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1. The system

e Okay...it is a very simplified hovercraft model:
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e The system is modelled by:

1. configuration space @) = SE(2) with coordinates (z,y, 0);
2. kinetic energy Riemannian metric

g =m(dz ® dz 4+ dy ® dy) + Jdf ® d6;
3. control vector fields
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2. Some useful definitions

e Let Y be the distribution spanned by the input vector fields.
e Let gy denote the restriction of g to Y.
e Let the orthogonal projection onto Y be denoted Py.

e Define the (2,0) tensor hy by

hy(aq, Bg) = gY(Qu(O‘q)v gﬁ(ﬁq))-
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o Let hi: T*@Q — TQ be the associated bundle mapping.
e If Y is a vector field, VY denotes the (1,1) tensor defined by
VY(a,X) = {a;VxY)

for a one-form « and a vector field X.

3. Extremals

e We look at force and time-optimal control for the system.

e The affine connection for the system is flat and torsionless. Thus the
equations for extremals simplify from the equations for general affine
connection control systems.

3.1. Time-optimal control

Slide 3, The controls must be constrained. We use geometric constraints:

g(u®()Ya(c(t)), u (1) Yo (c(t))) < 1.
e The necessary conditions of the maximum principle are given by

Vewd (t) = u®(t)Ya(c(t))
Ve mAt) = u®(t)(VYa)* (A®)),

where A is the adjoint one-form field.
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e For nonsingular extremals, the controls are determined by the maximum

principle:
PY(A())
O, .

Slide 4 it a1 extremal has the property that A(t) € ann(Y () for all ¢, then the
extremal is singular, and (1) cannot be used to determine the controls.

uY(c(t)) = —

e For the hovercraft system, it turns out to be possible to explicitly
determine the form of all singular extremals.

3.2. Force-optimal control

e The cost function is

1
Toe() = [ a0 (0¥, (c(t). o (0i(el0)

Slide 5 ° Normal extremals satisfy
Ve (t) = =R (A(1))
Vo mAt) = 5Vhv(A(t), A(t)).

e Abnormal extremals satisfy the same conditions as singular extremals for
time-optimal control, but there are no control bounds.
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4. Partial analysis of nonsingular extremals
e A full analysis of the nonsingular extremals has not been undertaken,
but is perhaps possible, at least qualitatively.

e We look at two types of nonsingular extremals, corresponding to the
Slide 6 decoupling vector fields of Bullo and Lynch.

e Consider the two vector fields

0 . .0
X = COSG% +Sm98_y’
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Xy = —sinf— 0— — ——.
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4.1. X,

e This is a trivial problem as it boils down to optimal control of a mass
moving on a line.

e A time-optimal extremal:

Slide 7 05

S (1AN11 I

ul ()

-0.5

0.25 0.5 0.75 1 1.25 1.5 1.75
t

e The cost for the extremal is Jime = 2.
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A force-optimal extremal defined on [0, 2]:
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4.2. X,
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Preliminary analysis suggests that there are no nonsingular extremals for

the time or force-optimal problem that are reparameterised integral

curves for Xs.

However, one can restrict to such reparameterisations, and extremise

over these.
For a reparameterisation 7, the controls are given by

ul(t) = mThr'(t)2, w3 () = m7" (1)

Since the reparameterisations are unrestricted, the problem is essentially

fully actuated as a control problem.

=== standard variational methods are applicable.
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e For time-optimal control, the control bounds for a reparameterisation 7
are given by
372 2
m°h* o, mh*+J , .
TEt) + ——7(1)° <1
e Extremals satisfy a second-order variational problem with inequality
constraints involving velocity and acceleration (standard problem).

e An example of a time-optimal extremal:
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e [Note: may not be an extremal for the full problem.

e For force-optimal control, the cost function is

T 31,2 2
h h J
Jforce = / (m—J2 Tl(t)4 + _m J+ T”(t)2) dt.

e == straight calculus of variations problem.

e An example of a force-optimal extremal:
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e [Note: may not be an extremal for the full problem.
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4.3. Punchline

e |t is very easy to design open-loop controls to follow whatever
reparameterisation of integral curves of X7 and X5 one wants.

Slide 12 o The restriction of the optimal control problem to X5 integral curves is
not something one can do “by hand.”

e ==> in practice, one would likely go for some sort of suboptimal

controls for computational efficiency.

5. Complete analysis of singular extremals

e Let us first introduce a simple class of singular extremals.

e Consider a trajectory—parameterised in a very specific, but not here
specified, manner—of the hovercraft as follows:
Slide 13 o it is defined on ] — oo, oo ;
22(t) +y2(t) = ()° for all t € R;
0(t) =m+ arctan(%) forall t € R;
limy oo (2(8), y(1)) = — lime oo (@ (), y());
limy 00 0(t) = 7 + lims—, oo 6(2).
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e A picture tells a thousand words. ..
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e Any subarc of such a trajectory is a singular extremal, and we call these
stationary singular extremals.

e A general singular extremal is the superposition of a stationary one and

a uniform linear motion:
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e Note that the uniform linear motion is accomplished without the
addition of any input.
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6. And then...

Are any of the extremals we have found optimal?

General theorems corresponding to some of the observations.

Come up with path planning strategies based on extremals (if they can

be sufficiently well understood).

Higher-order necessary conditions.

A hardware hovercraft is in the works (thanks to Dave Tyner and Mark

Levkoe).
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