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Notes for Slide 0

I cannot think of a better short (not that it’s all that short as is) title that really describes what
I am going to say here, so this is what you get! The talk will have three parts, two of which
are related, and the other being directly related to the other two only in that it talks about
nonholonomic mechanics. The latter part of the talk will deal with the use of affine connections
for representing the equations of motion for nonholonomically constrained systems. This is then
necessarily restricted to systems with simple Lagrangians (i.e., kinetic energy minus potential
energy), and constraints which are linear in the velocities. The two related parts of the talk,
about the Gibbs-Appell equations and nonlinear variational principles, deal with a more general
class of systems.
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Affine Connections in Nonholonomic Mechanics

• Data:

◦ configuration manifold Q;

◦ Riemannian metric g on Q (
g

∇ is the Levi-Civita connection);

◦ distribution D on Q (D is sections of D, P : TQ → TQ is

orthogonal projection onto D⊥).

• Can also include potential energy easily, but let’s not.

Notes for Slide 1

What we discuss in this section seems to have originated with Synge [1928]. Other authors
have picked up on the idea [Bloch and Crouch 1995, Cattaneo 1963, Cattaneo-Gasparini 1963,
Vershik 1984].

The addition of potential energy is rather simple, but for the purposes of this talk inhibits
the discussion of the geometry which is the essentially interesting feature.
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Derivation of equations

• The Lagrange-d’Alembert Principle gives equations as

g

∇ċ(t)ċ(t) = λ(t) ∈ D⊥

c(t) (1a)

P (ċ(t)) = 0 (1b)

• Differentiate (1b) along c:

P (
g

∇ċ(t)ċ(t)) = −(
g

∇ċ(t)P )(ċ(t)).

• Apply P to (1a):

P (
g

∇ċ(t)ċ(t)) = λ(t).

• =⇒ λ(t) = −(
g

∇ċ(t)P )(ċ(t)).

Notes for Slide 2

Of course λ is simply the Lagrange multiplier.
Note that the constraint equation (1b) is not the only way to ask that the solution curves

evolve in D. For example, we can replace P with AP for any invertible (1, 1) tensor field A.
Furthermore, much of what we say will not change if such a modification is made. However, for
the sake of concreteness, we stick to the description above.

Andrew D. Lewis University of Warwick



Slide 3

• Solutions of (1) are in 1–1 correspondence with geodesics with

initial velocities in D of the affine connection ∇ defined by

∇XY =
g

∇XY + (
g

∇XP )(Y ).

• We study the geometry of ∇ and some of its affine transformations.

Notes for Slide 3

As we shall see, it makes sense to restrict∇ toD, that is, the geodesics of∇ with initial velocities
in D evolve so that all subsequent velocities are in D. Note that we are only concerned with
those geodesics of ∇ whose initial velocities lie in D. This is the reason why we have the
flexibility of replacing P with AP as mentioned above. This will only affect those geodesics
whose initial velocities are not in D.
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The Geometry of ∇

• ∇XY ∈ D for Y ∈ D . Thus ∇ restricts to a vector bundle

connection in D (so have parallel translation, etc. in D).

• (∇XP )(Y ) = ∇XY −
g

∇XY ∈ D⊥ for Y ∈ D .

• Hmm. . . second fundamental form. . .

◦ Classically, a submanifold M of Q is totally geodesic if geodesics

of
g

∇ starting tangent to M remain on M ⇐⇒ the second

fundamental form of M is zero.

◦ Define SD : D ×D → D⊥ by SD(X,Y ) = (∇XP )(Y ). Call SD

the second fundamental form of D.

Notes for Slide 4

The properties ∇XY ∈ D and ∇XY −
g

∇XY ∈ D⊥ for Y ∈ D are adequate to provide the
affine connection we need. That is to say, any affine connection with these properties (and there
are a lot of them) will give us the geodesics we want.

The reader will recall that the second fundamental form for a submanifold of aM Riemannian
manifold (Q, g) is simply the normal component of the covariant derivative (with respect to the
original Levi-Civita connection) of vector fields restricted to M . Clearly our definition generalises
this.
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◦ D is geodesically invariant if for every geodesic c : [a, b] → Q of
g

∇, ċ(a) ∈ Dc(a) implies ċ(t) ∈ Dc(t) for t ∈ ]a, b]

◦ One can show that D is geodesically invariant if and only if SD

is skew-symmetric.

• ∇ is most interesting when it has torsion. Indeed, if ∇ has zero

torsion, then D is integrable.

Notes for Slide 5

For more about geodesic invariance, we refer to [Lewis 1998].
The fact that D is integrable if ∇ is torsion-free follows easily. Since ∇ restricts to D, for

X,Y ∈ D we have [X,Y ] = ∇XY −∇Y X ∈ D .
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Transformations and Conservation Laws

• Transformations (i.e., diffeomorphisms or vector fields):

◦ Especially interesting are those transformations of ∇ which also

respect D as these will have “physical” meaning.

◦ A subgroup (or subalgebra) of such transformations are those

respecting both
g

∇ and D. Others?

• Conservation Laws: For X ∈ T (Q) define JX : TQ → R by

JX(vq) = gq(X(q), vq).

◦ If X ∈ D is a Killing field for g then JX is constant along

geodesics of ∇.

Notes for Slide 6

Recall that a diffeomorphism is a transformation for ∇ is it maps geodesics of ∇ to other
geodesics. And, as usual, a vector field is an infinitesimal transformation of ∇ if its flow consists
of a one-parameter of transformations of ∇.

When we say “physical meaning” for transformations, we mean that they map solutions to
other solutions, at least in the case of diffeomorphisms.

The fact that transformations of
g

∇ and D are also transformations for ∇ is something one
has to prove, but is completely expected from the point of view of the physics. It is not clear
how many more transformations are present.

Note that for a Killing vector field X of g to give rise to a conserved quantity, it need only
be true that it be a section of D. It may not be that X is a transformation of D. Thus, vector
fields may give rise to conserved quantities and yet not be transformations for all the problem
data.
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◦ If X1, . . . , Xm are Killing fields for g and γ1, . . . , γm are

functions on Q so that

Y , γ1X1 + · · ·+ γmXm ∈ D ,

then
d

dt
JY (ċ(t)) = g(γ̇a(t)Xa(c(t)), ċ(t)).

This is the “momentum equation.”

Notes for Slide 7

Note that in the momentum equation construction we do not ask for the vector fieldsX1, . . . , Xm

to be transformations for D. Thus both of our conservation laws arise from what are potentially
only partial symmetries of the problem.
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Things To Do

• Symmetries:

◦ Understand the distinction between transformations for the

problem and Killing fields which give rise to conserved quantities

(should the idea of a transformation be enlarged?).

◦ Reduction.

• There is freedom in the choice of affine connection which was not

mentioned in the presentation. How may this be used? (Energy

preserving affine connections.)

Notes for Slide 8

As a simple example of where conservation laws are not understood (at least by me), consider
the Heisenberg system which has as conserved quantities

JX2
, JX1+X4

, JX1−X6
, JX4+X6

.

where X1 = ∂
∂x

, X2 = ∂
∂y

, X3 = ∂
∂z
, X4 = −z ∂

∂y
+ y ∂

∂z
, X5 = z ∂

∂x
− x ∂

∂z
, and X6 =

−y ∂
∂x

+ x ∂
∂y

. The first conserved quantity comes by virtue of one of the general results we
stated, but the other three do not fit into a general scheme of which I am aware.

It is interesting to consider whether the affine connection structure can be used to assist in
understanding reduction for these systems. This is future work.

When doing computations, I often make use of one of the affine connections defined by using
AP instead of P as it makes the computations easier. However, there is no sound theoretical
reason behind these choices, but rather they are made after some intermediate computations
are made.

One can show is that it is possible to define an affine connection with the following prop-
erties [Lewis 1997a]: (I) the geodesics whose initial velocities are in D are solutions of the
constrained system (1), and (II) the kinetic energy is preserved along the integral curves of the
corresponding geodesic spray. Further, this connection may be shown to have the property that
transformations of both g and D are full affine transformations (i.e., on all of TQ).
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The Gibbs-Appell Equations

The Classical Construction

• For a point mass in R3 define G = 1
2m‖ẍ‖2. The unconstrained

equations of motion are
∂G

∂ẍ
= 0.

• Add a constraint as a one-form ω on R3. Let X1 and X2 be

generators for ker(ω).

Notes for Slide 9

To illustrate the classical version of the Gibbs-Appell equations, we use a simple example. The
classical “theory” is more of a methodology in any case — one of those instances where a few
examples makes the method clear in principle. The Gibbs-Appell equations are discussed by Pars
[1965].

Of course the Gibbs-Appell method applied to a point mass is quite ridiculous. It is its
applicability with constraints which makes it interesting. Also, it is interesting, as we shall see,
to simply try to adapt the unconstrained method to general Lagrangians. The classical method
we present only works for point masses and rigid bodies. The rigid body “Gibbs function” is

G =
1

2
‖ẍ‖2 +

1

2

(

I1ω̇
2
1 + I2ω̇

2
2 + I3ω̇

2
3 + 2(I3 − I2)ω2ω3ω̇1+

2(I1 − I3)ω3ω1ω̇2 + 2(I2 − I1)ω1ω2ω̇3

)

where x is the position of the centre of mass and ω is the body angular velocity.
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• Let (ν1, ν2) 7→ ν1X1 + ν2X2 be the inclusion (gives (ẋ, ẏ, ż) as

functions of (ν1, ν2)).

• Obtain expressions for (ẍ, ÿ, z̈) as functions of (ν1, ν2) and (ν̇1, ν̇2).

• Substitute the accelerations into G = 1
2‖ẍ‖

2.

• Punchline: the Lagrange-d’Alembert principle is equivalent to the

Gibbs-Appell equations:
∂G

∂ν̇
= 0.

• Now geometrise this.

Notes for Slide 10

The addition of external forces into the classical Gibbs-Appell methodology is readily accom-
plished, but we will present it neither here nor for our geometrical construction which follows. It
is a simple encumberment.

The geometrisation of the classical Gibbs-Appell equations has several facets. First one must
determine a suitable candidate “Gibbs function” for general Lagrangians. One must then make
sense of differentiation with respect to acceleration. Finally, constraints must be added in to the
formulation in the proper manner. This is accomplished in a jet bundle setting for Lagrangian
mechanics [Giachetta 1992, Lewis 1996].
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The Gibbs-Appell Equations for Unconstrained Systems

• Let π : Q → R be a locally trivial fibre bundle with JkQ the bundle

of k-jets of sections. Use coordinates (t, qi, vj , ak) for J2Q .

• Let E be the pull-back of V Q , ker(Tπ) → Q to J1Q → Q .

• Recall that JkQ → Jk−1Q is an affine bundle with the fibres being

affine spaces modelled on the fibres of V Q . Also recall

JkQ ⊂ T (Jk−1Q ).

• Let L be a function on J1Q so that the matrix

∂2L

∂vi∂vj

is nondegenerate (i.e., L is regular).

Notes for Slide 11

We do not work with trivial bundles as the nontrivial setting enables one to better come to
grips with the geometry which is useful in the general formulation of the Gibbs-Appell equations.
In this setting time and configuration are interwoven and their is no natural notion of time-
independent. In order to talk about time-independence, one must work with a trivial bundle
Q = R ×Q.

Note that E is a vector bundle over J1Q . It is the pull-back described by the following
diagram:

E //

pr
1

��

J1Q

��

V Q // Q

Further, it is isomorphic to the kernel of the derivative of the projection J1Q → Q and so is a
subbundle of T (J1Q ).

One may verify that the object
∂2L

∂vi∂vj

is intrinsic and may be thought of as a symmetric bilinear form on the fibres of E.
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• The Lagrangian vector field associated with L is a vector field on

T (J1Q ), but may in fact be thought of as a map

ξL : J
1Q → J2Q ⊂ T (J1Q ).

• The Gibbs function is the function on J2Q given by

GL(t, q, v, a) =
1

2

∂2L

∂vi∂vj
(ξiL − ai)(ξjL − aj).

• It is fairly obvious that the Euler-Lagrange equations are equivalent

to the unconstrained Gibbs-Appell equations:

d2GL ,
∂GL

∂a
= 0.

• The definition of GL and the Gibbs-Appell equations are intrinsic

because of the affine structure of J2Q .

Notes for Slide 12

We are being a bit sly here and skipping some details which make the presentation intrinsic. But
everything does, in fact, work. When we write ξL − a we mean subtraction as done in an affine
space so the result is naturally a point in the model vector space. It thus makes sense to apply

to this the quadratic form ∂2L
∂vi∂vj . In a similar manner, one uses the affine structure to define

d2GL. It may then be regarded in several ways, one being as a morphism from J2Q to E∗ so
that the following diagram commutes:

J2Q
d2GL

//

""❋
❋❋

❋❋
❋❋

❋
E∗

}}③③
③③
③③
③③

J1Q
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The Gibbs-Appell Equations for Constrained Systems

• Define a (1, 1) tensor field on J1Q by S = ∂
∂vi ⊗ (dqi − vidt).

• Let Λ be a codistribution on J1Q so that dim(Λ) = dim(S∗Λ).

• Let C = coann(Λ) ∩ J2Q . C is an affine subbundle of J2Q . Let C̄

be the vector subbundle of E upon which C is modelled.

• Let i : C̄ → E be the inclusion (a bundle map over J1Q ).

• The constrained Gibbs-Appell equations,

i∗(d2GL) = 0,

agree with the Lagrange-d’Alembert principle where both apply.

Notes for Slide 13

The (1, 1) tensor field S is the generalisation to J1Q of the almost tangent structure on the
tangent bundle of a manifold.

Note that we allow a rather general class of constraints. In fact, it is most natural in this
context to allow this general type of constraint. To fit standard linear constraints (i.e., specified
by a codistribution on Q ) into this framework, one needs to differentiate them once to arrive in
the setting we describe here. It is also true that linear constraints, after differentiation, satisfy
the condition dim(Λ) = dim(S∗Λ).

The fact that C is an affine subbundle of J2Q is a consequence of our asking that dim(Λ) =
dim(S∗Λ). This condition is a natural one, in the same way that asking a linear constraint
distribution to have constant rank is natural.
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The Gibbs Function for Riemannian Manifolds

• Let Q = R ×Q and let g be a Riemannian metric on Q.

• TQ inherits a natural Riemannian metric gTQ from Q (Sasaki).

• Let I be the natural involution of TTQ.

J2Q ≃ R × Fix(I) ⊂ R × TTQ.

• Let L(t, v) = 1
2g(v, v) (kinetic energy).

• Let LTQ(t, w) = 1
2g

TQ(w,w) (kinetic energy wrt Sasaki restricted

to J2Q ).

• GL(t, w) = LTQ(t, w) − L(t, πTTQ(w)) (second term doesn’t

depend on acceleration).

Notes for Slide 14

For more detail on the Sasaki metric, we refer to [Sasaki 1958].
Note that we work in the time-dependent trivial setting here as this is natural. In doing so

we are able to make an identification of J2Q with a standard tangent bundle like object that
we are perhaps more familiar with. This cannot be done in the general nontrivial setting.

Note that the Gibbs function GL in this case differs from the Sasaki kinetic energy LTQ only
by a term which goes away upon application of d2. Therefore, for practical purposes, we may
use LTQ as a Gibbs function for this system.
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Things To Do

• Examples with nonlinear constraints.

• Symmetry and reduction.

Notes for Slide 15

One of the advantages of the Gibbs-Appell formulation is that it naturally handles nonlinear
constraints. It would be interesting to come up with, and analyse, problems which utilise this
generality. Jerry has mentioned systems of particles which preserve kinetic energy.

It might be interesting to see if the jet bundle structure appears in a reduction methodology
for these systems. The interaction of all the various bundles (affine and otherwise) with the
symmetry is something unexplored.
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Variational Principles for Nonlinear Constraints

Gauss’s Principle of Least Constraint

• Same setting as Gibbs-Appell equations: π : Q → R and

Λ ⊂ T ∗(J1Q ) such that dim(Λ) = dim(S∗Λ).

• Equations of motion determined by specifying the acceleration.

• Fix j1c(t) ∈ J1Q and consider the quadratic function

GL(j
2c(t)) =

1

2

∂2L

∂vi∂vj
(ξiL − ai)(ξjL − aj)

on the fibre of C = coann(Λ) ∩ J2Q over j1c(t).

• The physical acceleration at j1c(t) is the unique critical point of this

quadratic function.

Notes for Slide 16

In Gauss’s Principle one fixes (t, q, v) ∈ J1Q and asks which value of a in the fibre over this
point gives the correct equations of motion. By correct we mean “agreeing with the Gibbs-Appell
equations.”

Note that since the fibres of J2Q are affine spaces, and since C is an affine subbundle,
it makes sense to say that a function defined there is quadratic. Clearly such a function will
have a unique critical point. If we make some definiteness assumptions on the Lagrangian, the
critical point will also be a minima. Note that this reduces finding the physical motions to a
finite-dimensional constrained problem.
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A Generalisation of the Lagrange-d’Alembert Principle

• Recall the Lagrange-d’Alembert principle. If the constraints are

specified by a distribution D on Q, the equations of motions are

defined by

δ

∫ t2

t1

(ċ)∗L dt = 0

for admissible variations δ (i.e., those taking values in D).

• The specification consists of two parts:

◦ saying what the constraints are;

◦ saying what an admissible variation looks like.

• Adapt this philosophy to a general situation.

Notes for Slide 17

That we must specify the nature of the constraints is clear. It is perhaps somewhat less clear that
the Lagrange-d’Alembert principle, and the Principle of Virtual Work also, are simply ways of
prescribing what an admissible variation should look like. This is perhaps best seen by equating
these principles with the multiplier method. After all, a Lagrange multiplier is nothing other that
a force added to the equations which annihilates the admissible variations.

Andrew D. Lewis University of Warwick



Slide 18

• Again work with π : Q → R and constraints modelled by a

codistribution Λ with dim(Λ) = dim(S∗Λ).

• Again define C = coann(Λ) ∩ J2Q which is modelled on C̄ ⊂ E.

• Define admissible variations to be sections of (j1c)∗C̄ (this makes

sense!).

• A local section c : [t1, t2] → Q of π is a solution of the constrained

problem (e.g., a solution of the Gibbs-Appell equations) if and only if

δ

∫ t2

t1

(j1c)∗L dt = 0

for admissible variations.

Notes for Slide 18

At no point have we been precise by what we mean by a solution of the constrained problem
in the case where the constraints are general. Indeed, there are a few equivalent ways of doing
this, two being the Gibbs-Appell equations and the variational principle we describe here.

It needs a second of thought to see that admissible variations are in fact variations of a
section c. That they are is explained by Lewis [1997b].
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Symmetries

• There is a Noether Theorem: Lift a V Q -valued vector field X on Q

to X lift on J1Q . If X lift is a section of C̄ then the momentum
∂L
∂viX

i is conserved.

• There is a momentum equation if the infinitesimal symmetry X

does not give rise to a section of C̄.

Notes for Slide 19

The Noether Theorem we state is also proved by Lewis [1997b]. It really looks a lot like the
normal Noether Theorem, but one has to take into account the constraints and the jet bundle
geometry. In particular, one should take a moment to see that the definition of momentum as
given makes sense.

The momentum equation will look a lot like that of Bloch, Krishnaprasad, Marsden, and
Murray [1996], but I haven’t gone through it formally. Perhaps the jet bundle structure will help
in understanding some of the geometry involved.
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Cattaneo-Gasparini, I. [1963] Dérivée covariante “liée” dans une Vn−1 riemannienne à structure
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