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1. The approach

e Question: What is a spline?

e My answer: A curve satisfying a differential equation arising from a
minimisation problem.

e Typically, the necessary conditions arising from the minimisation
Slide 1 problem are derived with a variational approach.

e Instead, | will use the maximum principle.

e This allows the solution of more general minimisation problems,
including, for example, control constraints.

e The control systems | employ are well-suited to the generation of wide
classes of curves on manifolds: affine connection control systems.
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2. What are affine connection control systems?

e Shortly, they are this:
1. a configuration manifold Q;
2. an affine connection V on Q;

Slide 2 3. a collection % = {Y1,...,Y,,} of vector fields on Q.

e The corresponding control system is
Ve ¢ (t) = u® (t)Ya(c(t))

for a controlled trajectory (u, c).

e Mechanical examples of affine connection control systems:

1. Lagrangian systems with kinetic energy Lagrangians (V is the
Levi-Civita connection for the kinetic energy Riemannian metric).
For example (some of these need potential energy),
o satellites,
Slide 3 o robotic manipulators,
o underwater vehicles, etc.

2. Same as above with the addition of constraints linear in velocity. For
example,
o locomotion systems (wheeled vehicles),
o grasping applications, etc.
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3. Affine connection control systems as control affine
systems

e Convert
Ve (t) = u'(t)Ya(c(t))
to control affine system on T'Q:
Slide 4 o(t) = fo(v(t)) +u(t) fa(v(t)),
veTQ.

e Turns out that
1. the drift is the geodesic spray denoted fy = Z, and

2. the control vector fields are the vertical lifts of the vectors fields from
Y : we write f, = Yft,

4. The Maximum Principle for affine connection control
systems

e Noakes, Heinzinger, Paden, and Camarinha, Crouch, Silva Leite, and
Sontag, Sussmann, and Fax, Murray, and Chyba, Leonard, Sontag.

e We shall investigate in a little detail one of the several consequences of
the Maximum Principle as it applies to affine connection control systems.

Slide 5 ° Start general—let's look at the Maximum Principle for
c(t) = fole(t)) +u(t) falc(t)),

with ¢(t) € M, u taking values in U C IR™, and objective function
L(z,u).

e Have the control Hamiltonian on U x T*M:

H(agz,u) = a,(folx)) + az(u® fo(z)) — L(x,u) .

H;y H> Hs
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e One of several consequences of the MP is that if (u,c) is a minimiser
then there exists a one-form field A along ¢ with the property that
t — A(t) is an integral curve for the time-dependent Hamiltonian
(g, t) = H (o, u(t)).

e The Hamiltonian is a sum of three terms, and so too will be the
Hamiltonian vector field. Let us look at the first term, that with (plain

Slide 6 old) Hamiltonian Hy(a,) = a.(fo(x)).

e In local coordinates Xy, is written as

i = fo(w)
. f3 i on”
Pi= — 5P —— adjoint equation”?

e Xy, is the cotangent lift of fy and we denote it fOT*.

e Objective: Understand fI~ when M =TQ and fo = Z.

e Begin with a change of subject: Let fy be a vector field on (general) M
with fI its tangent lift defined by

d
T _
fo (vz) = a t:ojw}t(%)

(Fy is the flow of fp).

Slide 7
o fI'is the “linearisation” of f; and in coordinates is given by
it = f&(x) it = fi(x)
T .
* compare : -
i %vj p fo G ()f(i) 5
Oxd b= it

e The flow of fI' measures how the integral curves of f; change as we
change the initial condition in the direction of v,.
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o Perhaps we can understand Z7—thus take M = T'Q and fy = Z in the
discussion of tangent lift.
e Note:
o Projections of integral curves of Z to () are geodesics of V.
o Z"T measures variations of integral curves of Z.
o Thus Z7 measures variations of geodesics.
Slide 8 o But we know something else which measures variations of

geodesics. . .

e Let ¢(t) be a geodesic. By varying the initial condition for the geodesic
we generate an “infinitesimal variation” ¢ of the geodesic and it turns
out to satisfy... the Jacobi equation:

Vaw€(t) + RE®), ¢ ()¢ (1) + Ve (TER), (1)) = 0.

e What is the precise relationship between Z7 and the Jacobi equation?

Some tangent bundle geometry using 7

e To make the “connection” between Z7 and the Jacobi equation, we
perform constructions on the tangent bundle using the spray Z.

e V comes from a linear connection on ) which induces an Ehresmann
connection on mrg: TQ — Q.

e Thus we may write T, TQ ~ T,Q © T,Q.

e ZT is not a spray, but. . .if Ig: TTQ — TTQ is the canonical
Slide 9 involution then IZ‘QZT is a spray (it is the spray for the so-called
complete lift of V).

e Use IZ‘QZT to induce an Ehresmann connection on mrrg: TTQ — TQ.
e Thus
Tx,, TTQ =T, TQ® T, TQ
~ T,QaT,Q & T,QdT,Q

geodesic equations  variation equations
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o One represents Z7 in this splitting and determines that the Jacobi
equation sits “inside” one of the four components.

o Now one applies similar constructions to T*T'Q and ZT~ to derive (all

going to plan) a one-form version of the Jacobi equation.

e Need a little notation:
Slide 10

(B (o, w)v;w) = (e R(w,u)v), (T (e, u);w) = (o T'(w, u)).

o After the dust settles, we get what we are after which is the adjoint
Jacobi equation:

Ve Mt + RE A1), ¢ (1) (t) = T* (Ve At), ¢ () = 0.

e Why did | do this?

o The adjoint Jacobi equation captures the interesting part of the
Hamiltonian vector field Z7~, which comes from the MP, and words
it in terms of affine differential geometry, i.e.,

7T
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Vewnd(t) =0

Ve mAt) + R (A@®), ¢ (1)) (1) = T (Vo A1), ¢ (1)) = 0.

o The geometry of Z on T'Q) provides a way of globally pulling out the
“adjoint equation” from the MP in an intrinsic manner—this is not
generally possible in the MP.
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e The adjoint Jacobi equation forms the backbone of a general statement
of the MP for affine connection control systems.

o The contribution of the inputs needs to be added (easy).

o The contribution of the objective function needs to be added
(difficulty depends on the nature of the function).

Slide 12 o Take the case when objective function is L(u, vy) = 39(vq, vg) for a
Riemannian metric, and the affine connection is not necessarily the
Levi-Civita connection. (In the case when V is the Levi-Civita
connection, a result is obtained by Silva Leite, Camarinha, and Crouch.)

e In this case, it is possible for there to be abnormal extremals (and
probably abnormal minimisers).

e The normal extremals satisfy
Ve (t) = =hy (A1)
Ve mAt) + R (A®), ¢ (1)) () = T* (Ve A1), ¢ (t)) =
3VhY (A1), A1) = T*(A(), B (A(1))),
and abnormal extremals satisfy three conditions:

1. Ve (t) = u®(t)Yalc(t)),
2. A(t) € ann(Y(y) for t € [a,b] and
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3. X satisfies the equation along c¢ given by:

Vo mAt) + R A®), ¢ (1) () = T (Ve At), ¢ (1)) =
By(A(t), v (t)Ya(t))-
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e When V is the Levi-Civita connection for g, and when the system is fully

actuated, then we recover the equation of Noakes, Heinzinger, and
Paden and Crouch and Silva Leite:

Slide 14 Vg/(t)c/(t) + R(Vc/(t)c/(t), d(t)) =0.
o Where to go from here?

o Other cost functions (time, length, etc.)

o Constructible examples.
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