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1. Some sample systems
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2. General system description

• We consider “simple mechanical systems, possibly with constraints:”

1. a configuration manifold Q;

2. kinetic energy, defining a Riemannian metric on Q (essentially a

q-dependent, positive-definite matrix);

3. potential energy (a function on Q);

4. possibly velocity constraints that allow rolling, but not slipping;

5. a collection of forces whose direction and magnitude may be

controlled (consider fewer forces than degrees of freedom).

• Control system properties (consider zero potential case):

1. inherently nonlinear;

2. linearisations are badly behaved (linear methods not applicable);

3. none of the “standard” nonlinear methods generally apply.
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System geometry

• The mechanical systems described above are very “structured.”

• The Euler-Lagrange equations (no external forces) for the Lagrangian

L(q, q̇) = 1

2
gij(q)q̇

iq̇j :

d

dt

( ∂L

∂q̇i

)

− ∂L

∂qi
= gij

[

q̈j + gjk
(∂gkℓ

∂qm
− 1

2

∂gℓm

∂qk

)

q̇ℓq̇m
]

= gij

[

q̈j +
g

Γj
ℓmq̇ℓq̇m

︸ ︷︷ ︸

geodesic equations
for the Levi-Civita
affine connection

]

.

• This makes us think that the geometry of the affine connection may be

important.

• It is in fact extremely important, and meshes beautifully with the control

problems.
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3. Problems to consider

• Problems that have been considered:

1. describe the states reachable from a given point (the controllability

problem).

2. Steer from point A at rest to point B at rest (the steering problem).

3. Design the forces, perhaps as functions of configuration, velocity, and

time, so that a desired operating point is rendered stable (point

stabilisation problem).

4. Follow a desired path in configuration space, possibly with a specific

parameterisation (trajectory tracking problem).

5. Perform one of the above tasks in a manner that minimises some

cost function (optimal control).
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• Problems that have not yet received serious consideration:

1. more detailed models (dissipative effects, for example);

2. actuator dynamics;

3. stability to disturbances and perturbations (robustness);

4. implementation issues (!!)
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4. Tools for analysis and design

• For systems of the type we are considering, the controllability problem is

fundamental. . .

x0x0

big excursions
not allowed

x0

Local accessibility Local controllability

ẋ = f0(x) +

m∑

a=1

ua(t)fa(x)
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• Accessibility analysis is “standard:” Consider the following simple

control system:

ẋ = u1f1(x) + u2f2(x).

• Apply the control

u(t) =







(1, 0), 0 ≤ t < T
4

(0, 1), T
4
≤ t < T

2

(−1, 0), T
2
≤ t < 3T

4

(0,−1), 3T
4

≤ t ≤ T.

• Where does x(T ) end up?
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• We determine that

x(T ) = x(0)+
√
T [f1, f2](x(0))+ h.o.t., [f1, f2] =

∂f2

∂x
f1 −

∂f1

∂x
f2.

• [f1, f2] is the Lie bracket of f1 and f2.

• More generally, we may consider a control system like

ẋ(t) = f0(x(t)) + u1(t)f1(x(t)) + · · ·+ um(t)fm(x(t)).

• By applying suitable controls, one may move in the directions

f0, f1, . . . , fm,

[fa, fb], a, b = 0, . . . ,m,

[fa, [fb, fc]], a, b, c = 0, . . . ,m,

etc.
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A simple exhibition of the Lie bracket

[f1, f2]
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5. Some controllability results for mechanical systems

• For mechanical systems, the interaction of the Lie bracket and the

system geometry (i.e., the affine connection) is very attractive. This

gives nice accessibility results.1,2,3

• Controllability is a difficult problem.

• Let U be the set of measurable controls. For u ∈ U defined on the

interval [0, T ] define ‖u‖ = T + ‖u‖∞. For x0 ∈ Rn consider the map

sending u to the solution of the IVP

ẋ = f0(x) +

m∑

a=1

ua(t)fa(x), x(0) = x0

at time T . Local controllability then becomes a nonlinear open

mapping theorem from U to Rn: Map a neighbourhood of the zero

control to a neighbourhood of x0.
1L/Murray, SIAM Review, 41(3), 555–574, 1999
2L/Murray Systems Control Lett., 31(4), 199–205, 1997
3L, Rep. Math. Phys., 42(1/2), 135–164, 1998
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From controllability to motion control

• L/Murray give sufficient conditions based on work of Sussmann.4

• These sufficient conditions lead to a class of control algorithms for

certain systems that rely on specially constructed periodic inputs.5

• Problems treated include the steering problem, the point stabilisation

problem, and the trajectory tracking problem.

• Movies

4SIAM J. Control Optim., 25(1), 158–194, 1987
5Bullo/Leonard/L, IEEE Trans. Automat. Control , 45(8), 1437–1454, 2000
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• The steering problem for the class of systems treated by

Bullo/Leonard/L turns out to more easily treatable.

• The key is the notion of a “decoupling vector field.”6

• This relies on the affine differential geometric component of mechanical

systems.

• Question: What are the vector fields X on Q whose integral curves can

be followed up to any reparameterisation?

• Answer: X and ∇XX should lie in the span of the inputs.

• Movies

6Bullo/Lynch, To appear in IEEE Trans. Robotics Automat., 2001, generalising

L, Proceedings of the 38th IEEE CDC , 1162–1167, 1999
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Improved controllability results

• The original sufficient conditions of L/Murray are not sharp.

• They suffer, as do many existing controllability results, from not being

“feedback-invariant.”

• Sharp conditions are known for single-input systems.7

• The first steps down the road to feedback-invariant conditions have been

taken.8

• For mechanical systems, we have sharp first-order conditions.

• All systems controllable at first-order turn out to admit a “full set” of

decoupling vector fields.

• Sharp higher-order conditions may be attainable, and will hopefully

provide useful insights into the controllability for systems that are more

complicated than the simple examples used here.
7L, Proceedings of the ECC , 1997
8Basto-Gonçalves, Systems Control Lett., 35(5), 287–290, 1998 and Hirschorn/L,

To appear in Proceedings of the 40th IEEE CDC, 2001
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6. Lab toys
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