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1. Introduction

• Question: Why talk about controllability?

• Answer: Because it is (1) hard, (2) interesting, and (3) possibly useful.

• The objective is feedback-invariant controllability conditions, just as

controllability is a feedback-invariant notion.

• Many existing controllability tests are not stated in a feedback-invariant

manner.
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• An example of an intrinsically feedback-dependent condition is the

good/bad bracket condition.

• Consider the control affine system

ẋ(t) = f0(x(t)) +

m∑

a=1

ua(t)fa(x(t)).

• A bad bracket is one with an odd number of f0’s and an even number

of each of the control vector fields. A good bracket is not bad.

• If at x0, any bad bracket can be written as a linear combination of

lower-order good brackets, then the system is locally controllable at x0.

(The “real” statement has a weaker hypothesis than we give here.)

• There are systems that do not satisfy the good/bad hypothesis (or the

weaker “real” one), but can be made to satisfy it with a change of basis

for the input vector fields.
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2. Affine connection control systems

• An affine connection control system is

1. a configuration manifold Q;

2. an affine connection ∇ on Q;

3. a collection Y = {Y1, . . . , Ym} of vector fields on Q.

• The corresponding control system is

∇c′(t)c
′(t) = ua(t)Ya(c(t))

for a controlled trajectory (u, c).

• As a control affine system we have

f0 = Z (the geodesic spray), fa = Y lift
a (the vertical lift).
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3. Bracket structure for affine connection control

systems

• For bounded inputs, local controllability is only feasible with a zero

velocity initial condition, 0q.

• When evaluated at 0q, the only brackets that are nonzero are those for

which the number of appearances of the inputs, minus the number of

appearances of the drift, is either zero or one.

• For example, the brackets

fa, [fa, [f0, fb]], [[f0, fa], [f0, fb]]

are (possibly) nonzero when evaluated at 0q, but the brackets

f0, [fa, fb], [f0, [f0, fa]]

are all zero when evaluated at 0q.
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• The nonzero brackets also have interesting geometric properties.

• Define the symmetric product:

〈X : Y 〉 = ∇XY +∇Y X.

• Let Sym(Y ) be the distribution defined by the smallest R-subspace of

vector fields containing Y and closed under symmetric product.

• For a family of vector fields F , let Lie(F ) be the distribution defined

by the smallest R-subspace of vector fields containing F and closed

under Lie bracket.

• Using the canonical decomposition T0qTQ ≃ TqQ ⊕ TqQ, if

F = {Z, Y lift
1 , . . . , Y lift

m }, then

Lie(F )0q = Lie(Sym(Y ))0q
︸ ︷︷ ︸

horizontal

⊕ Sym(Y )0q
︸ ︷︷ ︸

vertical

.

• Furthermore, all bad brackets (obstructions to controllability) are in the

vertical, symmetric product, component.
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4. A motivating example

• Here’s an example where the good/bad business indicates that a better

understanding is available.

τ τ

F

F

feedback
transformation

• The system on the left fails the good/bad test.

• The system on the right is feedback equivalent, but now passes the

good/bad test (and is obviously configuration controllable).
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5. The key geometric object

• The “right” controllability result for affine connection control systems

should take account of how the affine connection ∇ “interacts” with the

input distribution Y, and should involve the symmetric product.

• Let Σaff = (Q,∇,Y , U) be an affine connection control system.

• Let Y be the distribution (possibly with nonconstant rank) spanned by

the vector fields Y .

• Define

Sym(1)(Y )q = span
R
(〈Ya : Yb〉(q)| a, b = 1, . . . ,m) + Yq

• Define a TqQ/Yq-valued symmetric bilinear map on Yq by

BYq
(u, v) = πYq

(〈U : V 〉(q)),

where U and V are vector fields extending u, v ∈ Yq, and where

πYq
: Yq → TqQ/Yq is the canonical projection.
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• Thus we make use of a vector-valued symmetric bilinear map.

• Some terminology for a generic one of these, B : U × U → V :

◦ for λ ∈ V ∗ denote Bλ to be the symmetric (0, 2)-tensor

Bλ(u1, u2) = 〈λ;B(u1, u2)〉;

◦ B is definite (resp. semidefinite) if there exists λ ∈ V ∗ so that Bλ

is positive-definite (resp. positive-semidefinite);

◦ B is indefinite if it is not semidefinite.
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6. Statement of result

• Denote by iYq
: Sym(1)(Y )q/Yq → TqQ/Yq the inclusion.

• Define i∗
Yq
BYq

to be the restriction to Sym(1)(Y )q/Yq of BYq
.

Theorem Let Σaff = (Q,∇,Y , U) be an affine connection control

system and let q0 ∈ Q. Let S(Y , q0) ⊂ TQ be the integral manifold for

the control system through 0q0 . The following statements hold:

(i) if Sym(1)(Y )q0 = Sym(Y )q0 and if i∗
Yq0

BYq0
is indefinite, then

the restriction of Σaff to S(Y , q0) is STLC from 0q0 .

(ii) if q0 is a regular point for the distribution Y and if BYq0
is

definite, then Σaff is not STLCC from q0.
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7. Outline of proof

7.1. Sufficiency

• It turns out that the sufficient condition ensures that there is a choice

for the input vector fields with the property that the “real” good/bad

condition is satisfied.

• This was essentially noticed (unknown by us, a priori) for control affine

systems by Basto-Gonçalves.1

7.2. Necessity

• Use the series expansion for affine connection control systems of Bullo.2

• Show that a linear function which is zero at q0 attains only positive

values for small times.

1Systems Control Lett., 35(5), 287–290, 1998
2To appear in SIAM J. Control Optim.
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8. From here. . .

• Our first-order conditions can be improved.

• As they are, they may be the best possible for first-order brackets, but

by allowing first-order derivatives, one should be able to get rid of the

hypothesis of the regularity of the distribution in the necessary condition.

• Similarly, there are probably further directions that can be incorporated

into the sufficient condition, involving higher-order brackets, but still

first-order derivatives.

• Higher-order conditions: One should understand the “gap” between the

sufficient and necessary conditions. Should be possible. . .

• Adapt for general control affine systems.
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