of these systems has not been undertaken. Much of the existing work has
relied on the presence of specific structure. The most common examples of the types of structure
assumed are symmetry (conservation laws) and constraints. While it may seem counter-intuitive
that constraints may help in control theory, this is sometimes in fact the case. The reason is
that the constraints provide extra forces (forces of constraint) which can be used to advantage.

In our work, we begin a program to understand the factors which might go into a control
theory for general mechanical systems. The most interesting work is done from the Lagrangian
perspective where we study systems whose Lagrangians are “kinetic energy minus potential
energy.” For such systems, the controllability questions are different than those typically asked
in nonlinear control theory. In particular, one is often more interested in what happens to
configurations rather than states (which are configurations and velocities for these systems).
We precisely formulate a new controllability problem, then obtain computable conditions for this
new form of controllability in terms of the given structure for the system.

We also have some results for Hamiltonian control systems. These are very clean mathemat-
ically, but the restrictions placed on the systems we study in the Hamiltonian setting makes the
theory of limited practical value. Nevertheless, it may be possible to combine the Lagrangian
and Hamiltonian results to obtain a deeper understanding of each.
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1. A motivating example

The Robotic Leg:

θ

ψ

r

• Inputs are relative torque and leg extension.

• System is “controllable” in the sense that, starting from rest, one

can reach any configuration from a given initial configuration.

• As a traditional control system, it is not controllable because of

conservation of angular momentum.

• Need a way to account for this “contradiction.”

Notes for Slide 2

This simple example exhibits much of the subtle behaviour seen in mechanical control systems.
To test one’s intuition, it is instructive to look at this example and see if you can predict the
structure of the reachable set. Do this with the system starting at rest in some configuration
and consider the cases:

1. all inputs are available,

2. only the leg extension is available, and

3. only the relative torque is available.

Is the reachable set of configurations open in Q? Does it contain a neighbourhood of the initial
configuration?
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2. Background in nonlinear control theory

Consider systems of the form:

ẋ = f(x) + uaga(x), x ∈M. (NCS)

• f is the drift vector field and g1, . . . , gm are the control vector fields.

• The reachable set from x0 in time T is

R(x0,T ) = {x | ∃ c : [0, T ] →M and

u : [0, T ] → Rm satisfying (NCS)

with c(0) = x0 and c(T ) = x}.

• Also R(x0,≤ T ) =
⋃

0<t≤T

R(x0, t).

Notes for Slide 3

The drift vector field describes how the system would evolve in the absence of any inputs. Each
control vector field specifies a direction in which you can supply actuation.

Observe that since the systems have drift, when we reach the point c(T ) we will not remain
there if this is not an equilibrium point for f .
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2.1. Forms of controllability

• (NCS) is locally accessible at x0 if R(x0,≤ T ) contains a

neighbourhood of M for each T > 0.

• (NCS) is strongly locally accessible at x0 if R(x0, T ) contains a

neighbourhood of M for each T > 0.

• (NCS) is small-time locally controllable (STLC) at x0 if R(x0,≤ T )

contains a neighbourhood of x0.

Notes for Slide 4

We have not been quite precise with our definitions here. The word local appear in these
definitions for a reason. In the precise definitions for reachable sets, one needs to add the
restriction that one not leave a given neighbourhood of the initial point. This has been omitted
here for simplicity.

The reason that local accessibility and small-time local controllability are not the same is that
the drift may always cause the system to move steadily along in a certain direction, thus never
allowing us to get back to the point from which we started. This will be seen in an example on
the next slide.
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• Example in R2:

ẋ = u

ẏ = 1

x

y

(x0, y0)

(0, y0 + τ )

(0, y0 + T )
R((x0, y0), T )

R((x0, y0), τ )

R((x0, y0),≤ T )

System is locally accessible, but neither strongly locally accessible

nor STLC.

Notes for Slide 5

This example, while simple, captures in a fairly precise way the differences between local accessi-
bility, strong local accessibility, and small-time local controllability. To be exact, every nonlinear
control system (satisfying regularity conditions) which is locally accessible, but not strongly lo-
cally accessible, may be flattened out so that it looks like this example in principle. We also see
how the drift term causes the loss of small-time local controllability.
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2.2. Distributions and foliations

• A distribution, D, on a manifold, M , is a selection of a subspace of

possible directions at each point.

• A foliation, F , of a manifold, M , is a partitioning of M into

disjoint submanifolds. Each disjoint component is called a leaf.

• A distribution is integrable if the directions selected at each point

are tangent to some leaf of a foliation. Denote the foliation by FD.

• Denote the set of leaves by M/FD. Call it the leaf space.

Slide 7

• Example in R2: Foliation by circles.

(x, y)

D(x, y)

Note that M/FD ≃ R+.
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2.3. Lie brackets

• For two vector fields X,Y , their Lie bracket, [X,Y ], measures the

infinitesimal amount that their flows do not commute.

• For the purposes of control theory, Lie brackets of the control and

input vector fields generate new “directions” the system may go.

• Sometimes we will speak of a bracket not as a vector field, but as a

formal object. This can be done using free Lie algebras.

• If V is a family of vector fields, Lie(V ) will denote the set of all

iterated Lie brackets of elements of V . Call this the involutive

closure of V .

• The distribution defined by Lie(V ) is integrable by Frobenius’

Theorem.

Notes for Slide 8

A good example of a control system which uses Lie brackets to generate extra motion is a car.
Although the only inputs are steering and propulsion, it is nevertheless possible to position the
car anywhere in the plane in any orientation. Thus, with two inputs we can generate three
directions. The extra direction is a Lie bracket motion.

The free Lie algebra in indeterminants {X0, . . . , Xm} may be loosely regarded as the associa-
tive polynomial algebra in these indeterminants modulo the relations of satisfying skew-symmetry
and Jacobi’s identity. The point is that there is a well-defined algebraic structure to the set of
brackets so that it makes sense to speak of, for example, [f, ga] as a bracket rather than as a
vector field. This is often convenient and is sometimes necessary to be precise.
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2.4. Distributions for control systems

• accessibility distribution is generated by

Lie({f, g1, . . . , gm}).

Denote it by C.

• strong accessibility distribution is generated by

Lie({f, g1, . . . , gm}) \ {f}.

Denote it by C0.

• Both C and C0 are integrable.

• Previous example:

◦ Accessibility distribution is all of TR2.

◦ Strong accessibility distribution is generated by ∂
∂x

.

Notes for Slide 9

The leaves of the foliation defined by the accessibility distribution are, by construction, invariant
under the control system (NCS). The leaves defined by the strong accessibility distribution may
not be invariant in the sense that the trajectories of the control system will remain on the leaf on
which they started. This is a consequence of the drift vector field not necessarily being contained
in the strong accessibility distribution.

However, the strong accessibility distribution does satisfy a weaker, infinitesimal, version of
invariance. This is manifested in the following fact: Let x1, x2 be two points on the same leaf of
the foliation defined by the strong accessibility distribution. If the control system evolves under
any set of inputs for some time T , then x1, x2 will flow to points on the same leaf of the strong
accessibility distribution. Thus the leaves of the foliation defined by the strong accessibility
distribution are not necessarily invariant, but they flow along under the control system from one
leaf to another.

This behaviour is manifested in the simple example presented in Section 2.1. There we can
see that horizontal lines, which are the leaves of the strong accessibility distribution, flow to
horizontal lines. Note that within each leaf, the system is strongly locally accessible.

The behaviour of leaves moving from one to another gives rise to the notion of dynamics on
the leaf space. Dynamics on the leaf space will come back to us later in the talk.
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2.5. Controllability tests

• If dim(C(x0)) = dim(M) then (NCS) is locally accessible at x0.

• If dim(C0(x0)) = dim(M) then (NCS) is strongly locally accessible

at x0.

• The finest known sufficient condition for STLC1 is hard to say. We

state a simplified version:

◦ Call a bracket “bad” if it has an odd number of f ’s in it and an

even number of each of the ga’s.

◦ Otherwise call it “good.”

◦ If every bad bracket can be written as a linear combination of

good brackets of lower order, and if the system is locally

accessible at x0, then (NCS) is STLC at x0.

1Sussmann, H. J., A general theorem on local controllability, SIAM Journal

on Control and Optimization, 25, 158–194, 1987.

Notes for Slide 10

Under regularity conditions, the rank conditions on C and C0 are necessary as well as sufficient
for local accessibility and strong local accessibility, respectively.

Useful necessary and sufficient conditions for STLC are not known.
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2.6. Decompositions

• Use Frobenius’ Theorem to obtain decompositions when (NCS) is

not locally accessible or strongly locally accessible.

• For accessibility distribution:

ẋ1 = f1(x1, x2) + uaga(x1, x2)

ẋ2 = 0

For fixed x2, the top system is locally accessible.

• For strong accessibility distribution:

˙̄x1 = f̄1(x̄1, x̄2) + uaga(x̄1, x̄2)

˙̄x2 = f̄2(x̄2)

For fixed x̄2, the top system is strongly locally accessible.

Notes for Slide 11

Recall that Frobenius’ Theorem tells us that if D is a distribution of constant rank k on M ,
then there are coordinates (x1, . . . , xk, xk+1, . . . , xn) for M so that

D(x) = 〈
∂

∂x1
, . . . ,

∂

∂xk
〉R .

Note that fixing x2 in the local accessibility decomposition is meaningful. It means fixing a
leaf of the foliation defined by the accessibility distribution. However, fixing x̄2 for the strong
local accessibility decomposition only has meaning when the x̄2 component of the drift vector
field is zero. This occurs for exactly those problems where the drift vector field is in C0.
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3. Naive control theory for mechanical systems

• When the velocities of the system are assumed controlled:

q̇ = uaXa(q),

we have the kinematic or nonholonomic problem.

• It is easy to describe the reachable set for this problem.

• Add dynamical effects in the following simple manner:

q̇ = v

v̇ = uaXa(q).

• This integrates the inputs before they reach the configurations and

may be regarded as an extremely crude model of dynamical effects.

Notes for Slide 12

To describe the reachable sets for the nonholonomic problem, simply compute the leaves of the
foliation corresponding to the integrable distribution generated by Lie({X1, . . . , Xm}).

The technique of integrating the inputs once does not change the controllability as far as
the configurations are concerned. What was reachable before is still reachable.

The main problem with integration of the inputs in the given naive fashion is contained in the
fact that this is not a coordinate invariant process. To make the process coordinate invariant,
one needs to add further structure. As we shall see, this structure is kinetic energy by way of
a Riemannian metric. This provides an important mechanism for the breakdown of the naive
setup presented here: Coriolis forces. We shall see that there are other factors which can also
cause the naive approach to fail. The bottom line is that the naive approach is far too naive
to be close to accurate in anything like a general setting. There is simply too big a difference
between supplying torques and specifying velocities.

One may want to think about our robotic leg example in the context of what we have said
here. Do you think that the above model of system dynamics will capture the correct behaviour
of the leg?

I have also seen the controls integrated, i.e.,

q̇ = vaXa(q)

v̇a = ua.

However, I don’t understand this approach.
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4. Lagrangian control systems

• Consider Lagrangian to be “kinetic energy minus potential energy.”

• This means a Riemannian metric, g, (given by the inertia matrix) on

the configuration space, Q, and a potential function on Q.

• Input forces are modelled as one-forms, F 1, . . . , Fm, on Q.

• We will be interested in the vector fields, Y1, . . . , Ym, on Q obtained

by “multiplying the F ’s by the inverse of the inertia matrix.”

• The control system is then

q̈i + Γijk q̇
j q̇k + gij

∂V

∂qj
= uaY ia . (LCS)

The Γijk’s are the Christoffel symbols and are computable from the

inertia matrix.

Notes for Slide 13

We shall deem this to be a “natural” class of Lagrangian systems. By natural we mean that we
want to be able to describe the system in terms of the given structure, the Riemannian metric
and the potential function in this case. And, of course, the class of systems whose Lagrangians
are kinetic energy minus potential energy forms a large and physically interesting group.

Note that the input vector fields, Y1, . . . , Ym, do depend on the metric in the sense that they
are obtained from the one-forms F 1, . . . , Fm by “sharping” them under the metric. It is the
one-forms, however, which describe the forces in a fundamental way. The input vector fields are
what appear in our computations. Also notice that the gradient of the potential energy enters
into (LCS) and it is this gradient vector field which will represent the effects of the potential
energy in our calculations.

The assumption that the forces be represented as stated really means that we are restricting
the directions in which we can apply forces to be functions of configuration. In general, one may
wish to allow these directions to be functions of time and velocity.
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4.1. Controllability definitions for Lagrangian control systems

• The reachable set from q0 in time T is

RQ(q0,T ) = {q ∈ Q | ∃ c : [0, T ] → Q and

u : [0, T ] → Rm satisfying (LCS) with

c′(0) = (q0, 0) and c
′(T ) ∈ TqQ}.

• Also

RQ(q0,≤ T ) =
⋃

0<t≤T

RQ(q0, t).

Notes for Slide 14

Notice that we ask the system to start at zero velocity, but when it reaches its final configuration
it may be moving with some arbitrary, non-zero velocity.

If we were to cast (LCS) as a standard nonlinear control system, the usual definitions of the
reachable set look like “What is the set of configurations and velocities that can be reached
from a given initial configuration and velocity?” We have done something different, and perhaps
more natural.
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• (LCS) is locally configuration accessible at q0 if RQ(q0,≤ T )

contains a neighbourhood of Q for each T > 0.

• (LCS) is strongly locally configuration accessible at q0 if RQ(q0, T )

contains a neighbourhood of Q for each T > 0.

• (LCS) is small-time locally configuration controllable (STLCC) at

q0 if RQ(q0,≤ T ) contains a neighbourhood of q0.

Notes for Slide 15

Note that definitions are made in terms of configurations. If we cast (LCS) as a standard
nonlinear control system, the usual definitions are made in terms of configurations and velocities.
It is the configurations in which one is typically interested. It should be emphasised at this point
that these definitions are new. This may be surprising as they reflect an obvious, mechanically
interesting question.
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4.2. Symmetric products

• Covariant derivative of two vector fields:

(∇XY )i =
∂Y i

∂qj
Xj + ΓijkX

jY k.

• Define a symmetric product on the set of vector fields by

〈X : Y 〉 = ∇XY +∇YX.

This depends on the Riemannian metric.

• 〈X : Y 〉 is a vector field.

• If V is a set of vector fields on Q, define Sym(V ) to be the set of

all iterated symmetric products of elements of V . Call this the

symmetric closure of V .

Notes for Slide 16

The covariant derivative takes two vector fields and returns a vector field. Thus the symmetric
product does the same. It is also clearly symmetric. It is worth noting that this product depends
upon the Riemannian structure, as the Lie bracket relies only upon the differentiable structure
of the manifold.

Just as it is possible to speak of free Lie algebras, it is possible to speak of “free symmetric
algebras.” Such objects allow one to speak of a symmetric product as an object rather than as
a vector field and we shall sometimes do this.

One should note the similarities and differences between the symmetric closure and the
involutive closure. The biggest difference is that the involutive closure defines an integrable
distribution, but the same cannot be guaranteed for the symmetric closure.
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4.3. Distributions of symmetric products and Lie brackets

• We wish to compute the accessibility distribution, C, at points of

zero velocity, denoted (q, 0).

• At (q, 0) define horizontal to be in the “q-direction” and vertical to

be in the “v-direction.”

Q

q1

Tq1Q

q2

Tq2Q

Notes for Slide 17

The reason that we are interested in the accessibility distribution at points of zero velocity is that
these are the initial conditions in our versions of controllability. Thus the distribution evaluated
at these points will be tangent to the reachable set.

We shall describe the accessibility distribution in terms of two distributions on Q. One
distribution will represent the vertical directions in the figure, and the other the horizontal
directions.

Please note that the decomposition into horizontal and vertical as described above does not,
in general, make sense except at points where the velocity is zero. Other decompositions may
be made at points of non-zero velocity, but we shall not go into that here.
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• Denote Y = {Y1, . . . , Ym}.

• All vertical directions for C are generated by R-linear combinations

of vector fields from Sym(Y ∪ {gradV }).

• All horizontal directions for C are generated by R-linear

combinations of vector fields from Lie(Sym(Y ∪ {gradV })).

• An algorithm determines which R-linear combinations to choose.

• Define two distributions on Q,

Cver(Y , V ),

Chor(Y , V )

as the vertical and horizontal directions, respectively, for C.

Notes for Slide 18

Although we have an algorithm for computing which vector fields from Sym(Y ∪ {gradV })
and Lie(Sym(Y ∪ {gradV })) are present in the accessibility distribution, it would be nice to
compute an inductive formula for these vector fields. This seems to be quite difficult.
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• It is easy to show that Chor(Y , V ) is an integrable distribution.

• Special Case of V = 0:

◦ The vertical directions are generated by Sym(Y ).

◦ The horizontal directions are generated by Lie(Sym(Y )).

◦ Cver(Y , V ) ⊂ Chor(Y , V ).

Notes for Slide 19

The integrability of Chor(Y , V ) is important in our decompositions we state later.
The fact that Cver(Y , V ) ⊂ Chor(Y , V ) means that solutions starting with zero velocity

will remain on leaves of the foliation defined by Chor(Y , V ). Note that this only happens in
general if V = 0. There are other special cases when the solutions will remain on the leaves of
Chor(Y , V ). This is discussed further when we present decompositions for Lagrangian control
systems.
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4.4. Controllability tests for mechanical control systems

• If dim(Chor(Y , V )(q0)) = dim(Q) then (LCS) is locally

configuration accessible at q0.

• Conditions for STLCC are similar to those for STLC in (NCS).

◦ We shall call a symmetric product in Sym(Y ∪ {gradV }) “bad”

if the number of times that each vector field Ya appears is even.

◦ Otherwise the symmetric product is called “good.”

◦ If each bad symmetric product can be written as a linear

combination of good symmetric products of lower order, and if

the system is locally configuration accessible at q0, then (LCS) is

STLCC at q0.

Notes for Slide 20

Notice that we do not bother with strong local configuration accessibility. This is something
that we would like to understand better.

The conditions for STLCC actually give more than is implied. It is, in fact, possible to go
from a configuration q0 at rest to a neighbourhood of q0 at rest. This allows us to define the
notion of “equilibrium controllability” whereby one can steer between two equilibrium points at
rest.
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4.5. Decompositions for Lagrangian systems

• In the case when a Lagrangian system is not locally configuration

accessible, what does it look like?

• Use Frobenius’ Theorem for the integrable distribution Chor(Y , V ).

• We find coordinates q = (x, y) for Q so that

ẍi + Γijk(x, y)ẋ
j ẋk + Γijα(x, y)ẋ

j ẏα+

Γiαβ(x, y)ẏ
αẏβ + gij

∂V

∂xj
+ giα

∂V

∂yα
= uaY ia

ÿα + Γαjβ(x, y)ẋ
j ẏβ + Γαβγ(x, y)ẏ

β ẏγ+

gαj
∂V

∂xj
+ gαβ

∂V

∂yβ
= 0

• For fixed y and with ẏ = 0, the top system is locally configuration

accessible.

Notes for Slide 21

The essential points of interest in the decomposition are that there are no inputs present in the
bottom system, and no term Γαij ẋ

iẋj present in the bottom system. Note that if the gradient
of the potential is in the involutive closure of the inputs, then no potential terms will appear in
the bottom system.

The fixing of y and setting ẏ = 0 is meaningful when V = 0. It means consider the Lagrangian
control system determined by pulling back the Riemannian metric to a leaf of Chor(Y , V ). This
process is well-defined and, in each case, produces a locally configuration accessible mechanical
system.

We see here how the system may not remain on leaves of Chor(Y , V ) even if it starts with
zero initial velocity. The potential terms in the bottom equation will take effect and move us
off the leaf on which we started.
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5. Examples

Robotic leg Inputs are Y1 (relative torque) and Y2 (leg extension).

Case 1. Y1 and Y2:

• Chor(Y , V ) = 〈Y1, Y2, [Y1, Y2]〉 = TQ.

• 2∇Y1
Y1(= ∇Y1

Y1 +∇Y1
Y1) is a multiple of Y2.

• System is STLCC.

Case 2. Y1:

• Chor(Y , V ) = 〈Y1, 2∇Y1
Y1, [Y1, 2∇Y1

Y1]〉 = TQ.

• 2∇Y1
Y1 does not lie in the span of the inputs.

• System is locally configuration accessible.

• System may not be (in fact isn’t) STLCC.

Notes for Slide 22

The symmetric product 2∇Y1
Y1 is bad since Y1 appears in it twice. This is the only type of bad

symmetric product we shall encounter in this talk.
Observe that the “unSTLCCness” in Case 2 is a consequence of the presence of “Corio-

lis forces” which push the ball increasingly outward no matter what else is happening to the
controlled variables.

We should be clear, however, in saying that only the sufficient conditions for STLCC have
been violated. Only because we know more about the dynamics of this simple system are we
able to say that it is, in fact, not STLCC.
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Case 3. Y2:

• Chor(Y , V ) = 〈Y2〉 ( TQ.

• System is not locally configuration accessible.

• The local configuration accessibility decomposition of the system

is given by

r̈ − rψ̇2 =
1

m
u1

θ̈ = 0

ψ̈ +
2

r
ṙψ̇ = 0.

Notes for Slide 23

The readers should assure themselves that the decomposition has the advertised properties: No
inputs appear in the bottom system and there are no terms quadratic in ṙ in the bottom system.
In this case, since the potential energy is zero, this means that θ and ψ remain at their initial
values if θ̇(0) and ψ̇(0) are both zero.
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Planar rigid body The system is

O

e2

e1

P

f
2 f

1

g

The configuration space is Q = SE(2) with coordinates (x, y, θ). The

inputs are

f
2

f
1

h

F 2

F 1

F 3

Notes for Slide 24

The coordinates (x, y) denote the position of the centre of mass, P , with respect to the inertial
reference frame with origin at O, and the angle θ denotes the orientation of the body frame with
respect to the inertial frame.

This system is an example of a class of systems on Lie groups where the Lagrangian is
left-invariant (here defined by a left-invariant Riemannian metric), and the inputs are also left-
invariant. The inputs are then simply described as a set of elements of the dual of the Lie algebra
which are then pushed-forward under left translation to give a left-invariant one-form.

Andrew D. Lewis California Institute of Technology



Slide 25

Input vector fields are Y1 (force directed towards the centre of mass),

Y2 (force directed perpendicular to the direction of the centre of

mass), and Y3 (torque at the centre of mass).

Case 1. Y1 and Y2:

• Chor(Y , V ) = 〈Y1, Y2, [Y1, Y2]〉 = TQ.

• 2∇Y2
Y2 is in the span of the inputs.

• System is STLCC.

Case 2. Y1 and Y3:

• Chor(Y , V ) = 〈Y1, Y3, [Y1, Y3]〉 = TQ.

• All covariant derivative terms are zero.

• System is STLCC.
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Case 3. Y2 and Y3:

• Chor(Y , V ) = 〈Y2, Y3, [Y2, Y3]〉 = TQ.

• 2∇Y2
Y2 is not in the span of the inputs.

• System is locally configuration accessible.

• System may not be (but actually is) STLCC.

Case 4. Y2:

• Chor(Y , V ) = 〈Y2,∇Y2
Y2, [Y2,∇Y2

Y2]〉 = TQ.

• 2∇Y2
Y2 is not in the span of the inputs.

• System is locally configuration accessible.

• System may not be STLCC.

Notes for Slide 26

That the system is STLCC in Case 3 is a consequence of the fact that the force-couple pair
may be transfered so that the force may be equivalently applied at the centre of mass. This
equivalent system is trivially STLCC.

Notice that in Case 4 the “unSTLCCness” cannot come from Coriolis terms (the metric
is flat), but rather must come from non-trivial interaction of the inputs. Thus we have seen
two ways in which our naive setup presented in Section 3 may fail for mechanical systems with
accurate dynamical effects.

In this example, unlike the example of the robotic leg, we are not sure that the system is not
STLCC. We believe, however, that it is indeed not STLCC.
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Case 4. Y1:

• Chor(Y , V ) = 〈Y1〉 ( TQ.

• System is not locally configuration accessible.

• The local configuration accessibility decomposition is rendered in

coordinates

ξ = x cos θ + y sin θ,

η = −x sin θ + y cos θ, ψ = θ.
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We have

ξ̈ + 2

(

mη2

J
−
J +mη2

J

)

η̇ψ̇+

(

mξη2

J
−
ξJ +mξη2

J

)

ψ̇2 =

(

J +mη2

J
−
η2

J

)

u1

η̈ + 2

(

J +mξ2

J
−
mξ2

J

)

ξ̇ψ̇+

(

mηξ2

J
−
ηJ +mηξ2

J

)

ψ̇2 = 0

ψ̈ = 0

Notes for Slide 28

Observe that the coordinates for the local configuration accessibility decomposition are rotated
to be aligned with the body frame for the system. It makes sense that these be the coordinates
we choose since the direction Y1 will not “change” with θ in these coordinates. Also notice that
the equations are a lot messier in these coordinates. In spite of this, it is easier to see what is
going on from the point of view of configuration controllability.

It is interesting to note that the author found the coordinates not by intuition, but by solving
the simple PDE’s that one gets by trying to find Frobenius coordinates. The intuition came
later.

It is also worth noting that neither the robotic leg nor the planar rigid body is linearly
controllable with any of the given inputs.
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Pendulum on a cart The system is

m

M

l

θx

Use coordinates (x, θ). The input is denoted Y1 and is the force

pushing the cart along the surface. The potential function is specified

by gravity.

Case 1. θ /∈ {0, π}:

• Chor(Y , V ) = 〈Y1,∇Y1
Y1〉 = TQ.

• 2∇Y1
Y1 is not a multiple of the input.

• System is locally configuration accessible.

• System may not be STLCC.
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Case 2. θ ∈ {0, π}:

• Chor(Y , V ) = 〈Y1,∇gradV Y1 +∇Y1
gradV 〉 = TQ.

• 2∇Y1
Y1 = 0.

• System is STLCC.

Notes for Slide 30

At the points where θ ∈ {0, π}, the linearisation is controllable so it must be that the nonlinear
system is STLC, and hence STLCC.
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5.1. Wrap up for Lagrangian control theory

• Conclusions:

◦ New and meaningful definitions of controllability for simple

mechanical control systems.

◦ Computable conditions for these new notions of controllability in

terms of data defined on Q.

◦ Surprising geometric insight.

• Future explorations:

◦ Why covariant derivatives?

◦ Find a smaller generating set.

◦ What about non-zero initial velocities?

◦ More general Lagrangians.

◦ Better conditions for STLCC.

◦ Synthesis.

Notes for Slide 31

It cannot be emphasised enough that the definitions for controllability we present, while natural
enough, have not appeared in the literature. This is especially interesting as we are able to derive
fairly nice conditions for checking these definitions of controllability.

We say that the geometric insights gained by this work are surprising since the appearance
of the covariant derivative is not something which was expected at the outset. Although we
have seen a little of what the covariant derivative terms give us with the centrifugal effects in
the robotic leg, we still do not fully understand why they are present.

Notice that in the definitions of Cver(Y , V ) and Chor(Y , V ), we added all covariant deriva-
tives and Lie brackets. In fact we do not need all of them since they will not be linearly
independent in general. It would be helpful to determine a way of computing a generating set
which requires the computation of fewer covariant derivatives and Lie brackets. This is related
to finding Philip Hall bases for free Lie algebras.
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6. Hamiltonian control systems

• A Hamiltonian system is specified by a Hamiltonian function (plus

things described later) which is the energy of the system.

• A Hamiltonian control system is specified by the system

Hamiltonian H0 plus control Hamiltonians, H1, . . . , Hm.

• Associated with a Hamiltonian function H is the Hamiltonian vector

field XH . A Hamiltonian control system has the form

ẋ = XH0
+ uaXHa

. (HCS)

Notes for Slide 32

As with Lagrangian systems, we choose a “natural” structure for Hamiltonian control systems.
While it is fairly clear that the Lagrangian setup represents a lot of interesting systems, the same
cannot so easily be said of the Hamiltonian control framework we present. It is, however, true
that a lot of systems fall into the given framework, at least locally. The reason for this is that,
for many systems, the control Hamiltonians are simply coordinate functions in some chart and
so the corresponding vector field is, by construction, locally Hamiltonian. The global issues of
this vector field not being properly Hamiltonian are not so important to us since we are in the
business of presenting local decomposition theorems.
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6.1. Geometry of Hamiltonian systems (Poisson manifolds)

• The general setting for Hamiltonian mechanics is a Poisson

manifold.

• A Poisson manifold may (loosely) be characterised as a manifold

having local coordinates (q1, . . . , qn, p1, . . . , pn, c
1, . . . , cs) so that

the Hamiltonian vector field with Hamiltonian H is given by

q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi

ċa = 0

• The surfaces defined by ca = const . are invariant under all

Hamiltonian vector fields.

• A Poisson manifold P is symplectic if dim(P ) = 2n. Thus a

symplectic manifold is a “nondegenerate” Poisson manifold.

Notes for Slide 33

Our “definition” of a Poisson manifold is backwards. The real definition defines a tensor field on
P of a certain type. With this structure, one may move on to define Hamiltonian vector fields.
However, the picture of a Poisson manifold being the disjoint union of a bunch of symplectic
manifolds is a general one.

When we define a Hamiltonian control system we shall assume that it evolves on a symplectic

manifold. Poisson manifolds come up later in the analysis.
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6.2. Decompositions for Hamiltonian control systems

• Let C be the accessibility distribution and let C0 be the strong

accessibility distribution. Denote the corresponding foliations by FC
and FC0

.

• Study dynamics on the leaves and on the leaf space.

• On each leaf of FC the symplectic structure is degenerate.

“Quotienting out” the degeneracy gives a “reduced” symplectic

manifold.

• The system (HCS) drops to this reduced manifold and there gives a

locally accessible Hamiltonian control system.

• There is one such reduced control system for each leaf of FC .

• The reduced dynamics may be regarded as the “locally accessible

dynamics.”

Notes for Slide 34

The distributions C and C0 are computed in the usual manner described above for general
nonlinear systems. Because the drift and control vector fields are Hamiltonian, there is a lot of
structure to their involutive closure.

This “quotienting out” procedure is very much the same as the reduction of the level sets of
the momentum map in classical Hamiltonian reduction. In fact, in many examples it is exactly
this procedure: the control system leaves some conservation law undisturbed and so restricts to
the level sets of the conserved quantities. The reduction then follows the classical methods.

Observe that we get many sets of locally accessible dynamics, one for each leaf of FC .
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• For the strong accessibility distribution we directly consider the

quotient P/FC0
. This turns out to have a natural Poisson structure.

• Since the leaves of FC0
are invariant under the control vector fields,

these vector fields vanish on the quotient.

• Since the drift vector field may not leave these leaves invariant, it

may drop non-trivially to the quotient.

• The vector field so obtained describes the strongly locally

inaccessible dynamics.

•

P ⊃ Λ

yytt
tt
tt
tt
tt

&&
▲▲

▲▲
▲▲

▲▲
▲▲

P/FC0
Λ/ ker(Ω)

Notes for Slide 35

Note the contrast with the accessibility decomposition. There is only one representation of the
strongly locally inaccessible dynamics whereas, for the locally accessible dynamics, there is one
representation for each leaf of FC .

Note also that in the problems where the drift vector field is contained in C0, the strongly
locally inaccessible dynamics will be trivial.

To summarise the Hamiltonian decompositions, there is a family of locally accessible Hamil-
tonian control systems, one for each leaf FC . The dynamics of this locally accessible system
represent the accessible Hamiltonian dynamics on that leaf. For the whole system there is a
single (generalised) Hamiltonian system which represents the strongly locally inaccessible dy-
namics. The fact that these reduced systems are (generalised) Hamiltonian is a consequence of
our choosing the inputs to be Hamiltonian vector fields.
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The examples as Hamiltonian control systems

Robotic leg with both inputs

• Hamiltonian is

H =
1

2J
p2θ +

1

2m

(

p2r + r−2p2ψ
)

.

• Control Hamiltonians are H1 = θ − ψ and H2 = r.

• Leaves of C are given by ang. mom. = pθ + pψ = const . = µ.

• Reduced manifold is described by coordinates

(r, φ = θ − ψ, pr, pφ = pθ − pψ).

Notes for Slide 36

The calculations for Hamiltonian control systems need much more information than we have
presented here. Therefore, we shall present just the “answers” and not go into how to compute
them in any detail.

Note that θ − ψ is not really a function on Q and so XH1
is only locally Hamiltonian.

The reduced control system lives on T ∗(S1×R) with its canonical symplectic structure. One
can obtain this reduction by classical methods of group reduction.
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• Reduced Hamiltonian is

Hµ =
1

2m
p2r +

(

1

8J
+

1

8mr2

)

p2φ+

(

1

4mr2
−

1

4J

)

µpφ +

(

1

8J
+

1

8mr2

)

µ2.

• Reduced control Hamiltonians are H1,µ = φ and H2,µ = 0.

• Strongly inaccessible dynamics are trivial.

Robotic leg with torque between bodies

• Same as both inputs.

Notes for Slide 37

It may be verified that the Hamiltonian control system on T ∗(S1 × R) with Hamiltonian Hµ

and control Hamiltonian H1,µ is indeed locally accessible.

Andrew D. Lewis California Institute of Technology



Slide 38

Robotic leg with leg extension

• Leaves of C are given by pθ = const . = µ and pψ = const . = ν.

• Reduced manifold is described by coordinates (r, pr).

• Reduced Hamiltonian is

Hµ,ν =
1

2m
p2r +

1

2mr2
ν2 +

1

2J
µ2.

• Reduced control Hamiltonian is H2,µ,ν = r.

• The strongly inaccessible dynamics live on a Poisson manifold with

coordinates (θ, pθ, pψ).

• The Hamiltonian is H̃ =
1

2J
p2θ.

Notes for Slide 38

In this case, the angular momentum of the body and of the leg are both conserved by the input.
For the other inputs, only their sum is conserved. The reduction in the case of the leg extension
input can also be accomplished using group methods, this time with the group T2.

The coordinates (θ, pθ, pψ) are coordinates for a Poisson manifold where q1 = θ, p1 = pθ,
and c1 = pψ. The strongly locally inaccessible dynamics represent the fact that, with this input,
the rigid body part of the system moves unaffected by the inputs.
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Planar rigid body

• Cannot be represented as a Hamiltonian control system.

Pendulum on a cart

• Can be represented as a Hamiltonian control system but it is trivial

since the system is strongly locally accessible.

Notes for Slide 39

The planar rigid body cannot be represented as a Hamiltonian control system since the input
vector fields Y1 and Y2 are not even locally Hamiltonian. The vector field Y3 is locally Hamiltonian
so the system can be locally represented as a Hamiltonian system with only this input. But this
is the most uninteresting input.

For the pendulum on the cart, the system is strongly locally accessible so the locally accessible
dynamics are the original dynamics and the strongly locally inaccessible dynamics are trivial.
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6.3. Wrap up for Hamiltonian control theory

• Conclusions:

◦ The “controllable” dynamics are Hamiltonian.

◦ The “uncontrollable” dynamics are Hamiltonian.

• Future explorations:

◦ Make connections with Lagrangian results.

◦ More general inputs.

Notes for Slide 40

Although this Hamiltonian picture is very attractive, it may not offer so much from a practical
viewpoint. The first restriction is that it needs input vector fields which are Hamiltonian. This
is a large restriction. If this could be fixed up somehow it would be very interesting. Also,
for Hamiltonian control systems on cotangent bundles, this presentation does not address the
important mechanical issues, some of which are touched upon in the Lagrangian control theory
we presented.
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