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1. The system

• Okay. . . it is a very simplified hovercraft model:

e2
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f1

f2
F

• The system is modelled by:

1. configuration space Q = SE(2) with coordinates (x, y, θ);

2. kinetic energy Riemannian metric

g = m(dx⊗ dx+ dy ⊗ dy) + Jdθ ⊗ dθ;

3. control vector fields
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2. Some useful definitions

• Let Y be the distribution spanned by the input vector fields.

• Let gY denote the restriction of g to Y.

• Let the orthogonal projection onto Y be denoted PY .

• Define the (2, 0) tensor hY by

hY(αq, βq) = gY(g
♯(αq), g

♯(βq)).

• Let h♯
Y
: T ∗Q → TQ be the associated bundle mapping.

• If Y is a vector field, ∇Y denotes the (1, 1) tensor defined by

∇Y (α,X) = 〈α;∇XY 〉

for a one-form α and a vector field X .
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3. Extremals

• We look at force and time-optimal control for the system.

• The affine connection for the system is flat and torsionless. Thus the

equations for extremals simplify from the equations for general affine

connection control systems.

3.1. Time-optimal control

• The controls must be constrained. We use geometric constraints:

g(ua(t)Ya(c(t)), u
b(t)Yb(c(t))) ≤ 1.

• The necessary conditions of the maximum principle are given by

∇c′(t)c
′(t) = ua(t)Ya(c(t))

∇2
c′(t)λ(t) = ua(t)(∇Ya)

∗(λ(t)),

where λ is the adjoint one-form field.
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• For nonsingular extremals, the controls are determined by the maximum

principle:

uaYa(c(t)) = −
P ∗
Y
(λ(t))

‖P ∗
Y
(λ(t))‖g

, (1)

• If an extremal has the property that λ(t) ∈ ann(Yc(t)) for all t, then the

extremal is singular, and (1) cannot be used to determine the controls.

• For the hovercraft system, it turns out to be possible to explicitly

determine the form of all singular extremals.
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3.2. Force-optimal control

• The cost function is

Jforce(γ) =

∫ T

0

1

2
g(ua(t)Ya(c(t)), u

b(t)Yb(c(t))) dt.

• Normal extremals satisfy

∇c′(t)c
′(t) = −h

♯
Y
(λ(t))

∇2
c′(t)λ(t) =

1
2∇hY(λ(t), λ(t)).

• Abnormal extremals satisfy the same conditions as singular extremals for

time-optimal control, but there are no control bounds.
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4. Partial analysis of nonsingular extremals

• A full analysis of the nonsingular extremals has not been undertaken,

but is perhaps possible, at least qualitatively.

• We look at two types of nonsingular extremals, corresponding to the

decoupling vector fields of Bullo and Lynch.

• Consider the two vector fields

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
,

X2 = − sin θ
∂

∂x
+ cos θ

∂

∂y
−

mh

J

∂

∂θ
.
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4.1. X1

• This is a trivial problem as it boils down to optimal control of a mass

moving on a line.

• A time-optimal extremal:
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• The cost for the extremal is Jtime = 2.
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• A force-optimal extremal defined on [0, 2]:
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• Comparison:

Jtime Jforce

time-optimal 2 2

force-optimal 2 3
2
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4.2. X2

• Preliminary analysis suggests that there are no nonsingular extremals for

the time or force-optimal problem that are reparameterised integral

curves for X2.

• However, one can restrict to such reparameterisations, and extremise

over these.

• For a reparameterisation τ , the controls are given by

u1(t) =
m2h

J
τ ′(t)2, u2(t) = mτ ′′(t).

• Since the reparameterisations are unrestricted, the problem is essentially

fully actuated as a control problem.

• standard variational methods are applicable.
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• For time-optimal control, the control bounds for a reparameterisation τ

are given by
m3h2

J2
τ ′(t)4 +

mh2 + J

J
τ ′′(t)2 ≤ 1

• Extremals satisfy a second-order variational problem with inequality

constraints involving velocity and acceleration (standard problem).

• An example of a time-optimal extremal:
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• Note: may not be an extremal for the full problem.
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• For force-optimal control, the cost function is

Jforce =

∫ T

0

(m3h2

J2
τ ′(t)4 +

mh2 + J

J
τ ′′(t)2

)

dt.

• straight calculus of variations problem.

• An example of a force-optimal extremal:
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• Note: may not be an extremal for the full problem.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 12

4.3. Punchline

• It is very easy to design open-loop controls to follow whatever

reparameterisation of integral curves of X1 and X2 one wants.

• The restriction of the optimal control problem to X2 integral curves is

not something one can do “by hand.”

• in practice, one would likely go for some sort of suboptimal

controls for computational efficiency.
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5. Complete analysis of singular extremals

• Let us first introduce a simple class of singular extremals.

• Consider a trajectory—parameterised in a very specific, but not here

specified, manner—of the hovercraft as follows:

◦ it is defined on ]−∞,∞[ ;

◦ x2(t) + y2(t) =
(

J
mh

)2
for all t ∈ R;

◦ θ(t) = π + arctan
( y(t)
x(t)

)

for all t ∈ R;

◦ limt→∞(x(t), y(t)) = − limt→−∞(x(t), y(t));

◦ limt→∞ θ(t) = π + limt→−∞ θ(t).
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• A picture tells a thousand words. . .
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• Any subarc of such a trajectory is a singular extremal, and we call these

stationary singular extremals.
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• A general singular extremal is the superposition of a stationary one and

a uniform linear motion:
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• Note that the uniform linear motion is accomplished without the

addition of any input.
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6. And then. . .

• Are any of the extremals we have found optimal?

• General theorems corresponding to some of the observations.

• Come up with path planning strategies based on extremals (if they can

be sufficiently well understood).

• Higher-order necessary conditions.

• A hardware hovercraft is in the works (thanks to Dave Tyner and Mark

Levkoe).
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