Generalised splines via the maximum principle

Andrew D. Lewis*

11/07/2001
Slide 0

*Department of Mathematics and Statistics, Queen's University
Email: andrew.lewis@queensu.ca
URL: http://www.mast.queensu.ca/~andrew/

1. The approach

- Question: What is a spline?
- My answer: A curve satisfying a differential equation arising from a minimisation problem.
- Typically, the necessary conditions arising from the minimisation problem are derived with a variational approach.
- Instead, I will use the maximum principle.
- This allows the solution of more general minimisation problems, including, for example, control constraints.
- The control systems I employ are well-suited to the generation of wide classes of curves on manifolds: affine connection control systems.

2. What are affine connection control systems?

- Shortly, they are this:

1. a configuration manifold Q;
2. an affine connection ∇ on Q;

Slide 2
3. a collection $\mathscr{Y}=\left\{Y_{1}, \ldots, Y_{m}\right\}$ of vector fields on Q.

- The corresponding control system is

$$
\nabla_{c^{\prime}(t)} c^{\prime}(t)=u^{a}(t) Y_{a}(c(t))
$$

for a controlled trajectory (u, c).

- Mechanical examples of affine connection control systems:

1. Lagrangian systems with kinetic energy Lagrangians (∇ is the Levi-Civita connection for the kinetic energy Riemannian metric).
For example (some of these need potential energy),

- satellites,

Slide $3 \circ$ robotic manipulators,

- underwater vehicles, etc.

2. Same as above with the addition of constraints linear in velocity. For example,

- locomotion systems (wheeled vehicles),
- grasping applications, etc.

3. Affine connection control systems as control affine

 systems- Convert

$$
\nabla_{c^{\prime}(t)} c^{\prime}(t)=u^{a}(t) Y_{a}(c(t))
$$

to control affine system on $T Q$:
Slide 4

$$
\dot{v}(t)=f_{0}(v(t))+u^{a}(t) f_{a}(v(t))
$$

$v \in T Q$.

- Turns out that

1. the drift is the geodesic spray denoted $f_{0}=Z$, and
2. the control vector fields are the vertical lifts of the vectors fields from \mathscr{Y} : we write $f_{a}=Y_{a}^{\text {lift }}$.

4. The Maximum Principle for affine connection control systems

- Noakes, Heinzinger, Paden, and Camarinha, Crouch, Silva Leite, and Sontag, Sussmann, and Fax, Murray, and Chyba, Leonard, Sontag.
- We shall investigate in a little detail one of the several consequences of the Maximum Principle as it applies to affine connection control systems.
- Start general—let's look at the Maximum Principle for

$$
c^{\prime}(t)=f_{0}(c(t))+u^{a}(t) f_{a}(c(t))
$$

with $c(t) \in M, u$ taking values in $U \subset \mathbb{R}^{m}$, and objective function $L(x, u)$.

- Have the control Hamiltonian on $U \times T^{*} M$:

$$
H\left(\alpha_{x}, u\right)=\underbrace{\alpha_{x}\left(f_{0}(x)\right)}_{H_{1}}+\underbrace{\alpha_{x}\left(u^{a} f_{a}(x)\right)}_{H_{2}}-\underbrace{L(x, u)}_{H_{3}} .
$$

- One of several consequences of the MP is that if (u, c) is a minimiser then there exists a one-form field λ along c with the property that $t \mapsto \lambda(t)$ is an integral curve for the time-dependent Hamiltonian $\left(\alpha_{x}, t\right) \mapsto H\left(\alpha_{x}, u(t)\right)$.
- The Hamiltonian is a sum of three terms, and so too will be the Hamiltonian vector field. Let us look at the first term, that with (plain old) Hamiltonian $H_{1}\left(\alpha_{x}\right)=\alpha_{x}\left(f_{0}(x)\right)$.
- In local coordinates $X_{H_{1}}$ is written as

$$
\begin{aligned}
\dot{x}^{i} & =f_{0}^{i}(x) \\
\dot{p}_{i} & =-\frac{\partial f_{0}^{j}}{\partial x^{i}} p_{j} \quad \longleftarrow \quad \text { "adjoint equation"? }
\end{aligned}
$$

- $X_{H_{1}}$ is the cotangent lift of f_{0} and we denote it $f_{0}^{T^{*}}$.
- Objective: Understand $f_{0}^{T^{*}}$ when $M=T Q$ and $f_{0}=Z$.
- Begin with a change of subject: Let f_{0} be a vector field on (general) M with f_{0}^{T} its tangent lift defined by

$$
f_{0}^{T}\left(v_{x}\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} T_{x} F_{t}\left(v_{x}\right)
$$

(F_{t} is the flow of f_{0}).
Slide 7

- f_{0}^{T} is the "linearisation" of f_{0} and in coordinates is given by

$$
\begin{aligned}
\dot{x}^{i} & =f_{0}^{i}(x) \\
\dot{v}^{i} & =\frac{\partial f_{0}^{i}}{\partial x^{j}} v^{j}
\end{aligned} \quad\left(\begin{array}{ll}
\text { compare } f_{0}^{T^{*}}: & \dot{x}^{i}=f_{0}^{i}(x) \\
& \dot{p}^{i}=-\frac{\partial f_{0}^{j}}{\partial x^{i}} p_{j}
\end{array}\right)
$$

- The flow of f_{0}^{T} measures how the integral curves of f_{0} change as we change the initial condition in the direction of v_{x}.
- Perhaps we can understand Z^{T}-thus take $M=T Q$ and $f_{0}=Z$ in the discussion of tangent lift.
- Note:
- Projections of integral curves of Z to Q are geodesics of ∇.
- Z^{T} measures variations of integral curves of Z.
- Thus Z^{T} measures variations of geodesics.

Slide 8

- But we know something else which measures variations of geodesics...
- Let $c(t)$ be a geodesic. By varying the initial condition for the geodesic we generate an "infinitesimal variation" ξ of the geodesic and it turns out to satisfy... the Jacobi equation:

$$
\nabla_{c^{\prime}(t)}^{2} \xi(t)+R\left(\xi(t), c^{\prime}(t)\right) c^{\prime}(t)+\nabla_{c^{\prime}(t)}\left(T\left(\xi(t), c^{\prime}(t)\right)\right)=0
$$

- What is the precise relationship between Z^{T} and the Jacobi equation?

Some tangent bundle geometry using Z

- To make the "connection" between Z^{T} and the Jacobi equation, we perform constructions on the tangent bundle using the spray Z.
- ∇ comes from a linear connection on Q which induces an Ehresmann connection on $\pi_{T Q}: T Q \rightarrow Q$.
- Thus we may write $T_{v_{q}} T Q \simeq T_{q} Q \oplus T_{q} Q$.
- Z^{T} is not a spray, but. . if $I_{Q}: T T Q \rightarrow T T Q$ is the canonical

Slide 9

 involution then $I_{Q}^{*} Z^{T}$ is a spray (it is the spray for the so-called complete lift of ∇).- Use $I_{Q}^{*} Z^{T}$ to induce an Ehresmann connection on $\pi_{T T Q}: T T Q \rightarrow T Q$.
- Thus

$$
\begin{aligned}
T_{X_{v_{q}}} T T Q & \simeq T_{v_{q}} T Q \oplus T_{v_{q}} T Q \\
& \simeq \underbrace{T_{q} Q \oplus T_{q} Q}_{\text {geodesic equations }} \oplus \underbrace{T_{q} Q \oplus T_{q} Q}_{\text {variation equations }}
\end{aligned}
$$

- One represents Z^{T} in this splitting and determines that the Jacobi equation sits "inside" one of the four components.
- Now one applies similar constructions to $T^{*} T Q$ and $Z^{T^{*}}$ to derive (all going to plan) a one-form version of the Jacobi equation.
- Need a little notation:

Slide 10

$$
\left\langle R^{*}(\alpha, u) v ; w\right\rangle=\langle\alpha ; R(w, u) v\rangle, \quad\left\langle T^{*}(\alpha, u) ; w\right\rangle=\langle\alpha ; T(w, u)\rangle
$$

- After the dust settles, we get what we are after which is the adjoint Jacobi equation:

$$
\nabla_{c^{\prime}(t)}^{2} \lambda(t)+R^{*}\left(\lambda(t), c^{\prime}(t)\right) c^{\prime}(t)-T^{*}\left(\nabla_{c^{\prime}(t)} \lambda(t), c^{\prime}(t)\right)=0
$$

- Why did I do this?
- The adjoint Jacobi equation captures the interesting part of the Hamiltonian vector field $Z^{T^{*}}$, which comes from the MP, and words it in terms of affine differential geometry, i.e.,

$$
\begin{gathered}
\nabla_{c^{\prime}(t)} c^{\prime}(t)=0 \\
\nabla_{c^{\prime}(t)}^{2} \lambda(t)+R^{*}\left(\lambda(t), c^{\prime}(t)\right) c^{\prime}(t)-T^{*}\left(\nabla_{c^{\prime}(t)} \lambda(t), c^{\prime}(t)\right)=0
\end{gathered}
$$

- The geometry of Z on $T Q$ provides a way of globally pulling out the "adjoint equation" from the MP in an intrinsic manner-this is not generally possible in the MP.
- The adjoint Jacobi equation forms the backbone of a general statement of the MP for affine connection control systems.
- The contribution of the inputs needs to be added (easy).
- The contribution of the objective function needs to be added (difficulty depends on the nature of the function).

Slide 12

- Take the case when objective function is $L\left(u, v_{q}\right)=\frac{1}{2} g\left(v_{q}, v_{q}\right)$ for a Riemannian metric, and the affine connection is not necessarily the Levi-Civita connection. (In the case when ∇ is the Levi-Civita connection, a result is obtained by Silva Leite, Camarinha, and Crouch.)
- In this case, it is possible for there to be abnormal extremals (and probably abnormal minimisers).
- The normal extremals satisfy

$$
\begin{aligned}
\nabla_{c^{\prime}(t)} c^{\prime}(t) & =-h_{\mathrm{Y}}^{\sharp}(\lambda(t)) \\
\nabla_{c^{\prime}(t)}^{2} \lambda(t)+ & R^{*}\left(\lambda(t), c^{\prime}(t)\right) c^{\prime}(t)-T^{*}\left(\nabla_{c^{\prime}(t)} \lambda(t), c^{\prime}(t)\right)= \\
& \frac{1}{2} \nabla h_{\mathrm{Y}}(\lambda(t), \lambda(t))-T^{*}\left(\lambda(t), h_{\mathrm{Y}}^{\sharp}(\lambda(t))\right),
\end{aligned}
$$

and abnormal extremals satisfy three conditions:
Slide 13

1. $\nabla_{c^{\prime}(t)} c^{\prime}(t)=u^{a}(t) Y_{a}(c(t))$,
2. $\lambda(t) \in \operatorname{ann}\left(Y_{c(t)}\right)$ for $t \in[a, b]$ and
3. λ satisfies the equation along c given by:

$$
\begin{array}{r}
\nabla_{c^{\prime}(t)}^{2} \lambda(t)+R^{*}\left(\lambda(t), c^{\prime}(t)\right) c^{\prime}(t)-T^{*}\left(\nabla_{c^{\prime}(t)} \lambda(t), c^{\prime}(t)\right)= \\
B_{\mathrm{Y}}\left(\lambda(t), u^{a}(t) Y_{a}(t)\right)
\end{array}
$$

- When ∇ is the Levi-Civita connection for g, and when the system is fully actuated, then we recover the equation of Noakes, Heinzinger, and Paden and Crouch and Silva Leite:

Slide 14

$$
\nabla_{c^{\prime}(t)}^{3} c^{\prime}(t)+R\left(\nabla_{c^{\prime}(t)} c^{\prime}(t), c^{\prime}(t)\right)=0
$$

- Where to go from here?
- Other cost functions (time, length, etc.)
- Constructible examples.

