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What are we interested in?

• Broadly, a general methodology that encompasses modelling, analysis,

and design.

• More specifically, for one of the example systems, or any system “like”

them,

◦ can we model it in a unified manner that is conducive to the further

objectives of analysis and design?

◦ can one describe its reachable set?

◦ if given a suitable cost function, can one analyse the corresponding

extremals of the optimal control problem?

◦ are there simple collections of trajectories that are sufficiently rich to

do motion planning?
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Modelling

• For us, a simple mechanical control system consists of a 6-tuple

(Q,g, V, F,D,F = {F 1, . . . , Fm}) where

1. Q is a finite-dimensional configuration manifold,

2. g is a Riemannian metric on Q,

3. V is a potential function on Q,

4. F represents all non-potential forces that are not controlled

(e.g., dissipative forces),

5. D is a distribution on Q modelling linear velocity constraints,

6. F is a collection of one-forms on Q, each representing a force over

which we have control.
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• We generally simplify to the situation where V = 0 and F = 0, although

potential forces have received some attention,1 as have dissipative

forces.2

• With these simplifications, the problem is reduced to an affine

connection control system which is described by a 4-tuple

Σaff = (Q,∇,D,Y = {Y1, . . . , Ym}) with

1. Q as before,

2. ∇ an affine connection (which is not generally Levi-Civita),

3. D a distribution to which ∇ restricts,

4. Y a collection of vector fields on Q (these are related to the

one-forms F ).

1L/Murray, SIAM J. Control Optim., 35(3), 766-790, 1997.
2Cortés/Mart́ınez/Bullo, IEEE Trans. Automat. Control , submitted, July 2001.
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• When D = TQ then ∇ is the Levi-Civita affine connection
g

∇ associated

with g.

• When D ( TQ then ∇ is defined by

∇XY =
g

∇XY − (
g

∇XP )(Y ),

where P is the orthogonal projection onto D⊥.

• The equations of motion for such systems are

∇γ̇(t)γ̇(t) =

m∑

a=1

ua(t)Ya(γ(t))

for a controlled trajectory (γ, u) satisfying γ̇(t) ∈ Dγ(t) for some (and

hence all) t.

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 6

Controllability analysis

• Suppose that the controls u : [0, T ] → U ⊂ Rm are measurable and take

their values in a compact set U for which 0 ∈ int(conv(U)).

• For q0 ∈ Q and T > 0 let RTQ(q0,≤ T ) ⊂ TQ be the set of states

reachable from 0q0 in time at most T and let

RQ(q0,≤ T ) = τQ(RTQ(q0,≤ T )).

Definition Σaff = (Q,∇,D,Y ) is

(i) accessible from 0q0 if intD(RTQ(q0,≤ T )) 6= ∅ for all sufficiently

small T , is

(ii) configuration accessible from q0 if int(RQ(q0,≤ T )) 6= ∅ for all

sufficiently small T , is

(iii) small-time locally controllable (STLC) from 0q0 if

0q0 ∈ intD(RTQ(q0,≤ T )) for all sufficiently small T , and is

(iv) small-time locally configuration controllable (STLCC) from

q0 if q0 ∈ int(RQ(q0,≤ T )) for all sufficiently small T .
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Some old results1

• Define the symmetric product by 〈X : Y 〉 = ∇XY +∇Y X .

• Let Y be the distribution generated by Y .

• Let Sym(Y) be the distribution generated by Y under symmetric

product.

• Let Lie(V ) be the distribution generated by a family of vector fields V

under Lie bracket.

Theorem Σaff = (Q,∇,D,Y ) is

(i) accessible from 0q0 if Sym(Y)q0 = Tq0Q and is

(ii) configuration accessible from q0 if Lie(Sym(Y))q0 = Tq0Q.

1L/Murray, SIAM J. Control Optim., 35(3), 766-790, 1997.
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Low-order controllability results

• These revolve around vector-valued quadratic forms.

• For R-vector spaces V and W , let TS2(V ;W ) be the collection of

symmetric bilinear maps B : V × V → W .

• For B ∈ TS2(V ;W ) and λ ∈ W ∗ define

λB(w1, w2) = 〈λ;B(w1, w2)〉 ∈ R.

Definition B ∈ TS2(V ;W ) is

(i) indefinite if for each λ ∈ W ∗ \ ann(image(B)), λB is neither

positive nor negative-semidefinite and is

(ii) definite if there exists λ ∈ W ∗ so that λB is positive-definite.
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Some newer results1

• For q ∈ Q define BY(q) ∈ TS2(Yq ;TqQ/Yq) by

BY(q)(v1, v2) = πYq
(〈V1 : V2〉(q)),

where V1 and V2 are vector fields extending v1, v2 ∈ Yq.

Theorem Let Σaff = (Q,∇,D,Y ). If q0 ∈ Q is a regular point of Y

then Σaff is

(i) not STLCC from q0 if BY(q0) is definite.

Assume that Sym(Y)q0 is generated by symmetric products of degree at

most two. Then Σaff is

(ii) STLC from 0q0 if Sym(Y)q0 = Tq0Q and if BY(q0) is indefinite,

and is

(iii) STLCC from q0 if Lie(Sym(Y))q0 = Tq0Q and if BY(q0) is

indefinite.

1Hirschorn/L, Proceedings of 40th IEEE CDC , 4216-4221, Dec. 2001.
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Examples

• not accessible but configuration ac-

cessible;

• STLCC.

F

φ

• accessible with φ fixed or variable

(but not fixed at 0 or π),

• STLCC if φ variable;

• not STLCC if φ fixed.
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• accessible;

• not STLCC.

• accessible;

• STLCC.
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Application to motion planning

• Think of BY as a bundle mapping on all of Q.

• A vector field X is a decoupling vector field for Σaff if one can follow

any reparameterisation of any integral curve of X with a controlled

trajectory of Σaff.

Theorem 1 X is a decoupling vector field if and only if X ∈ Γ∞(Y) and

BY(X,X) = 0.

• If there exists generators Y = {Y1, . . . , Ym} for Y that are all

decoupling vector fields, then BY(q) is indefinite for each q ∈ Q. (If

codim(Y) = 1 then the converse is also true.)

• For each of the example systems that is STLCC, Y possesses a collection

of decoupling generators!

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
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Some demos
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Work to be done

• Higher-order controllability.

• Connections between decoupling vector fields and extremals for optimal

control problems?

• Effects of potential and dissipative forces.
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