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1. What are affine connection control systems?

• Shortly, they are this:

1. a configuration manifold Q;

2. an affine connection ∇ on Q;

3. a collection Y = {Y1, . . . , Ym} of vector fields on Q.

• The corresponding control system is

∇c′(t)c
′(t) = ua(t)Ya(c(t))

for a controlled trajectory (u, c).
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• Examples of affine connection control systems:

1. Lagrangian systems with kinetic energy Lagrangians (∇ is the

Levi-Civita connection for the kinetic energy Riemannian metric).

For example, (some of these need potential energy)

◦ satellites,

◦ robotic manipulators,

◦ underwater vehicles, etc.

2. Same as above with the addition of constraints linear in velocity. For

example,

◦ locomotion systems (wheeled vehicles),

◦ grasping applications, etc.
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2. Why are affine connection control systems

interesting?

• Lots of interesting applications, including some surprisingly subtle

“simple” examples.

• The data for the systems, i.e., the affine connection ∇ and the input

vector fields Y , is a seemingly nice combination of structural simplicity

and challenging geometry.

◦ The systems are not at all amenable to linear methods (they are

hard).

◦ One can get complete answers to some fundamental questions (they

are not too hard).

• Any area of (nonlinear, of course) control theory with a differential

geometric foundation ought to have a specially structured counterpart

for affine connection control systems.
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• In this talk we concentrate on two questions:

1. optimal control;

2. nonlinear controllability (time permitting).

• Other questions which have been successfully approached include:

◦ trajectory generation when Q is a Lie group (Bullo and Leonard);

◦ series expansions (Bullo, Ostrowski);

◦ vibrational control (Baillieul, Bullo);

◦ kinetic shaping using feedback (Bloch et al., Auckly et al., Hamberg)
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Affine connection control systems as control affine systems

• Convert

∇c′(t)c
′(t) = ua(t)Ya(c(t))

to control affine system on TQ:

v̇(t) = f0(v(t)) + ua(t)fa(v(t)),

v ∈ TQ.

• Turns out that

1. the drift is the geodesic spray denoted f0 = Z, and

2. the control vector fields are the vertical lifts of the vectors fields from

Y : we write fa = Y lift
a .
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3. The Maximum Principle for affine connection control

systems

• Noakes, Heinzinger, Paden, and Crouch, Silva Leite, and Sontag,

Sussmann, and Fax, Murray, and Chyba, Leonard, Sontag.

• We shall investigate in a little detail one of the several consequences of

the Maximum Principle as it applies to affine connection control systems.

• Start general—let’s look at the Maximum Principle for

c′(t) = f0(c(t)) + ua(t)fa(c(t)),

with c(t) ∈ M , u taking values in U ⊂ Rm, and objective function

L(x, u).

• Have the control Hamiltonian on U × T ∗M :

H(αx, u) = αx(f0(x))
︸ ︷︷ ︸

H1

+αx(u
afa(x))

︸ ︷︷ ︸

H2

−L(x, u)
︸ ︷︷ ︸

H3

.
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• One of several consequences of the MP is that if (u, c) is a minimiser

then there exists a one-form field λ along c with the property that

t 7→ λ(t) is an integral curve for the time-dependent Hamiltonian

(αx, t) 7→ H(αx, u(t)).

• The Hamiltonian is a sum of three terms, and so too will be the

Hamiltonian vector field. Let us look at the first term, that with (plain

old) Hamiltonian H1(αx) = αx(f0(x)).

• In local coordinates XH1 is written as

ẋi = f i
0(x)

ṗi = −
∂f

j
0

∂xi
pj “adjoint equation”?

• XH1 is the cotangent lift of f0 and we denote it fT∗

0 .

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 9

• Objective: Understand fT∗

0 when M = TQ and f0 = Z.

• Begin with a change of subject: Let f0 be a vector field on (general) M

with fT
0 its tangent lift defined by

fT
0 (vx) =

d

dt

∣
∣
∣
∣
t=0

TxFt(vx)

(Ft is the flow of f0).

• fT
0 is the “linearisation” of f0 and in coordinates is given by

ẋi = f i
0(x)

v̇i =
∂f i

0

∂xj
vj




compare fT∗

0 :

ẋi = f i
0(x)

ṗi = −
∂f

j
0

∂xi
pj






• The flow of fT
0 measure how the integral curves of f0 change as we

change the initial condition in the direction of vx.
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• The general picture you might have in mind for integral curves of fT
0 is

this:

c(t0)

vx

v(t0)

• If the integral curve of f0 is stable to perturbations in the direction of vx:

c(t0)vx

v(t0)

• If the integral curve of f0 is unstable to perturbations in the direction of

vx:

c(t0)

vx

v(t0)
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• Perhaps we can understand ZT—thus take M = TQ and f0 = Z in the

discussion of tangent lift.

• Note:

◦ Projections of integral curves of Z to Q are geodesics of ∇.

◦ ZT measures variations of integral curves of Z.

◦ Thus ZT measures variations of geodesics.

◦ But we know something else which measures variations of

geodesics. . .

• Let c(t) be a geodesic. By varying the initial condition for the geodesic

we generate an “infinitesimal variation” ξ of the geodesic and it turns

out to satisfy. . . the Jacobi equation:

∇2
c′(t)ξ(t) +R(ξ(t), c′(t))c′(t) +∇c′(t)

(
T (ξ(t), c′(t))

)
= 0.

• What is the precise relationship between ZT and the Jacobi equation?
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Some tangent bundle geometry using Z

• To make the “connection” between ZT and the Jacobi equation, we

perform constructions on the tangent bundle using the spray Z.

• ∇ comes from a linear connection on Q which induces an Ehresmann

connection on πTQ : TQ → Q.

• Thus we may write TvqTQ ≃ TqQ⊕ TqQ.

• ZT is not a spray, but. . . if IQ : TTQ → TTQ is the canonical

involution then I∗QZ
T is a spray.

• Use I∗QZ
T to induce an Ehresmann connection on πTTQ : TTQ→ TQ.

• Thus

TXvq
TTQ ≃ TvqTQ⊕ TvqTQ

≃ TqQ⊕ TqQ
︸ ︷︷ ︸

geodesic equations

⊕ TqQ⊕ TqQ
︸ ︷︷ ︸

variation equations
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• One represents ZT in this splitting and determines that the Jacobi

equation sits “inside” one of the four components.

• Now one applies similar constructions to T ∗TQ and ZT∗

to derive (all

going to plan) a one-form version of the Jacobi equation.

• Need a little notation:

〈R∗(α, u)v;w〉 = 〈α;R(w, u)v〉, 〈T ∗(α, u);w〉 = 〈α;T (w, u)〉.

• After the dust settles, we get what we are after which is the adjoint

Jacobi equation:

∇2
c′(t)λ(t) +R∗(λ(t), c′(t))c′(t)− T ∗(∇c′(t)λ(t), c

′(t)) = 0.
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• Why did I do this?

◦ The adjoint Jacobi equation captures the interesting part of the

Hamiltonian vector field ZT∗

, which comes from the MP, and words

it in terms of affine differential geometry, i.e.,

ZT∗

∇c′(t)c
′(t) = 0

∇2
c′(t)λ(t) +R∗(λ(t), c′(t))c′(t)− T ∗(∇c′(t)λ(t), c

′(t)) = 0.

◦ The geometry of Z on TQ provides a way of globally pulling out the

“adjoint equation” from the MP in an intrinsic manner—this is not

generally possible in the MP.
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• The adjoint Jacobi equation forms the backbone of a general statement

of the MP for affine connection control systems.

◦ The contribution of the inputs needs to be added (easy).

◦ The contribution of the objective function needs to be added

(difficulty depends on the nature of the function).

• When objective function is L(u, vq) =
1
2g(vq, vq), when ∇ is the

Levi-Civita connection for g, and when the system is fully actuated, then

we recover the equation of Noakes, Heinzinger, and Paden and Crouch

and Silva Leite:

∇3
c′(t)c

′(t) +R(∇c′(t)c
′(t), c′(t)) = 0.

• Where to go from here?

◦ Work out some examples!

◦ Examine conditions for extremals to be nonsingular.

◦ Time-optimal control and controllability.

◦ Infinite-horizon stabilising controllers.
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4. Some controllability results

• The controllability results are for “configuration

controllability”—determine the character of the set of configurations

reachable from an initial state with zero velocity.

• Results are local we use the control Lie algebra structure. This

structure is very rich!

• Convert to control affine system on TQ:

v̇(t) = f0(v(t)) + ua(t)fa(v(t)),

v ∈ TQ.

• Recall that

1. the drift is the geodesic spray denoted f0 = Z, and

2. the control vector fields are the vertical lifts of the vectors fields from

Y : we write fa = Y lift
a .
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• To evaluate brackets at 0q ∈ TqQ, note that T0qTQ ≃ TqQ⊕ TqQ.

• Given Z, we have seen that for any vq ∈ TQ we have a decomposition

TvqTQ ≃ TqQ⊕ TqQ, but that at 0q is natural.

Some sample brackets

• All brackets [Y lift
a , Y lift

b ] vanish identically.

• [Z, Y lift
a ](0q) = (−Ya(q), 0).

• Globally we have [Y lift
a , [Z, Y lift

b ]] = (0, 〈Ya : Yb〉) where

〈Ya : Yb〉 = ∇YaYb +∇YbYa (symmetric product).

• [[Z, Y lift
a ], [Z, Y lift

b ]](0q) = ([Ya, Yb](q), 0).

• Punchline: When evaluating brackets at 0q we get symmetric products

(in the vertical direction) and Lie brackets of symmetric products (in the

horizontal direction) of vector fields from Y .
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• This can be turned into a theorem. Let Sym(Y ) be the distribution

generated by symmetric products from Y and let Lie(Sym(Y )) be the

involutive closure of Sym(Y ).

Theorem 1 Let q ∈ Q and let Λq be the integral manifold through q of

the distribution Lie(Sym(Y )). For an analytic affine connection control

system, the set of configurations reachable from q ∈ Q is contained in Λq

and contains a nonempty open subset of Λq.

• If dim(Λq) = dim(Q) then the system is locally configuration

accessible at q.

• Local configuration controllability (i.e., the ability to reach a

neighbourhood of the initial configuration) is a more subtle question.

◦ We have sufficient conditions.

◦ When m = 1: Local configuration controllability⇐⇒ dim(Q) = 1.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 19

• Note: Necessary and sufficient conditions are not known for general

single-input systems. . . affine connection control systems have a very

structured control Lie algebra.

• Perhaps necessary and sufficient conditions for local controllability are

possible for multi-input affine connection control systems.

• The sufficient conditions for configuration controllability suggest motion

control algorithms which may be implemented, e.g., on Lie groups.

• Controllability away from zero velocity? Involves curvature, i.e., the

holonomy of the affine connection.
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Controllability for a few examples

• Planar rigid body

φF

h

1. φ fixed and not 0, π: Locally configuration accessible, but not locally

configuration controllable (it is single-input).

2. φ fixed at 0 or π: Not locally configuration accessible (dim(Λq) = 1

for every q ∈ Q).

3. φ free to vary: Locally configuration controllable.
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• Snakeboard

φ

φ
ψ

θ

l

1. With either single input: Not locally configuration accessible

(dim(Λq) = 1 for almost every q ∈ Q).

2. With both inputs: Locally configuration controllable.
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5. Other things concerning affine connection control

systems

• Can affine connection control systems be simplified or be put into a

form desirable for certain ends (equivalence and feedback).

• Linear stabilisation methods fail =⇒ can we find nice stabilisation

algorithms. Homogeneity useful here?

• Trajectory generation.

• Systematic investigation of effects of symmetry.

• etc. etc.
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