Control theory for mechanical systems

Andrew D. Lewis*

26/10/2001

Slide 0

*Department of Mathematics and Statistics, Queen's University Email: andrew.lewis@queensu.ca URL: http://www.mast.queensu.ca/~andrew/

1. Some sample systems

Slide 1

2. General system description

- We consider "simple mechanical systems, possibly with constraints:"
 - **1**. a configuration manifold Q;
 - kinetic energy, defining a Riemannian metric on Q (essentially a q-dependent, positive-definite matrix);
 - **3**. potential energy (a function on Q);

Slide 2

- 4. possibly velocity constraints that allow rolling, but not slipping;
 - 5. a collection of forces whose direction and magnitude may be controlled (consider fewer forces than degrees of freedom).
- Control system properties (consider zero potential case):
 - 1. inherently nonlinear;
 - 2. linearisations are badly behaved (linear methods not applicable);
 - 3. none of the "standard" nonlinear methods generally apply.

System geometry

- The mechanical systems described above are very "structured."
- The Euler-Lagrange equations (no external forces) for the Lagrangian $L(q,\dot{q}) = \frac{1}{2}g_{ij}(q)\dot{q}^i\dot{q}^j$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{i}}\right) - \frac{\partial L}{\partial q^{i}} = g_{ij} \left[\ddot{q}^{j} + g^{jk} \left(\frac{\partial g_{k\ell}}{\partial q^{m}} - \frac{1}{2} \frac{\partial g_{\ell m}}{\partial q^{k}}\right) \dot{q}^{\ell} \dot{q}^{m} \right] \\ = g_{ij} \left[\underbrace{\ddot{q}^{j} + \Gamma_{\ell m}^{j} \dot{q}^{\ell} \dot{q}^{m}}_{\text{for the Levi-Civita}} \right].$$

Slide 3

- This makes us think that the geometry of the affine connection may be important.
- It is in fact *extremely* important, and meshes beautifully with the control problems.

3. Problems to consider

- Problems that have been considered:
 - 1. describe the states reachable from a given point (the controllability problem).
 - 2. Steer from point A at rest to point B at rest (the steering problem).

Slide 4

- Design the forces, perhaps as functions of configuration, velocity, and time, so that a desired operating point is rendered stable (point stabilisation problem).
- 4. Follow a desired path in configuration space, possibly with a specific parameterisation (trajectory tracking problem).
- 5. Perform one of the above tasks in a manner that minimises some cost function (optimal control).

- Problems that have not yet received serious consideration:
 - 1. more detailed models (dissipative effects, for example);
- Slide 5
- 2. actuator dynamics;
- 3. stability to disturbances and perturbations (robustness);
- 4. implementation issues (!!)

4. Tools for analysis and design

• Accessibility analysis is "standard:" Consider the following simple control system:

,

$$\dot{x} = u_1 f_1(x) + u_2 f_2(x).$$

• Apply the control

Slide 7

$$u(t) = \begin{cases} (1,0), & 0 \le t < \frac{T}{4} \\ (0,1), & \frac{T}{4} \le t < \frac{T}{2} \\ (-1,0), & \frac{T}{2} \le t < \frac{3T}{4} \\ (0,-1), & \frac{3T}{4} \le t \le T. \end{cases}$$

• Where does x(T) end up?

• We determine that

$$x(T) = x(0) + \sqrt{T} \left[f_1, f_2 \right] (x(0)) + \text{h.o.t.}, \qquad \left[f_1, f_2 \right] = \frac{\partial f_2}{\partial x} f_1 - \frac{\partial f_1}{\partial x} f_2.$$

- $[f_1, f_2]$ is the Lie bracket of f_1 and f_2 .
- More generally, we may consider a control system like

$$\dot{x}(t) = f_0(x(t)) + u_1(t)f_1(x(t)) + \dots + u_m(t)f_m(x(t))$$

Slide 8

• By applying suitable controls, one may move in the directions

$$\begin{array}{ll} f_0, \ f_1, \dots, f_m, \\ [f_a, f_b], & a, b = 0, \dots, m, \\ [f_a, [f_b, f_c]], & a, b, c = 0, \dots, m, \\ \end{array}$$
 etc.

5. Some controllability results for mechanical systems

- For mechanical systems, the interaction of the Lie bracket and the system geometry (i.e., the affine connection) is very attractive. This gives nice accessibility results.¹²³
- Controllability is a difficult problem.
- Let \mathscr{U} be the set of measurable controls. For $u \in \mathscr{U}$ defined on the interval [0,T] define $||u|| = T + ||u||_{\infty}$. For $x_0 \in \mathbb{R}^n$ consider the map sending u to the solution of the IVP

Slide 10

$$\dot{x} = f_0(x) + \sum_{a=1}^m u_a(t) f_a(x), \qquad x(0) = x_0$$

at time T. Local controllability then becomes a nonlinear open mapping theorem from \mathscr{U} to \mathbb{R}^n : Map a neighbourhood of the zero control to a neighbourhood of x_0 .

From controllability to motion control

- L/Murray give sufficient conditions based on work of Sussmann.⁴
- These sufficient conditions lead to a class of control algorithms for certain systems that rely on specially constructed periodic inputs.⁵
- Slide 11
- Problems treated include the steering problem, the point stabilisation problem, and the trajectory tracking problem.
- Movies

¹L/Murray, SIAM Review, **41**(3), 555–574, 1999

²L/Murray Systems Control Lett., **31**(4), 199–205, 1997

³L, Rep. Math. Phys., **42**(1/2), 135–164, 1998

 ⁴SIAM J. Control Optim., 25(1), 158–194, 1987
⁵Bullo/Leonard/L, IEEE Trans. Automat. Control, 45(8), 1437–1454, 2000

- The steering problem for the class of systems treated by Bullo/Leonard/L turns out to more easily treatable.
- The key is the notion of a "decoupling vector field." ⁶
- This relies on the affine differential geometric component of mechanical systems.

Slide 12

 Question: What are the vector fields X on Q whose integral curves can be followed up to any reparameterisation?

- Answer: X and $\nabla_X X$ should lie in the span of the inputs.
- Movies

⁶Bullo/Lynch, To appear in *IEEE Trans. Robotics Automat.*, 2001, generalising L, *Proceedings of the 38th IEEE CDC*, 1162–1167, 1999

Improved controllability results

- The original sufficient conditions of L/Murray are not sharp.
- They suffer, as do many existing controllability results, from not being "feedback-invariant."
- Sharp conditions are known for single-input systems.⁷
- The first steps down the road to feedback-invariant conditions have been taken. 8
- Slide 13 For mechanical systems, we have sharp first-order conditions.
 - All systems controllable at first-order turn out to admit a "full set" of decoupling vector fields.
 - Sharp higher-order conditions may be attainable, and will hopefully provide useful insights into the controllability for systems that are more complicated than the simple examples used here.

⁷L, Proceedings of the ECC, 1997

⁸Basto-Gonçalves, Systems Control Lett., **35**(5), 287–290, 1998 and Hirschorn/L, To appear in *Proceedings of the 40th IEEE CDC*, 2001

6. Lab toys

Slide 14