Control theory for mechanical systems

Andrew D. Lewis*

Collaborators: Francesco Bullo, Theo Coombs, Jorge Cortés,

Ron Hirschorn, Kevin Lynch, Sonia Martinez, David Tyner

_ 27/05,2002
Slide 0
Queens
UNIVERSITY
*DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN’S UNIVERSITY
EMAIL: ANDREW.LEWISQQUEENSU.CA
URL: HTTP://WWW.MAST.QUEENSU.CA/~ANDREW/
Simple examples
Slide 1

»
57

Andrew D. Lewis Queen’s University, Mathematics & Statistics



What are we interested in?

e Broadly, a general methodology that encompasses modelling, analysis,

and design.
e More specifically, for one of the example systems, or any system “like"
them,
Slide 2 o can we model it in a unified manner that is conducive to the further

objectives of analysis and design?
o can one describe its reachable set?

o if given a suitable cost function, can one analyse the corresponding

extremals of the optimal control problem?

o are there simple collections of trajectories that are sufficiently rich to
do motion planning?

Modelling

e For us, a simple mechanical control system consists of a 6-tuple
(Q,g,V,F,D,F = {F',...,F™}) where
. Q is a finite-dimensional configuration manifold,

. g is a Riemannian metric on Q,

1

2
Slide 3 3. V is a potential function on Q,
4

. F represents all non-potential forces that are not controlled

(e.g., dissipative forces),

(&)

. D is a distribution on Q modelling linear velocity constraints,

. F is a collection of one-forms on Q, each representing a force over

[e)}

which we have control.
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o We generally simplify to the situation where V' =0 and F = 0, although

potential forces have received some attention,! as have dissipative
forces.?

With these simplifications, the problem is reduced to an affine
connection control system which is described by a 4-tuple
L= (Q,V,D, % ={Y1,...,Y,,}) with
1. Q as before,

.V an affine connection (which is not generally Levi-Civita),

2
3. D a distribution to which V restricts,
4

. ¥ a collection of vector fields on Q (these are related to the
one-forms & ).

1L/Murray, SIAM J. Control Optim., 35(3), 766-790, 1997.
2Cortés/Martinez/Bullo, IEEE Trans. Automat. Control, submitted, July 2001.

When D = TQ then V is the Levi-Civita affine connection % associated
with g.

When D C TQ then V is defined by
VyY = VxY — (VxP)(Y),
where P is the orthogonal projection onto Dt

The equations of motion for such systems are
Vi) = 3 ua(t)Ya(2(1))
a=1

for a controlled trajectory (v, u) satisfying §(t) € D) for some (and
hence all) ¢.
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Controllability analysis

e Suppose that the controls u: [0,7] — U C R™ are measurable and take
their values in a compact set U for which 0 € int(conv(U)).

e Forgo € Qand T > 0 let R1q(qo, < T) C TQ be the set of states
reachable from Og4, in time at most 7" and let
Ra(q0, < T) = 7q(R1a(g0, < T))-

Definition X5 = (Q,V,D, %) is
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(i) accessible from Oy, if intn(Rrq(ge, < T')) # @ for all sufficiently

small T, is

(ii) configuration accessible from qq if int(Rq(qo, < T')) # & for all
sufficiently small T, is

(iii) small-time locally controllable (STLC) from 0y, if
0go € intp(Rrq(go, < T)) for all sufficiently small T', and is

(iv) small-time locally configuration controllable (STLCC) from
qo if go € int(Rq(qo, < T)) for all sufficiently small T'.

Some old results!
e Define the symmetric product by (X : V) =VxY + Vy X.
o Let Y be the distribution generated by % .

o Let Sym(Y) be the distribution generated by % under symmetric
product.

e Let Lie(Z) be the distribution generated by a family of vector fields 7’
under Lie bracket.
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Theorem X, = (Q,V,D, %) is

(1) accessible from Og, if Sym(Y)g, = T4, Q and is
(ii) configuration accessible from qo if Lie(Sym(Y))g = T4 Q-

1L /Murray, SIAM J. Control Optim., 35(3), 766-790, 1997.
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Low-order controllability results
e These revolve around vector-valued quadratic forms.

o For R-vector spaces V and W, let TS*(V; W) be the collection of
symmetric bilinear maps B: V x V — W.

e For B TS*(V;W) and A € W* define
Slide 8 AB(wy, w2) = (A; B(wi, w2)) € R.

Definition B € TS*(V; W) is

(i) indefinite if for each A € W* \ ann(image(B)), AB is neither
positive nor negative-semidefinite and is

(i) definite if there exists A € W* so that AB is positive-definite.

Some newer results!
e For g € Q define By(q) € TS*(Y,; T,Q/Y,) by
By(q)(v1,v2) = my, ((V1 : Va)(q)),

where V; and V3 are vector fields extending vi,v2 € Y,.

Theorem Let .6 = (Q,V,D,¥%). If qo € Q is a regular point of Y
then Y. is

Slide 9 (i) not STLCC from qo if By(qo) is definite.

Assume that Sym(Y),, is generated by symmetric products of degree at

most two. Then Yag is

(i) STLC from 04, if Sym(Y)y, = T4Q and if By(qo) is indefinite,
and is

(iii) STLCC from qo if Lie(Sym(Y))q, = T4 Q and if By(qo) is
indefinite.

IHirschorn/L, Proceedings of 40th IEEE CDC, 4216-4221, Dec. 2001.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Examples

not accessible but configuration ac-
cessible;

STLCC.
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(but not fixed at 0 or =),

[ ]
[ ]
e accessible with ¢ fixed or variable
e STLCC if ¢ variable;

[ ]

not STLCC if ¢ fixed.
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e accessible;

e STLCC.

i
e accessible;
e not STLCC.
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Application to motion planning

e Think of By as a bundle mapping on all of Q.

e A vector field X is a decoupling vector field for ¥, if one can follow
any reparameterisation of any integral curve of X with a controlled
trajectory of Y.

) Theorem ! X is a decoupling vector field if and only if X € I'*(Y) and

o If there exists generators % = {Y1,...,Y,,} for Y that are all
decoupling vector fields, then By(q) is indefinite for each ¢ € Q. (If
codim(Y) = 1 then the converse is also true.)

e For each of the example systems that is STLCC, Y possesses a collection
of decoupling generators!

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402-412, 2001.

Some demos

)
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Work to be done

e Higher-order controllability.

Slide 16 e Connections between decoupling vector fields and extremals for optimal

control problems?

o Effects of potential and dissipative forces.
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