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Notes for Slide 0

In this short presentation we will try to give a flavour of some ideas in control theory in
a general, rather than mechanical, context. For my part, I am especially interested in the
so-called controllability problem.

For a general overview of control methodology, see [Sontag 1998].
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1. What do control theoreticians do?

• They consider

ẋ(t) = f(x(t), u(t))

where x ∈M , u ∈ U, and f(x, ·) : U → TxM .

• M is the state space and U is the input space.

• Design u to accomplish certain tasks, e.g.,

◦ steer the system from xi to xf ,

◦ stabilise a point x0 ∈M , or

◦ follow a reference trajectory t 7→ xref(t).

Notes for Slide 1

Of course, many people who are control theoreticians would not confess to studying ẋ =
f(x, u). . .

State space is often a manifold (how else do we get to define ẋ?) and we shall take it
to be of dimension n for concreteness. One can also study infinite-dimensional, or so-called
“distributed parameter” systems. The controls may take their values in odd-ball control
spaces. We shall deal with systems where U = Rm.

The list of control problems we give here—the reconfiguration problem, the stabilisation
problem, and the trajectory tracking problem—constitute a small sampling of the prob-
lems studied by control theoreticians. Other problems include optimal control, disturbance
rejection, modelling of uncertainty, etc.
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• The control signal might be designed as

◦ u(t) =⇒ ẋ = f(x, u(t)) (open-loop control)

◦ u(x) =⇒ ẋ = f(x, u(x)) (state feedback)

• Control-affine systems:

ẋ(t) = f(x(t)) + ua(t)ga(x(t)) (ACS)

for vector fields f (the drift vector field) and g1, . . . , gm (the

control or input vector fields).

• Linear systems:

ẋ(t) = Ax(t) + Bu(t)

for x ∈ Rn, u ∈ Rm, A ∈ L(Rn;Rn), and B ∈ L(Rm;Rn).

Notes for Slide 2

Open-loop control, i.e., using a precomputed control signal, is notoriously bad as it relies
on a perfect model to guarantee effectiveness. It is for this reason that the concept of a
closed-loop system, employing feedback, is much studied in control theory.

One may also wish to have feedback which is dependent on both state and time. As
we shall shortly see, there are things that are not possible with state feedback, so time-
dependence is sometimes necessary.

We shall focus on control-affine systems in this little warm-up as they are the systems I
shall be dealing with in the mechanical context later.

Not at all unexpectedly, there is an enormous and growing literature on linear control
theory. For a “geometric” treatment of linear systems see [Wonham 1985]. Linear control
techniques are also by far the most prevalent in “real life” applications. That is to say, much
of the control theory employed by professional engineers in industry is linear in nature, and
often quite classical at that. Nonetheless, nonlinear methods are starting to make some
inroads.
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2. Local accessibility and controllability

• A good first question to ask is, “Can you get there from here?”

• Let us concentrate on local control problems for control-affine

systems.

• Let x0 ∈M and let U be a neighbourhood of x0. Let R
U (x0, T )

be the set of points x for which there exists a solution (x(t), u(t))

defined on [0, T ] with the properties

◦ x(t) ∈ U for t ∈ [0, T ],

◦ x(0) = x0, and

◦ x(T ) = x.

• Let RU (x0,≤ T ) =
⋃

0≤t≤T RU (x0, t).

Notes for Slide 3

If one wishes to stabilise a system to some state, say x0, one should probably know from
which points it is even possible to reach x0. If it is not possible to reach x0 from every point
in M , you can give up hope of generating any sort of general stabilising control scheme.
Thus, when someone gives you a control problem, a good first thing to do is try to describe
the accessible states.

By “local” we mean that we are interested in describing what we can do when we start
at an initial state, and do not allow ourselves large excursions from that state. As one might
expect, for analytic systems these local problems are determinable in terms of the problem
data and its derivatives [Nagano 1966]. For a non-local approach with analytic systems,
see [Sussmann and Jurdjevic 1972].

A solution will consist of a pair of curves t 7→ x(t) and t 7→ u(t). To do controllability
analysis, one normally asks for control signals t 7→ u(t) which have certain properties. For
example, one may wish to consider piecewise constant functions, or bounded, measurable
functions. It is unwise to restrict to something as limited as, say, differentiable functions;
doing so might render some standard results false or unsolved.
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• We wish to describe RU (x0,≤ T ). To do so we use Lie brackets.

• Let us motivate this with an example:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

with initial state (0, 0, 0).

• Provide a signal t 7→ (1, 0), t ∈ [0, T/4[ ; t 7→ (0, 1),

t ∈ [T/4, T/2[ ; t 7→ (−1, 0), t ∈ [T/2, 3T/4[ , t 7→ (0,−1),

t ∈ [3T/4, T ], in (u1, u2)-space.

• This gives a loop in (x1, x2) and a translation by −T 2/16 in x3.

• The resulting motion is exactly in the direction of the Lie bracket

of of the input vector fields ∂
∂x1 + x2 ∂

∂x3 and ∂
∂x2 .

Notes for Slide 4

The example is the so-called “Heisenberg system” since the brackets obey relations reminis-
cent of the Heisenberg Lie algebra. Of course, we do not really need too much convincing
that Lie brackets should appear in the controllability problem. After all a possible definition
of the Lie bracket is one which generalises what we did in this example (cf. [Nijmeijer and
van der Schaft 1990, Proposition 3.6])
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• (ACS) is (strongly) locally accessible at x if there exists T > 0 so

that RU (x,≤ T ) (RU (x, T )) contains a non-empty open subset of

M for each neighbourhood U of x and for each t ∈ ]0, T ].

• (ACS) is locally controllable at x if there exists T > 0 so that

RU (q,≤ T ) contains a neighbourhood of x for each

neighbourhood U of x and for each t ∈ ]0, T ].

• Accessibility, strong accessibility, and controllability are different:

ẋ = u

ẏ = 1.

x

y

(x0, y0)

(0, y0 + τ )

(0, y0 + T )
R((x0, y0), T )

R((x0, y0), τ )

R((x0, y0),≤ T )

Notes for Slide 5

Accessibility and strong accessibility are easy to check. Controllability is genuinely difficult
as far as concerns general results. Sussmann [1987] has a fairly general local controllability
result. Some known global controllability results are topological in nature, e.g., [San Martin
and Crouch 1984] and others involve knowledge of the unforced dynamics, e.g., [Manikonda
and Krishnaprasad 1997].

The simple example is locally accessible, but neither strongly locally accessible nor locally
controllable. As we have drawn the reachable sets, we assume unbounded controls. With
bounded controls, the reachable sets would have a conical appearance, I suppose. Also, note
that if instead of R2, we worked on R×S1 (with coordinates (x, y)), then the system would
be globally controllable.
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• Construct sequences of distributions

D(0)
a = span(f, g1, . . . , gm)

...

D(i)
a = D(i−1)

a + [D(0)
a , D(i−1)

a ]

...

and

D(0)
sa = span(g1, . . . , gm)

...

D(i)
sa = D(i−1)

sa + [D(0)
a , D(i−1)

sa ]

...

Notes for Slide 6

Our strange notation Da and Dsa is intended to suggest “accessible” and “strongly accessi-
ble” for reasons we shall see shortly. Da is, by definition, the smallest integrable distribution
containing span(f, g1, . . . , gm). It is also the case that Dsa is the smallest integrable distri-
bution containing span(g1, . . . , gm) which is invariant under f (that is, [f,Dsa] ⊂ Dsa).
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• Suppose these sequences stabilise at some finite index and define

constant rank distributions Da and Dsa.

• Let Λx (resp. Λ̃x) be the maximal integral manifold of Da

(resp. Dsa) through x.

Theorem 1 RU (x,≤ T ) ⊂ Λx (resp. RU (x, T ) ⊂ Λ̃Φt
f
(x)) and

RU (x,≤ T ) (resp. RU (x, T )) contains a non-empty open subset of

Λx (resp. Λ̃x). In particular, if rank(Da) = dim(M)

(resp. rank(Dsa) = dim(M)) then (ACS) is (resp. strongly) locally

accessible.

Notes for Slide 7

For analytic vector fields, the sequences do stabilise on an open dense subset of M . For
simplicity we assume this happens on all of M . Some of the results we state below, and I’ll
try to indicate which ones, are true when Da and Dsa are not of constant rank.

The result we state here is a standard result (see, for example, [Nijmeijer and van der
Schaft 1990]). Note that it is true that (ACS) is (resp. strongly) locally accessible if the
rank of Da (resp. Dsa) at x is equal to dim(M), even if Da (resp. Dsa) is not a constant
rank distribution.1 Conversely, if (ACS) is (resp. strongly) locally accessible at all points
in M , then rank(Da) (resp. rank(Dsa)) must equal the dimension of M on an open dense
subset of M . For analytic systems, the rank condition, even when Da (resp. Dsa) is not a
constant rank distribution, is necessary for (resp. strong) local accessibility [Sussmann and
Jurdjevic 1972].

1It is then a question how one defines Da and Dsa. To define Da one letsDa be the smallest Lie subalgebra
of the Lie algebra of vector fields which contains {f, g1, . . . , gm}, and then defines Da,x = {X(x) | X ∈ Da}.
For Dsa one defines Dsa to be the smallest subalgebra of the Lie algebra of vector fields which (1) contains
{g1, . . . , gm} and (2) is invariant under f , i.e., [f,Dsa] ⊂ Dsa, and then defines Dsa,x = {X(x) | X ∈ Dsa}.

Andrew D. Lewis University of Warwick



Slide 8

• What does this look like for linear systems?

• Denote by D(A,B) the subspace which is the column span of the

concatenated matrices [B|AB| . . . , An−1B].

• Da,x = spanR(Ax) +D(A,B) and Dsa,x = D(A,B).

• For linear systems, strong local accessibility is equivalent to local

controllability.

Notes for Slide 8

Note for linear systems that Da is not constant rank unless image(A) ⊂ D(A,B). The con-
dition that dim(D(A,B)) = n (recall x ∈ Rn) is called the Kalman rank condition [Kalman,
Ho, and Narendra 1963].

Note that local controllability for linear systems follows from strong local accessibility.
This will not be true for nonlinear systems in general. Nonlinear local controllability is a
difficult question. A quite general result is that of Sussmann [1987]. A fairly sharp result for
single-input systems can be found in [Sussmann 1983], but even the single-input case is not
resolved. All that is known is that the local controllability problem (for analytic systems)
is resolvable in terms of Lie brackets of drift and control vector fields.
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3. Decompositions of non-accessible systems

• If (y, z) are coordinates adapted to the integrable distribution

Da, then (ACS) has the local form

ẏ(t) = f̃(y(t), z(t)) + ua(t)g̃(y(t), z(t))

ż(t) = 0.

• If (y, z) are coordinates adapted to the integrable distribution

Dsa, then (ACS) has the local form

ẏ(t) = f̃1(y(t), z(t)) + ua(t)g̃(y(t), z(t))

ż(t) = f̃2(z(t)).

Notes for Slide 9

When we say that coordinates (y, z) are adapted to an integrable distribution D, we mean
that Dx = spanR(

∂
∂y

∣

∣

x
, . . . , ∂

∂yr

∣

∣

x
).

For the decomposition associated with Da, the fact that z(t) is constant reflects the fact
that the system evolves on the leaves of the foliation associated with Da. The decomposition
for Dsa is potentially more interesting. Here the z-equation evolves independently, prescrib-
ing how the system changes from leaf to leaf of the foliation corresponding to Dsa. One
may interpret the z-equation as the uncontrolled dynamics induced on some appropriate
quotient.

In the event that Da = Dsa then obviously we have f̃2 = 0.
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4. “Nonholonomic” control systems

• These are driftless control-affine systems:

ẋ(t) = ua(t)ga(x(t)).

• Local accessibility =⇒ local controllability.

• Stabilisation is non-trivial:

◦ Not stabilisable with continuous state feedback

(i.e., u = u(x));

◦ Not exponentially stabilisable with C∞ time-dependent

feedback.

Notes for Slide 10

The monicker “nonholonomic” is common, but I don’t like it, so I put it in quotes. . .
It seems reasonable that local accessibility should imply local controllability since the

systems are “symmetric” with respect to time-reversal. So, roughly speaking, if you can
reach a non-empty open set in one direction, you can also reach a non-empty open set in
the opposite direction.

That nonholonomic systems are not stabilisable by continuous state feedback follows from
a result of Brockett [1983]. The result on non-exponential stabilisability via smooth time-
dependent feedback is given, for example, by M’Closkey and Murray [1997]. It is possible to
asymptotically stabilise nonholonomic systems using smooth time-dependent feedback [Teel,
Murray, and Walsh 1992]. Exponential stabilisation may be accomplished by discontinuous
state feedback, or non-differentiable, time-dependent feedback. There is a small industry
concerned with topics such as this. . . Bob M’Closkey is my friend, and Richard Murray was
my PhD supervisor, so let me cite M’Closkey and Murray [1997] as an example of many
papers in this area. That paper will also contain some additional references.
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Controllability of simple mechanical

control systems

Andrew D. Lewis Arjan J. van der Schaft

Andrew D. Lewis∗

27/08/1998

∗Collaborators: F. Bullo and R. Murray

Notes for Slide 0

The work presented in this talk was initiated by some work which went into my PhD
dissertation [Lewis 1995], and has been ongoing, to some extent, ever since. The initial aim of
the work was to address some of the basic nonlinear control questions in the specific context
of mechanical systems. Although there is some fairly general work in the Hamiltonian
control framework (see [Nijmeijer and van der Schaft 1990, Chapter 12]), existing work in
the Lagrangian framework was ad hoc and example based. Examples commonly studied
were robotic systems and satellite control. Since these systems are “simple” (i.e., their
Lagrangians are kinetic minus potential energy), as are many mechanical control systems
which arise in applications, it seems reasonable to focus on this class of systems.
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5. What are we after?

• Consider a linear control system:

ẋ(t) = Ax(t) + Bu(t) (1)

x ∈ Rn, u ∈ Rm, A ∈ L(Rn;Rn), and B ∈ L(Rm;Rn).

• Starting at x = 0, where can we go?

• Linear system =⇒ basic questions have answers.

• R(0) = spanR([B|AB| . . . |An−1B]) (computable).

• R(0) is the smallest A-invariant subspace containing image(B)

(“geometric” meaning).

• We want to do something similar for a class of mechanical

systems.

Notes for Slide 1

Since the idea of control may not be all that familiar, let me make sure we understand
what the linear system (1) represents. One should think of t 7→ u(t) as being a specified
signal, i.e., a function on the time interval [0, T ] (say). The job of a control theoretician is
to design the signal to make the “state” t 7→ x(t) do what we want. What this is may vary,
depending on the situation at hand. For example, one may want to steer from an initial state
xi to a final state xf , perhaps in an optimal way. Or, one may wish to design u : Rn → Rm

so that some state, perhaps x = 0, is stable for the dynamical system ẋ = Ax+Bu(x). This
latter is called state feedback (often one asks that u be linear). One could also design u to
be a function of both x and t. I think we get the idea. . .

One of the basic control questions is controllability, which comes in many guises, some
of which we shall take some care with later. For now, let us just say we are asking for
“reachable” points. In particular, R(0) denotes the set of points reachable from 0 ∈ Rn.
For linear systems we provide two equivalent answers which have different flavours. The
first answer is nice because with it one can compute the set of reachable points. However,
it presents a somewhat “non-obvious appearance.” The second answer is nice because it
sounds “believable,” and it gives one some insight into how the components of the control
system (here the matrices A and B) interact to provide the set of reachable points.

Andrew D. Lewis University of Warwick



Slide 2

6. Simple mechanical control systems

• Our systems are characterised by:

◦ an n-dimensional configuration manifold Q;

◦ a Riemannian metric g on Q (kinetic energy);

◦ a potential energy function V on Q;

◦ linearly independent one-forms F 1, . . . , Fm on Q (input

forces).

• To make life easier, let us suppose V = 0 unless otherwise stated.

• We shall always consider initial conditions with zero velocity, and

we are interested in the reachable configurations.

• Such systems are not amenable to linearisation-based methods.

Notes for Slide 2

Some of our results require problem data to be analytic. So, to be safe, let us suppose this
to be the case. That is, suppose Q, g, V , and {F 1, . . . , Fm} to be analytic.

Of course, the Lagrangian we use given the above problem data is L(vq) =
1
2g(vq, vq)−

V (q) where vq ∈ TqQ.
Some of the results which we state have analogues when V 6= 0, but they are somewhat

awkward to state. Therefore we shall simply say when these analogous results exist without
being too specific about them. Besides, the results when V 6= 0 are interesting and beautiful
(particularly the latter, in my opinion) in their own right.

When we say these systems are not amenable to linearisation-based methods, we mean
that their linearisations at zero velocity are not controllable, and that they are not feedback
linearisable. This makes simple mechanical control systems a non-trivial class of nonlinear
control systems, especially from the point of view of control design.
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7. Examples of simple mechanical control systems

• Robotic leg:

θ

ψ

r

• Inputs are (1) an internal torque moving the leg relative to the

body and (2) a force extending the leg, i.e., F 1 = dθ − dψ and

F 2 = dr.

Notes for Slide 3

The robotic leg has been studied as a nonholonomic system (i.e., one of the form q̇(t) =
uaXa(q(t)) for vector fields X1, . . . , Xm on Q) by Li, Montgomery, and Raibert [1989]
and Murray and Sastry [1993]. Such a treatment differs somewhat from ours, but the
two approaches are ultimately equivalent [Lewis 1999].

Interestingly, if one asks for the states (i.e., configurations and velocities) reachable from
configurations with zero initial velocity, one finds that not all states are reachable. This
is a consequence of the fact that angular momentum is conserved, even with inputs. Thus
if one starts with zero momentum, the momentum will remain zero (this is what enables
one to treat the system as nonholonomic). Nevertheless, all configurations are accessible.
This suggests that the question of controllability is different depending on whether one is
interested in configurations or states. We have formally declared our interest in reachable
configurations.

Considering the system with just one of the two possible input forces is also interesting.
In the case where we are just allowed to use F 2, the possible motions are quite simple; one
can only move the ball on the leg back and forth. With just the force F 1 available, things
are a bit more complicated. But, for example, one can still say that no matter how you
apply the force, the ball with never move “inwards.”

Andrew D. Lewis University of Warwick



Slide 4

• The planar rigid body:

Σs

g

Σb
F 2

F 1

F 3

h

• Use coordinates (x, y, θ).

• Inputs are (1) force pointing towards centre of mass,

F 1 = cos θdx+ sin θdy, (2) force orthogonal to line to centre of

mass, F 2 = − sin θdx+ cos θdy− hdθ, and (3) torque at centre of

mass F 3 = dθ.

Notes for Slide 4

The planar rigid body, although seemingly quite simple, is actually somewhat interesting.
Of course, if one uses all three inputs, the system is fully actuated, and so boring for what
we are doing (investigating reachable configurations, that is). But if one takes various
combinations of one or two inputs, one gets a pretty nice sampling of what can happen for
these systems. For example, all possible combinations of two inputs allow one to reach all
configurations. Using F 1 or F 3 alone give simple, one-dimensional reachable sets (similar
to using F 2 for the robotic leg). Remember we are always starting with zero initial velocity!
However, if one is allowed to only use F 2, then it is not quite clear what to expect, at least
just on the basis of intuition.
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8. Recap of our objectives

• Note: All problem data is on Q =⇒ expect answers to be

describable using data on Q.

• We expect computations to simplify because of zero initial

velocity assumption, and because we are interested in reachable

configurations.

• We want a “computable” description of the reachable

configurations.

• How do the input one-forms F 1, . . . , Fm interact with the

unforced mechanics of the system as described by the kinetic

energy Riemannian metric?

Notes for Slide 5

It turns out that our simplifying assumptions, i.e., zero initial velocity and restriction of our
interest to configurations, makes our task much simpler. In fact, the computations without
these assumptions have been attempted, but have yet to yield coherent answers.

In some sense, we wish to emulate the results we gave for linear systems at the beginning
of the talk. And we shall in fact be able to do exactly this, inasmuch as it is possible. Without
knowing the answer, it is worth thinking about the question of how the inputs interact with
the Riemannian metric. That is, what is the analogue of “the smallest A-invariant subspace
containing image(B)” for simple mechanical control systems?
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9. The formal setting up of the problem

• We let
g

∇ denote the Levi-Civita affine connection for the

Riemannian metric g.

• The equations of motion are then
g

∇c′(t)c
′(t) = ua(t)Ya(c(t))

where Ya = (F a)♯, a = 1, . . . ,m.

• There is nothing to be gained by using a Levi-Civita connection,

or by assuming that the vector fields come from one-forms. . . So

we study the control system

∇c′(t)c
′(t) = ua(t)Ya(c(t))

(

+Y0(c(t))
)

(CS)

with ∇ a general affine connection on Q, and Y1, . . . , Ym linearly

independent vector fields on Q.

Notes for Slide 6

Let us briefly recall how the Levi-Civita affine connection comes up in the problem. If we
let L(q, v) = gij q̇

iq̇j , then the Euler-Lagrange equations are

gij q̈
j +

(

∂gij
∂qk

−
1

2

∂gjk
∂qi

)

q̇j q̇k = uaF
a
i , i = 1, . . . , n.

Now multiply this by gli and take the symmetric part of the coefficient of q̇j q̇k to get

q̈l + Γl
jk q̇

j q̇k = uaY l
a , l = 1, . . . , n, where Γi

jk = 1
2g

il
(

∂glj
∂qk

+ ∂glk
∂qj

−
∂gjk
∂ql

)

, i, j, k = 1, . . . , n,

are exactly the Christoffel symbols for the Levi-Civita connection.
Here ♯ : T ∗Q → TQ is the musical isomorphism associated with the Riemannian metric

g.
At this point, perhaps the generalisation to an arbitrary affine connection seems like a

senseless abstraction. However, as we shall see, this abstraction allows us to include, for
“free,” another large class of mechanical control systems.

The “optional” term Y0 in (CS) indicates how potential energy may be added. In this
case Y0 = − gradV . However, one looses nothing by considering a general vector field
instead of a gradient. But I want to emphasise that one should always take Y0 = 0 below,
unless it is otherwise stated.
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• A solution to (CS) is a pair (c, u) satisfying (CS) where

c : [0, T ] → Q is a curve and u : [0, T ] → Rm is (say) bounded and

measurable.

• Let U be a neighbourhood of q0 ∈ Q and denote by RU
Q(q0, T )

those points in Q for which there exists a solution (c, u) with the

properties

1. c(t) ∈ U for t ∈ [0, T ],

2. c′(0) = 0q, and

3. c(T ) ∈ TqQ.

• Also RU
Q(q0,≤ T ) =

⋃

0≤t≤T RU
Q(q0, t).

Notes for Slide 7

The following picture

q0

q = c(T )

U

gives an idea of what is meant by RU
Q(q0, T ). It is the precise description of reachable sets

as we shall need them. Note that we do not ask for the final velocity to be zero.
As you can see, we are only interested in points which can be reached without taking

“large excursions.” Control problems which are local in this way have the advantage that
they can be characterised (at least for analytic systems) by Lie brackets. We do not address
global issues, but they generally fall into two classes: (1) those of a topological nature
(e.g., compactness in [San Martin and Crouch 1984]) and (2) those exploiting the unforced
dynamics (e.g., Poisson stable systems in [Manikonda and Krishnaprasad 1997]).
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• We want to “describe” RU
Q(q,≤ T ).

• (CS) is locally configuration accessible (LCA) at q if there exists

T > 0 so that RU
Q(q,≤ t) contains a non-empty open subset of Q

for each neighbourhood U of q and each t ∈ ]0, T ].

• (CS) is locally configuration controllable (LCC ) at q if there

exists T > 0 so that RU
Q(q,≤ t) contains a neighbourhood of q for

each neighbourhood U of q and each t ∈ ]0, T ].

Notes for Slide 8

The notions of local configuration accessibility (on the left in the picture below) and local
configuration controllability (on the right in the picture below) are genuinely different.

q0

RUQ(q0,≤ T )

q0

RUQ(q0,≤ T )

U U

Indeed, one need only look at the example of the robotic leg with the F 1 input. In this
example one may show that the system is LCA, but is not LCC. To show the former is
something we will get to momentarily. The latter is clear for the reasons we have already
mentioned: the ball cannot move “inward” no matter what kind of inputs you use.
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10. Local configuration accessibility

• The accessibility problem is solved by looking at Lie brackets.

• Write (CS) in first order form: v̇ = Z(v) + ua vlft(Ya(v)) where Z

is the geodesic spray for ∇.

• We evaluate all brackets at 0q—recall T0qTQ ≃ TqQ⊕ TqQ.

• We need the symmetric product : 〈X : Y 〉 = ∇XY +∇YX .

• Here are some sample brackets:

1. [Z, vlft(Ya)](0q) = (−Ya(q), 0);

2. [vlft(Ya), [Z, vlft(Yb)]](0q) = (0, 〈Ya : Yb〉(q));

3. [[Z, vlft(Ya)], [Z, vlft(Yb)]](0q) = ([Ya, Yb](q), 0).

Notes for Slide 9

Recall the vertical lift:

vlft(Y )(vq) =
d

dt

∣

∣

∣

∣

t=0

(vq + tY (q)).

In coordinates, if Y = Y i ∂
∂qi

, then vlft(Y ) = Y i ∂
∂vi .

When we write T0qTQ = TqQ ⊕ TqQ, the first component we think of as being the
“horizontal” bit which is tangent to the zero section in TQ, and we think of the second
component as being the “vertical” bit which is the tangent space to the fibre of πTQ : TQ→
Q.

To get an answer to the local configuration accessibility problem, we employ standard
nonlinear control techniques involving Lie brackets. Doing so gives us our first look at the
symmetric product. Our sample brackets suggest that perhaps the only things which appear
in the bracket computations are symmetric products and Lie brackets of the input vector
fields Y1, . . . , Ym. This is, in fact, the case, and the way they appear is also interesting as
we shall see.
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• Let Cver be the closure of span(Y1, . . . , Ym) under symmetric

product.

• Let Chor be the closure of Cver under Lie bracket.

• The closure of span(Z, vlft(Y1), . . . , vlft(Ym)) under Lie bracket,

when evaluated at 0q, is then the distribution

q 7→ Chor(q)⊕ Cver(q) ⊂ TqQ⊕ TqQ.

• Chor is integrable—let Λq be the maximal integral manifold

through q ∈ Q.

Theorem 2 RU
Q(q,≤ T ) is contained in Λq, and RU

Q(q,≤ T )

contains a non-empty open subset of Λq. In particular, if

rank(Chor) = n then (CS) is LCA.

Notes for Slide 10

We tacitly assume Cver and Chor to be distributions (i.e., of constant rank) on Q. With our
underlying analyticity assumption, this will be true on an open dense subset of Q. Proving
that the involutive closure of span(Z, vlft(Y1), . . . , vlft(Ym)) is equal at 0q to Chor(q)⊕Cver(q)
is a matter of computing brackets, samples of which are given on the previous slide, and
seeing the patterns to suggest an inductive proof. The brackets for these systems are very
structured. For example, the brackets of input vector fields are identically zero. Many other
brackets vanish identically, and many more vanish when evaluated at 0q. For details on
the bracket computations, including systems with potential energy, we refer to [Lewis and
Murray 1997a]. With potential energy included, the computations get rather messy.
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11. The geometry of the reachable configurations

• What is the geometric meaning of Cver and Chor?

• Recall: A submanifold M of Q is totally geodesic if every

geodesic with initial velocity tangent to M remains on M .

• Weaken to distributions: a distribution D on Q is geodesically

invariant if for every geodesic c : [0, T ] → Q, c′(0) ∈ Dc(0) implies

c′(t) ∈ Dc(t) for t ∈ ]0, T ].

Theorem 3 D is geodesically invariant iff it is closed under

symmetric product.

Notes for Slide 11

Theorem 2 gives a “computable” description of the reachable sets (in the sense that you
can compute Λq by solving some over-determined nonlinear pde’s). But it does not give the
kind of insight that we had with the “smallest A-invariant subspace containing image(B).”
It is this which we now describe.

Note that Theorem 3 says that the symmetric product plays for geodesically invariant
distributions the same rôle the Lie bracket plays for integrable distributions. The result is
proved by [Lewis 1998]. This result was key in providing the geometric description of the
reachable configurations.
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• An integrable distribution is geodesically generated if it is the

involutive closure of a geodesically invariant distribution.

• Clearly Cver is the smallest geodesically invariant distribution

containing span(Y1, . . . , Ym).

• Also, Chor is “geodesically generated” by span(Y1, . . . , Ym).

• Thus RU
Q is contained in, and contains a non-empty open subset

of, the distribution geodesically generated by span(Y1, . . . , Ym).

Notes for Slide 12

To be geodesically generated basically means that one may reach all points on a leaf with
geodesics lying in some subdistribution.

The picture one should have in mind with the geometry of the reachable sets is a foliation
of Q by geodesically generated (immersed) submanifolds onto which the control system
restricts if the initial velocity is zero.

q

Q Λq

RUQ(q,≤ T )
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The idea is that when you start with zero velocity you remain on leaves of the foliation
defined by Chor. This decomposition is described by Lewis and Murray [1997b]. Note that
for cases when the affine connection possesses no geodesically invariant distributions, the
system (CS) is automatically LCA. This is true, for example, of S2 with the affine connection
associated with its round metric.

We should also mention that the pretty decomposition we have for systems with no
potential energy does not exist at this point for systems with potential energy.
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12. Local configuration controllability

• This is harder. . .

• Call a symmetric product in {Y1, . . . , Ym} bad if it contains an

even number of each of the input vector fields. Otherwise call it

good . The degree is the total number of vector fields.

• For example, 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad and of degree 4, and

〈Ya : 〈Yb : Yb〉〉 is good and of degree 3.

Theorem 4 If each bad symmetric product at q is a linear

combination of good symmetric products of lower degree, then (CS)

is LCC at q.

Notes for Slide 13

This business of good and bad symmetric products comes from an adaptation of work
of Hermes [1982] and [Sussmann 1983, 1987]. Theorem 4 was proven in [Lewis and Murray
1997a]. To properly state the result, one should use free Lie and symmetric algebras.
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• The single-input case can be solved completely:

Theorem 5 The system (CS) with m = 1 is LCC if and only if

dim(Q) = 1.

• The local controllability question for general single-input control

systems has not been answered =⇒ our systems are special
?

=⇒ the controllability question may be solvable for arbitrary

numbers of inputs!

Notes for Slide 14

The single-input result we state here follows (with some modification) from a result of Suss-
mann [1983]. It is presented in [Lewis 1997]. Although it seems an innocuous enough result,
it is actually quite important for the reasons stated: it suggests that perhaps the general
problem of local configuration controllability for these systems is solvable. This would be
quite interesting as there are not many classes of systems for which this is the case, never
mind that the mechanical systems we are looking at come up often in applications.

The result we state is not generally true for systems with potential energy. In particular,
there are single-input systems with potential energy which are LCC at certain configurations.
For example, the “crane,”

m

M

l

θx

with the single input being a horizontal force applied to the base, is LCC about both vertical
configurations of the arm.
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13. Systems with nonholonomic constraints

• Let us now add to the data a distribution D defining

nonholonomic constraints.

• Rolling disk:

z

y

x

θr

φ

• We consider two inputs: (1) a “rolling” torque (F 1 = dθ) and (2)

a “spinning” torque (F 2 = dφ).

Notes for Slide 15

One of the interesting things about this affine connection approach is that we can integrate
into our framework systems with nonholonomic constraints “for free.”

The rolling disk we present here can be analysed as a nonholonomic system [Lewis 1999].
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• The control equations for a simple mechanical control system

with constraints are

g

∇c′(t)c
′(t) = λ(t) + ua(t)Ya(c(t))

(

− gradV (c(t))
)

c′(t) ∈ Dc(t)

where λ(t) ∈ D⊥
c(t) are Lagrange multipliers .

• Let P : TQ→ TQ and P ′ : TQ→ TQ be orthogonal projections

onto D and D⊥, respectively

• Define an affine connection
D

∇ by

D

∇XY =
g

∇XY + (
g

∇XP
′)(Y )

Notes for Slide 16

The idea of writing constrained equations for simple mechanical systems with an affine
connection seems to date to Synge [1928]. It has been rediscovered many times since then.
For example, Bloch and Crouch [1995] use a variant of what we do here to investigate
integrability of nonholonomic systems.

The properties of the affine connection
D

∇ are discussed, along with other topics involving
affine connections and distributions, in [Lewis 1998].
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• The control equations are then equivalent to

D

∇c′(t)c
′(t) = ua(t)P (Ya)(c(t))

(

−P (gradV )(c(t))
)

which is of the form (CS).

• All the above analysis applies verbatim.

• Examples are somewhat unpleasant computationally. . .

Notes for Slide 17

The derivation of the constrained control equations in affine connection form is given
by [Lewis 2000]. In that paper, a sometimes useful computational simplification is also
presented. I have written a Mathematica package to do some of these computations, but
they are still pretty horrific for non-trivial examples.
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14. Examples (some revisited)

θ

ψ

r

• Recall Y1 was internal torque and Y2 was extension force.

◦ Both inputs: LCA and LCC (satisfies sufficient condition).

◦ Y1 only: LCA but not LCC.

◦ Y2 only: not LCA.

Notes for Slide 18

In the three cases, Chor is generated by the following linearly independent vector fields:

1. Both inputs: {Y1, Y2, [Y1, Y2]};

2. Y1 only: {Y1, 〈Y1 : Y1〉, 〈Y1 : 〈Y1 : Y1〉〉};

3. Y2 only: {Y2}.

Of course, these generators are not unique.
The sufficient condition we refer to here is the good/bad symmetric product result,

Theorem 4.
Recall that with both inputs the system (we claimed) was not accessible in TQ as a

consequence of conservation of angular momentum.
With the input Y2 only, the control system behaves very simply when given zero initial

velocity. The ball on the end of the leg just gets moved back and forth. This reflects the
foliation ofQ by the maximal integral manifolds of Chor, which are evidently one-dimensional
in this case.

With the Y1 input, recall that the ball will always fly “outwards” no matter what one does
with the input. Thus the system is not LCC. But apparently (since rank(Chor) = dim(Q))
one can reach a non-empty open subset of Q. The behaviour exhibited in this case is typical
of what one can expect for single-input systems with no potential energy.
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Σs

g

Σb
F 2

F 1

F 3

h

• Y1 and Y2: LCA and LCC (satisfies sufficient condition).

• Y1 and Y3: LCA and LCC (satisfies sufficient condition).

• Y1 only or Y3 only: not LCA.

• Y2 only: LCA but not LCC.

Notes for Slide 19

With the inputs Y1 or Y3 alone, the motion of the system is simple. In the first case the
body moves along the line connecting the point of application of the force and the centre of
mass, and in the other case the body simply rotates. The equations in (x, y, θ) coordinates
are

ẍ =
cos θ

m
u
1
−

sin θ

m
u
2

ÿ =
sin θ

m
u
1
+

cos θ

m
u
2

θ̈ = −

h

J
u
2
+

1

J
u
3

which illustrates that the θ-equation decouples when only Y3 is applied. We make a change
of coordinates for the case where we have only Y1: (ξ, η, ψ) = (x cos θ + y sin θ,−x sin θ +
y cos θ, θ). In these coordinates we have

ξ̈ − 2η̇ψ̇ − ξψ̇
2
=

1

m
u
1

η̈ + 2ξ̇ψ̇ − ηψ̇
2
= 0

ψ̈ = 0

which illustrates the decoupling of the ξ-equation in this case.
The case with Y2 only stood unresolved, simple though it seems, until the single-input

result, Theorem 5, was proved. Global controllability, i.e., not necessarily asking that mo-
tions remain small, is still unresolved for the system, although it is suspected to be globally
controllable. Some attention is given to this problem by Manikonda and Krishnaprasad
[1997].

Andrew D. Lewis University of Warwick



Slide 20

• Y2 and Y3: LCA and LCC (fails sufficient condition).

F 2

F 3

F̃ 3
F̃ 2

h

equivalent
forces

Notes for Slide 20

Chor has the following generators:

1. Y1 and Y2: {Y1, Y2, [Y1, Y2]};

2. Y1 and Y3: {Y1, Y3, [Y1, Y3]};

3. Y1 only or Y3 only: {Y1} or {Y3};

4. Y2 only: {Y2, 〈Y2 : Y2〉, 〈Y2 : 〈Y2 : Y2〉〉}.

5. Y2 and Y3: {Y2, Y3, [Y2, Y3]}.

The inputs we deal with in this slide do give a system which is LCC, but which fails our
good/bad symmetric product test. However, a simple change of input, as illustrated in the
figure, suggests that the system ought to be LCC. In fact, with these modified inputs, the
system now satisfies the conditions of Theorem 4. A possible conjecture is that this is always
possible. That is, perhaps (CS) is LCC if and only if there exists a basis of input vector
fields which satisfy the hypotheses of Theorem 4. But this is speculation at this point. . .
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z

y

x

θr

φ

• Recall Y1 was “rolling” input and Y2 was “spinning” input.

◦ Y1 and Y2: LCA and LCC (satisfies sufficient condition).

◦ Y1 only: not LCA.

◦ Y2 only: not LCA.

Notes for Slide 21

Chor has generators

1. Y1 and Y2: {Y1, Y2, [Y1, Y2], [Y2, [Y1, Y2]]},

2. Y1 only: {Y1}, and

3. Y2 only: {Y2}.

The rolling disk passes our good/bad symmetric product test. Another way to show that
it is LCC is to show that the inputs allow one to follow any curve which is admitted by the
constraints. Local configuration controllability then follows as the constraint distribution for
the rolling disk has an involutive closure of maximal rank. This is the gist of the approach
described in [Lewis 1999].

The decomposition corresponding to the input Y2 only may be seen in the standard
coordinates (x, y, θ, φ). To obtain the decomposition for the input Y1 alone, we make the
change of coordinates

(ξ, η, ζ, ψ) = (x cosφ+ y sinφ,−x sinφ+ y cosφ, x cosφ+ y sinφ− rθ, φ).

To see the form of the equations in this case, we refer to [Lewis 2000].
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φ2

φ1
ψ

θ

ly

x

• Take φ1 = φ2 = φ.

• Inputs are a synchronised torque to rotate the wheels (F 1 = dφ)

and a torque to rotate the “rider” (F 2 = dψ).

Notes for Slide 22

The snakeboard example we look at here was first investigated by Lewis, Ostrowski, Murray,
and Burdick [1994]. As a nonholonomic system with symmetry it was further studied
by Ostrowski [1995] and Bloch, Krishnaprasad, Marsden, and Murray [1996]. A different
control treatment is given by Ostrowski and Burdick [1997].
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• Caressing Mathematica gives:

◦ Y1 and Y2: LCA and LCC (satisfies sufficient condition).

◦ Y1 only: not LCA.

◦ Y2 only: not LCA.

Notes for Slide 23

Generators for Chor are

1. Y1 and Y2: {Y1, Y2, [Y1, Y2], [Y2, [Y1, Y2]], [Y2, [Y1, [Y2, [Y1, Y2]]]]},

2. Y1 only: {Y1}, and

3. Y2 only: {Y2}.

The computations for the snakeboard are somewhat unpleasant, and are given in detail
by Lewis [2000]. Part of the reason the snakeboard equations are so awkward in affine
connection form is that the SE(2)-symmetry of the system is not taken into account as
it is, for example, by Ostrowski and Burdick [1997]. It is probably interesting to see how
symmetry figures into our whole picture. The “fully symmetric” case where Q is a Lie group
G is presented by [Bullo and Lewis 1996]. The case where Q → Q/G is a principal bundle
is next in line.

The motion with only the input Y1 is easy to describe: the wheels rotate and nothing else
happens. With only Y2, the maximal integral manifolds of Chor are still one-dimensional,
but are not so easy to describe (i.e., I don’t know what they look like).
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x

y
l1

l2

θ

ψ

• Single input: F = dθ − dψ.

• Probably LCA, but (definitely) not LCC.

Notes for Slide 24

I was not able to obtain an expression for generators for Chor for the roller racer. However,
Chor does not have full rank at the “standard” configuration (x = 0, y = 0, θ = 0, ψ = 0).

The roller racer pictured here was studied by Krishnaprasad and Tsakiris [2001] as a
system with SE(2)-symmetry. Because we have not incorporated this into our framework,
the roller racer computations put even the snakeboard computations to shame. . . Never-
theless, Theorem 5 allows one to immediately say that local configuration controllability is
impossible. Global controllability is unresolved, but it seems likely that the roller racer is
globally controllable.
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15. Control design (F. Bullo)

• Up to now, consider case when Q = G and data is left-invariant.

• Use low amplitude, periodic inputs and averaging methods based

on controllability analysis.

◦ Steer the system from state (q1, 0) to (q2, 0) (with small final

error).

◦ Exponentially stabilise the system to (q0, 0) in a

neighbourhood.

◦ Steer the system along a path connecting points q1, . . . , qN

(with small error terms).

Notes for Slide 25

Control design for these systems, especially in the absence of potential energy, is a bit
challenging. This is a direct consequence of the system’s not being amenable to linearisation-
based control design methods.

Averaging on Lie groups was used by Leonard and Krishnaprasad [1995] to study kine-
matic systems, i.e., systems with no drift. It is possible to modify these methods to the
systems we consider, and this is done by Bullo, Leonard, and Lewis [2000], at least in some
cases.

It should be mentioned that the exponential stabilisation of these systems is somewhat
non-trivial. For example, they cannot be stabilised by continuous state feedback [Brockett
1983], and cannot be exponentially stabilised by smooth, time-varying feedback [M’Closkey
and Murray 1997]. The controllers defined by Bullo, Leonard, and Lewis [2000] are contin-
uous and time-varying.
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16. Stuff to do

• Figure out local accessibility at non-zero velocity.

• Get sharper controllability results.

• Refine understanding of how potential energy enters the picture.

• Control design for general systems.

• Optimal control.

• Punchline: The affine connection formalism can be useful.

Notes for Slide 26

Some preliminary bracket computations at non-zero initial velocity have been done. They
are quite complicated. However, curvature and its derivatives appear, so one expects the
infinitesimal holonomy algebra for ∇ to come into the picture. This is not altogether sur-
prising.

As was suggested above, it might be possible to get very crisp controllability results for
these systems, and this would be interesting. But almost nothing has been done in this
area.

At this point, design methodology for controllers for the systems we have been talking
about do not really exist. The averaging methods as discussed above for Lie groups ought
to be able to be applied to general systems in some manner, but the details here have yet
to be worked out. For some preliminary results see [Bullo 1999].

It would appear that these systems offer a very nice framework within which to study
optimal control. Nothing really has been done here, however.

If there were to be a point of this talk, it would be that the framework we provide here
using affine connections to describe certain classes of mechanical control systems can be
valuable, especially for obtaining general results. As another example of this, see [Lewis
1999] where a concise recipe is given for deciding when a mechanical system is kinematic. I
was forced to consider such a condition by the propensity of some in the control community to
equate mechanical systems with “nonholonomic” systems. For example, I once saw someone
talk about the snakeboard as a nonholonomic system, which it most certainly is not! For
work which is not mine (!) and which employs the affine connection, see [Rathinam and
Murray 1998].
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