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1. Some toys
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2. What is control theory?

• It is a huge field spanning the most applied engineering disciplines to

essentially pure mathematics.

2.1. Differential equations

• Consider a rather general differential equation:

ẋ(t) = f(t, x(t)), x(t0) = x0.

• This can only be “solved” in very special cases: e.g., in the linear case

when f(t, x) = Ax.

• In the general case, one seeks qualitative descriptions: are certain known

solutions stable? are there periodic solutions? etc.
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2.2. Control systems

• A quite general control system may be written as

ẋ(t) = F (t, x(t), u(t)), x(t0) = x0.

• One wishes to design a control u(t) (“open loop”) or u(x) (“closed

loop”) so that the system behaves in a desired manner. For example

◦ steer from a point x0 to a point x1;

◦ render a point x0 stable;

◦ follow a desired trajectory xdes(t).

• Such design is normally far more difficult than solving differential

equations look for qualitative descriptions.
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3. Controllability

• Controllability theory essentially deals with the question, “Where can

you go from here?”

• It is an essential basic element in any theory of control, e.g., for

“stabilisability.”

• Essentially there are two classes of problems:

q0

big excursions
not allowed

q0

Local accessibility Local controllability

ẋ = F (x, u)
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• Example:

ẋ = u

ẏ = 1

x

y

(x0, y0)

y = y0 + τ

y = y0 + T

• This example is locally accessible, but not locally controllable.

• If y were a circular coordinate, the example would be locally accessible,

but globally controllable.

• We stick to systems whose controllability can be described locally since

one can essentially characterise local controllability using the knowledge

of the system and its derivatives at the initial point.
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• Here’s a hard problem:
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2

• Is this system

◦ locally accessible? (answer “standard”)

◦ locally controllable? (answer quite difficult)

◦ globally controllable? (I do not know)
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4. Controllability analysis

• Consider the following simple control system:

ẋ(t) = u1(t)f1(x(t)) + u2(t)f2(x(t)).

• Apply the control

u(t) =



























(1, 0), 0 ≤ t < T

4

(0, 1), T

4
≤ t < T

2

(−1, 0), T

2
≤ t < 3T

4

(0,−1), 3T

4
≤ t ≤ T.

• Where does x(T ) end up?

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 8

• Then we determine that

x(T ) =
√
T [f1, f2](x(0)) + h.o.t., [f1, f2] =

∂f2

∂x
f1 −

∂f1

∂x
f2.

• [f1, f2] is the Lie bracket of f1 and f2.

• More generally, we may consider a control system like

ẋ(t) = f0(x(t)) + u1(t)f1(x(t)) + · · ·+ um(t)fm(x(t)).

• By applying suitable controls, one may move in the directions

f0, f1, . . . , fm,

[fa, fb], a, b = 0, . . . ,m,

[fa, [fb, fc]], a, b, c = 0, . . . ,m,

etc..
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A simple exhibition of the Lie bracket

[f1, f2]
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• The previous “arguments” form the basis for deciding whether a system

is locally accessible. For real analytic systems the issue has been decided

since 1972.1

• Local controllability is darn hard!

• For analysts. . . Let U be the set of measurable controls. For u ∈ U
defined on the interval [0, T ] define ‖u‖ = T + ‖u‖∞. For x0 ∈ Rn

consider the map sending u to the solution of the IVP

ẋ(t) = F (x(t), u(t)), x(0) = x0

at time T . Local controllability then becomes a nonlinear open mapping

theorem from U to Rn: Map a neighbourhood of the zero control to a

neighbourhood of x0.

1H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, Journal

of Differential Equations, 12, 95–116, 1972.
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• What is known about local controllability?

◦ For special systems (e.g., linear), computable necessary and sufficient

conditions exist.

◦ For quite general systems, computable sufficient or necessary

conditions exist.

◦ The state of the art is a morass of seemingly related results with no

as yet understood unity.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 12

5. Controllability of toys
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6. Mechanical control systems

• The toys are very special—they are “mechanical.”

• Differential geometric methods are important in control for general

nonlinear systems. . . they are indispensable for mechanical systems!

• Geodesics are length minimising curves.
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• What does length minimisation mean?

For planar curves the length of a curve is

ℓ =

∫ 1

0

√

ẋ(t) + ẏ(t) dt.

• More generally, we may define a version of length by

ℓ =

∫

1

0

√

ẋT (t)M(x(t))ẋ(t) dt

for a positive-definite matrix function M .

• Geodesics will now depend on M , and they can be pretty wild.
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• Now consider a particle of mass m in the plane. Its kinetic energy is

K =
1

2
m(ẋ2 + ẏ2).

• We may define a more general kinetic energy by

K =
1

2
ẋT (t)M(x(t))ẋ(t)

for a positive-definite matrix function M .

• Fact: length minimising curves also minimise the corresponding kinetic

energy.

• Principal which governs the mechanical world: A system left to its own

devices will move in such a way that it (locally) minimises its kinetic

energy.
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• The study of the free motions of a mechanical system is “the same” as

the study of length minimising curves.

• The correct object is the “Levi-Civita connection corresponding to the

Riemannian metric defining the kinetic energy of the mechanical

system.”

• Now start adding stuff.

• Constraints:

l1

l2

θ

ψ

• Nontrivial and important fact: the “form” of the equations describing

the free motion remain unchanged when constraints are added.
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• Summary of mechanics: The study of unforced mechanical systems

reduces to studying geodesic equations affine differential

geometry.

• To do control, one needs forces; one force for each direction in which we

have authority.

• “Fact:” The geometry of the mechanical structure reacts well with the

geometry of the control problem, e.g.,

Lie brackets look nice

One can answer questions which are as yet untouchable in general.
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7. Controllability analysis (sometimes) leads to control

design
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