What is the characteristic polynomial of a signal flow graph?

Andrew D. Lewis*

12/08/2002

Slide 0

*MATHEMATICS & STATISTICS, QUEEN'S UNIVERSITY EMAIL: ANDREW.LEWIS@QUEENSU.CA URL: http://www.mast.queensu.ca/~andrew/

Warmup

• Consider the unity gain feedback loop as a signal flow graph:

$$\hat{r}(s) \xrightarrow{1} \bullet \underbrace{\xrightarrow{C(s)}}_{-1} \bullet \xrightarrow{P(s)} \bullet \xrightarrow{1} \hat{y}(s)$$

• As we teach our undergraduates, the four transfer functions

Slide 1

 $\frac{1}{1 + P(s)C(s)}, \quad \frac{P(s)}{1 + P(s)C(s)}, \quad \frac{C(s)}{1 + P(s)C(s)}, \quad \frac{P(s)C(s)}{1 + P(s)C(s)}$

are analytic in the CRHP if and only if the polynomial

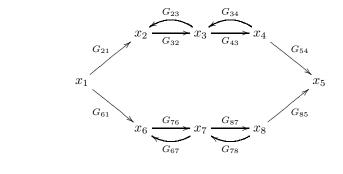
$$P_{\mathcal{S},\mathcal{G}}(s) = D_P(s)D_C(s) + N_P(s)N_C(s)$$

is Hurwitz, with $P(s)=\frac{N_P(s)}{D_P(s)}$ and $C(s)=\frac{N_C(s)}{D_C(s)}$ coprime.

• The punchline is that $P_{S,S}(s)$ is obtained by "looking at the graph," and requires no polynomial factorisation, etc.

Problem

- Let (S, G) be a signal flow graph comprised of *signals* or *nodes* S and branches with (proper) gains specified by G.
- For example



- Using Mason's Rule, compute the transfer functions $T_{ij}(s)$ from node i to node $j, i, j \in \{1, ..., n\}$.
- $(\mathfrak{S},\mathfrak{G})$ is *BIBO* stable when each $T_{ij}(s) \in \mathsf{RH}_{\infty}$, $i, j \in \{1, \ldots, n\}$.
- Each T_{ij}(s) is proper if and only if graph determinant Δ_{8,9}(s) is biproper → need condition for T_{ij}(s) to be analytic in CRHP.
- **Problem:** Is there a polynomial $P_{S,\mathfrak{G}}(s)$, constructed from the topology of $(\mathfrak{S},\mathfrak{G})$, which is Hurwitz if and only if the transfer functions $T_{ij}(s)$, $i, j \in \{1, \ldots, n\}$, are analytic in the CRHP?
 - Note: The polynomial matrix approach gives an algorithm for solving any given problem, but generally polynomials will need to be factored.
- Slide 3