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1. What are affine connection control systems?

e Shortly, they are this:
1. a configuration manifold Q;
2. an affine connection V on Q;
Slide 2 3. a collection % = {Y1,...,Y,,} of vector fields on Q.

e The corresponding control system is

Ve () = u®(t)Ya(c(t))

for a controlled trajectory (u,c).
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e Examples of affine connection control systems:

1. Lagrangian systems with kinetic energy Lagrangians (V is the
Levi-Civita connection for the kinetic energy Riemannian metric).
For example, (some of these need potential energy)
o satellites,

Slide 3 o robotic manipulators,

o underwater vehicles, etc.

2. Same as above with the addition of constraints linear in velocity. For
example,
o locomotion systems (wheeled vehicles),

o grasping applications, etc.

2. Why are affine connection control systems
interesting?

e Lots of interesting applications, including some surprisingly subtle

“simple” examples.

e The data for the systems, i.e., the affine connection V and the input
vector fields %, is a seemingly nice combination of structural simplicity
Slide 4 and challenging geometry.
o The systems are not at all amenable to linear methods (they are
hard).
o One can get complete answers to some fundamental questions (they

are not too hard).

e Any area of (nonlinear, of course) control theory with a differential
geometric foundation ought to have a specially structured counterpart
for affine connection control systems.
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e |n this talk we concentrate on two questions:
1. optimal control;

2. nonlinear controllability (time permitting).

e Other questions which have been successfully approached include:
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o trajectory generation when @ is a Lie group (Bullo and Leonard);
o series expansions (Bullo, Ostrowski);

o vibrational control (Baillieul, Bullo);

o kinetic shaping using feedback (Bloch et al., Auckly et al., Hamberg)

Affine connection control systems as control affine systems

e Convert
Ve (t) = u (t)Ya(c(t))

to control affine system on T'Q:
0(t) = fo(v(t)) + u(t) fo(v(t)),
Slide 6 () = fo(v(t)) +u(t) falv(t))
veTqQ.
e Turns out that

1. the drift is the geodesic spray denoted fy = Z, and

2. the control vector fields are the vertical lifts of the vectors fields from
Y: we write f, = Yft.
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3. The Maximum Principle for affine connection control
systems

e Noakes, Heinzinger, Paden, and Crouch, Silva Leite, and Sontag,

Sussmann, and Fax, Murray, and Chyba, Leonard, Sontag.

e We shall investigate in a little detail one of the several consequences of

the Maximum Principle as it applies to affine connection control systems.

e Start general—let's look at the Maximum Principle for

(1) = fole(t)) +u®(t) fale(t)),

with ¢(t) € M, u taking values in U C IR, and objective function
L(z,u).

e Have the control Hamiltonian on U x T*M:

H(az,u) = a,(fo(x)) + az(u® fo(z)) — Lz, u).

H; H> Hs

e One of several consequences of the MP is that if (u,c) is a minimiser

then there exists a one-form field A along c with the property that
t — A(t) is an integral curve for the time-dependent Hamiltonian
(az,t) = H(ay,u(t)).

e The Hamiltonian is a sum of three terms, and so too will be the

Hamiltonian vector field. Let us look at the first term, that with (plain
old) Hamiltonian Hi(a,) = ax(fo(x)).

e In local coordinates Xy, is written as

i = fo(w)
. f i on”
Pi= — 5P —— adjoint equation”?

e Xy, is the cotangent lift of fy and we denote it fg*.
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e Objective: Understand fJ when M = TQ and f, = Z.

e Begin with a change of subject: Let fy be a vector field on (general) M
with fI its tangent lift defined by
f(,jT(Um) T — Ty Fy(va)

(Fy is the flow of fo).
o fI is the “linearisation” of fy and in coordinates is given by
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o The flow of fI' measure how the integral curves of fy change as we

change the initial condition in the direction of v,.

e The general picture you might have in mind for integral curves of fI is

this:
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o Perhaps we can understand Z7—thus take M = T'Q and fy = Z in the
discussion of tangent lift.

e Note:
o Projections of integral curves of Z to () are geodesics of V.
o Z"T measures variations of integral curves of Z.
o Thus Z7 measures variations of geodesics.

Slide 11 o But we know something else which measures variations of
geodesics. . .

e Let ¢(t) be a geodesic. By varying the initial condition for the geodesic
we generate an “infinitesimal variation” ¢ of the geodesic and it turns
out to satisfy... the Jacobi equation:

Vaw€(t) + RE®), ¢ ()¢ (1) + Ve (TER), (1)) = 0.

e What is the precise relationship between Z7 and the Jacobi equation?

Some tangent bundle geometry using Z

e To make the “connection” between ZT and the Jacobi equation, we
perform constructions on the tangent bundle using the spray Z.

e V comes from a linear connection on ) which induces an Ehresmann
connection on Trg: TQ — Q.

e Thus we may write T, TQ ~ T,Q © T,Q.

Slide 12 ° Z7T is not a spray, but...if Io: TTQ — TTQ is the canonical
involution then 152" is a spray.

e Use IZ‘QZT to induce an Ehresmann connection on mrrg: TTQ — TQ.
e Thus
Tx, TTQ =T, TQ® T, TQ
~ T,QeT,Q & T,QeT,Q

geodesic equations  variation equations
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o One represents Z7 in this splitting and determines that the Jacobi
equation sits “inside” one of the four components.

o Now one applies similar constructions to T*T'Q and ZT~ to derive (all

going to plan) a one-form version of the Jacobi equation.

e Need a little notation:
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(B (o, w)v;w) = (e R(w,u)v), (T (e, u);w) = (o T'(w, u)).

o After the dust settles, we get what we are after which is the adjoint
Jacobi equation:

Ve Mt + RE A1), ¢ (1) (t) = T* (Ve At), ¢ () = 0.

e Why did | do this?

o The adjoint Jacobi equation captures the interesting part of the
Hamiltonian vector field Z7~, which comes from the MP, and words
it in terms of affine differential geometry, i.e.,

7T
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Vewnd(t) =0

Ve mAt) + R (A@®), ¢ (1)) (1) = T (Vo A1), ¢ (1)) = 0.

o The geometry of Z on T'Q) provides a way of globally pulling out the
“adjoint equation” from the MP in an intrinsic manner—this is not
generally possible in the MP.
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e The adjoint Jacobi equation forms the backbone of a general statement

°
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of the MP for affine connection control systems.
o The contribution of the inputs needs to be added (easy).
o The contribution of the objective function needs to be added

(difficulty depends on the nature of the function).

When objective function is L(u,vy) = $9(vq, vq), when V is the
Levi-Civita connection for g, and when the system is fully actuated, then
we recover the equation of Noakes, Heinzinger, and Paden and Crouch
and Silva Leite:

Vi,(t)cl(t) + R(Vc/(t)cl(t), Cl(t)) =0.

Where to go from here?

o Work out some examples!

o Examine conditions for extremals to be nonsingular.
o Time-optimal control and controllability.

o Infinite-horizon stabilising controllers.

4. Some controllability results

The controllability results are for “configuration
controllability” —determine the character of the set of configurations
reachable from an initial state with zero velocity.

Results are local === we use the control Lie algebra structure. This
structure is very rich!

Convert to control affine system on T'Q):

o(t) = fo(v(t)) +u®(t) falv(t)),
veTqQ.
Recall that

1. the drift is the geodesic spray denoted fy = Z, and

2. the control vector fields are the vertical lifts of the vectors fields from
Y: we write f, = Yift.
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e To evaluate brackets at 0, € T,Q, note that Tp, TQ ~ T,Q ® T,Q.

e Given Z, we have seen that for any v, € T'(Q we have a decomposition
T,,TQ ~T,Q ® T,Q, but that at 0, is natural.

Some sample brackets
e All brackets [V, V}Iif'] vanish identically.

Slide 17 * [%Ya"](0g) = (=Ya(4),0).
Globally we have [V [Z, V}Iif]] = (0, (Y, : ;) where

(Yo : Y1) =Vy, Y, + Vy, Y, (symmetric product).

12, Y2112, Y,"]](0g) = ([Ya, Y3](q). 0).

Punchline: When evaluating brackets at 0, we get symmetric products
(in the vertical direction) and Lie brackets of symmetric products (in the
horizontal direction) of vector fields from %'.

e This can be turned into a theorem. Let Sym(%/') be the distribution
generated by symmetric products from % and let Lie(Sym(%)) be the
involutive closure of Sym(%/).

Theorem 1 Let g € Q and let A, be the integral manifold through q of

the distribution Lie(Sym(%)). For an analytic affine connection control

system, the set of configurations reachable from q € () is contained in A,
Slide 18 and contains a nonempty open subset of A,.

o If dim(A,) = dim(@) then the system is locally configuration

accessible at g.

e Local configuration controllability (i.e., the ability to reach a
neighbourhood of the initial configuration) is a more subtle question.

o We have sufficient conditions.

o When m = 1: Local configuration controllability <= dim(Q) = 1.
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e Note: Necessary and sufficient conditions are not known for general
single-input systems. . . affine connection control systems have a very
structured control Lie algebra.

e Perhaps necessary and sufficient conditions for local controllability are
Slide 19 possible for multi-input affine connection control systems.

e The sufficient conditions for configuration controllability suggest motion
control algorithms which may be implemented, e.g., on Lie groups.

e Controllability away from zero velocity? Involves curvature, i.e., the
holonomy of the affine connection.

Controllability for a few examples

e Planar rigid body
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1. ¢ fixed and not 0, w: Locally configuration accessible, but not locally
configuration controllable (it is single-input).

2. ¢ fixed at 0 or 7: Not locally configuration accessible (dim(A4) =1
for every ¢ € Q).

3. ¢ free to vary: Locally configuration controllable.
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e Snakeboard
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1. With either single input: Not locally configuration accessible
(dim(A4) = 1 for almost every g € Q).

2. With both inputs: Locally configuration controllable.

5. Other things concerning affine connection control
systems

Can affine connection control systems be simplified or be put into a
form desirable for certain ends (equivalence and feedback).

Slide 22 o Linear stabilisation methods fail = can we find nice stabilisation
algorithms. Homogeneity useful here?

Trajectory generation.

Systematic investigation of effects of symmetry.

e etc. etc.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



