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What’s the problem?

• Consider two mechanical control systems:

θ

ψ

r F

h

• Think about starting at rest and then applying controls.

• Do the systems behave somehow “differently”?

• Are either, in any sense, “nonholonomic (driftless) control systems”?
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1. Are all mechanical control systems

“nonholonomic” (i.e., driftless) systems?

• Short answer: No! Longer answer requires defining the words. . .

• “Nonholonomic” control systems are control affine systems with no

drift:

q̇(t) = u1(t)X1(q(t)) + . . .+ um(t)Xm(q(t))

for vector fields X1, . . . , Xm.

• What is a mechanical control system? The data for such as we will

consider is:

1. a configuration manifold Q;

2. a Riemannian metric g (kinetic energy);

3. (possibly) a distribution D on Q describing nonholonomic

velocity constraints.
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• The two earlier examples are unconstrained systems.

• Two nonholonomically constrained systems are:

φr

θ(x, y)

φ2

φ1
ψ

θ

l

• Do these control systems behave somehow “differently” from one

another?

• Are either, in any sense, “nonholonomic (driftless) control systems”?
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2. Affine connection control systems

• The four mechanical examples we have seen (leg, planar body,

rolling disk, snakeboard) are examples of a special and interesting

class of control systems.

• Consider systems with no constraints—write their equations of

motion.

• Use coordinates (q1, . . . , qn) for Q and write the Euler-Lagrange

equations for the Lagrangian L(q, q̇) = 1
2gij(q)q̇

iq̇j :

d

dt

( ∂L

∂q̇i

)

−
∂L

∂qi
= gij

[

q̈j + gjk
(∂gkℓ

∂qm
−

1

2

∂gℓm

∂qk

)

q̇ℓq̇m
]

= gij

[

q̈j+
g

Γj
ℓmq̇ℓq̇m

]

.
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• The n3 functions

g

Γi
jk =

1

2
giℓ

(∂gℓj

∂qk
+

∂gℓk

∂qj
−

∂gjk

∂qℓ

)

are the Christoffel symbols for the Levi-Civita affine connection

associated with the metric g.

• Denote this affine connection by
g

∇—we then have

q̈i+
g

Γ i
jk q̇

j q̇k = 0, i = 1, . . . , n

⇐⇒
g

∇ q̇(t)q̇(t) = 0 ∼ mass×acceleration= 0

These are the unforced equations (i.e., geodesic equations).

• Not completely trivial fact: For systems with nonholonomic

constraints, the unforced equations are still geodesic equations, but

with respect to a more complicated affine connection (Synge [1928],

Bloch and Crouch [1995]).

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 7

• Punchline: we study affine connection control systems:

∇q̇(t)q̇(t) = u1(t)Y1(q(t)) + . . .+ um(t)Ym(t) (DYN)

for general affine connections ∇ and input vector fields Y1, . . . , Ym.

• We are interested in when such a system is “equivalent” to one like

q̇(t) = ũ1(t)X1(q(t)) + . . .+ ũm̃(t)Xm̃(t). (KIN)

• One must define “equivalent” properly—for example, the

systems (DYN) and (KIN) are never equivalent with the same class

of inputs.
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3. (Udyn,Ukin)-reducibility

• We define a pair of suitable classes of inputs:

1. Udyn are bounded, measurable inputs;

2. Ukin are absolutely continuous inputs.

• Inputs from Ukin are “one level smoother” than those from Udyn.

• Let us define a pair of distributions corresponding to systems (DYN)

and (KIN):

1. Ddyn = span{Y1, . . . , Ym};

2. Dkin = span{X1, . . . , Xm̃}.
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• Definition 1 An affine connection control system (DYN) is

(Udyn,Ukin)-reducible to a driftless system (KIN) if the following

two conditions hold:

(i) for each controlled trajectory (σ, u) of (DYN) with u ∈ Udyn and

with initial condition σ(0) in the distribution Dkin, there exists a

controlled trajectory (c, ũ) of (KIN) with ũ ∈ Ukin and with the

property that c = τQ ◦σ;

(ii) for each controlled trajectory (c, ũ) of (KIN) with ũ ∈ Ukin, there

exists a controlled trajectory (σ, u) of (DYN) with u ∈ Udyn and

with the property that σ(t) = c′(t) for a.e. t ∈ [0, T ].

• This is as good as one might expect—it is impossible that all

trajectories of (DYN) be lifts of trajectories of (KIN) since the latter

always has velocities in Dkin.
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4. Conditions for (Udyn,Ukin)-reducibility

• We need a simple operation associated with ∇—the symmetric

product:

〈X : Y 〉 = ∇XY +∇Y X.

• In coordinates

(

∇XY
)i

=
∂Y i

∂qj
Xj + Γi

jkX
jY k, i = 1, . . . , n.

• Theorem 1 The affine connection control system (DYN) is

(Udyn,Ukin)-reducible to a system of the form (KIN) if and only if

the following two conditions hold:

(i) Ddyn = Dkin;

(ii) 〈X : Y 〉 ∈ Γ∞(Ddyn) for every X,Y ∈ Γ∞(Ddyn).
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• Condition (ii) of the theorem has a geometric interpretation.

• ADL [1998] shows that condition (ii) holds if and only if

Ddyn ⊂ TQ is invariant under the unforced dynamics of the affine

connection control system (DYN).

• The symmetric product has a rôle sort of like that of the Lie bracket:

◦ a distribution D is integrable if and only if it is closed under Lie

bracket (Frobenius’s theorem);

◦ a distribution D is “invariant under the geodesic dynamics” if

and only if it is closed under symmetric product.
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5. Examples again

• Of the four systems we have looked at, these two are

(Udyn,Ukin)-reducible:

θ

ψ

r
φr

θ(x, y)

• These two are not:

F

h

φ2

φ1
ψ

θ

l
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6. What to conclude?

• Not very many mechanical systems are (Udyn,Ukin)-reducible (since

a generic distribution is not closed under 〈· : ·〉).

• Those which are (Udyn,Ukin)-reducible are very likely amenable to

more simplified control techniques.

• Our theorem is another indication of the utility of the affine

connection formalism in investigating the types of mechanical

control systems we have discussed today.∗

∗See ADL/Murray, SIAM Review, 41(3), 555-574.
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