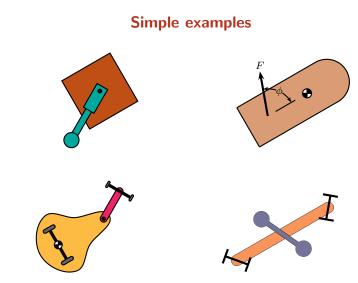
Controllable kinematic reductions for mechanical systems: concepts, computational tools, and examples

Francesco Bullo* Andrew D. Lewis[†] Kevin M. Lynch[‡]

15/08/2002

Slide 0

*Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, Urbana-Champaign, IL 61801, U.S.A. EMAIL: bullo@uiuc.edu URL: http://motion.csl.uiuc.edu/~bullo/ [†]Mathematics & Statistics, Queen's University EMAIL: andrew.lewis@queensu.ca URL: http://www.mast.queensu.ca/~andrew/ [‡]Mechanical Engineering Department, Northwestern University, Evanston, IL 60208, U.S.A. EMAIL: kmlynch@northwestern.edu URL: http://lims.mech.northwestern.edu/~lynch/



Slide 1

What are we interested in?

- Broadly, a general methodology that encompasses modelling, analysis, and design.
- More specifically, for one of the example systems, or any system "like" them,

Slide 2

- can we model it in a unified manner that is conducive to the further objectives of analysis and design?
- o can one describe its reachable set?
- if given a suitable cost function, can one analyse the corresponding extremals of the optimal control problem?
- are there simple collections of trajectories that are sufficiently rich to do motion planning?

Modelling

- For us, a simple mechanical control system consists of a 6-tuple $(Q, g, V, F, D, \mathscr{F} = \{F^1, \dots, F^m\})$ where
 - 1. Q is a finite-dimensional configuration manifold,
 - 2. g is a Riemannian metric on Q,
- Slide 3
- **3**. V is a potential function on Q,
- F represents all non-potential forces that are not controlled (e.g., dissipative forces),
- 5. $\ensuremath{\mathcal{D}}$ is a distribution on Q modelling linear velocity constraints,
- 6. \mathscr{F} is a collection of one-forms on Q, each representing a force over which we have control.
- In this talk assume all data are analytic.

- We generally simplify to the situation where V = 0 and F = 0, although potential forces have received some attention,¹ as have dissipative forces.²
- With these simplifications, the problem is reduced to an affine connection control system which is described by a 4-tuple Σ_{aff} = (Q, ∇, D, 𝒴 = {Y₁,..., Y_m}) with

Slide 4

- 2. ∇ an affine connection (which is not generally Levi-Civita),
- 3. \mathcal{D} a distribution to which ∇ restricts,

1. Q as before,

4. \mathcal{Y} a collection of vector fields on Q (these are related to the one-forms \mathcal{F}).

- When $\mathcal{D}=\mathsf{TQ}$ then ∇ is the Levi-Civita affine connection $\overset{g}{\nabla}$ associated with g.
- When $\mathcal{D} \subsetneq \mathsf{TQ}$ then ∇ is defined by

$$\nabla_X Y = \overset{\mathsf{g}}{\nabla}_X Y - (\overset{\mathsf{g}}{\nabla}_X P)(Y),$$

where P is the orthogonal projection onto \mathcal{D}^{\perp} .

Slide 5

• The equations of motion for such systems are

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = \sum_{a=1}^{m} u_a(t)Y_a(\gamma(t))$$

for a controlled trajectory (γ, u) satisfying $\dot{\gamma}(t) \in \mathcal{D}_{\gamma(t)}$ for some (and hence all) t.

¹L/Murray, SIAM J. Control Optim., **35**(3), 766–790, 1997.

²Cortés/Martínez/Bullo, IEEE Trans. Automat. Control, submitted, July 2001.

Summary of approach

• Find a way to reduce the motion planning problem for the system

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = \sum_{a=1}^{m} u_a(t)Y_a(\gamma(t))$$

to that for a system

$$\dot{\gamma}(t) = \sum_{\alpha=1}^{k} v_{\alpha}(t) X_{\alpha}(\gamma(t)).$$

Slide 6

Slide 7

i.e., reduce to motion planning for driftless systems.

- This is generally impossible.
- However, for many interesting physical systems, our objective *is* achievable.
- The key is that the systems are "controllable at low-order," and a key ingredient in tying everything together is a certain vector-valued quadratic form.

Controllability analysis

- Suppose that the controls $u \colon [0,T] \to U \subset \mathbb{R}^m$ are measurable and take their values in a compact set U for which $0 \in int(conv(U))$.
- For $q_0 \in \mathbb{Q}$ and T > 0 let $\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T) \subset \mathsf{TQ}$ be the set of states reachable from 0_{q_0} in time at most T and let $\mathcal{R}_{\mathsf{Q}}(q_0, \leq T) = \tau_{\mathsf{Q}}(\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T)).$

Definition $\Sigma_{aff} = (Q, \nabla, \mathcal{D}, \mathcal{Y})$ is

- (i) *accessible* from q_0 if $\operatorname{int}_{\mathcal{D}}(\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T)) \neq \emptyset$ for all sufficiently small T, is
- (ii) configuration accessible from q_0 if $int(\mathcal{R}_Q(q_0, \leq T)) \neq \emptyset$ for all sufficiently small T, is
- (iii) small-time locally controllable (STLC) from q_0 if $0_{q_0} \in \operatorname{int}_{\mathcal{D}}(\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T))$ for all sufficiently small T, and is
- (iv) small-time locally configuration controllable (STLCC) from q_0 if $q_0 \in int(\mathcal{R}_Q(q_0, \leq T))$ for all sufficiently small T.

The state of current results

- Accessibility of all flavours is understood¹ by virtue of Sussmann and Jurdjevic.
- Key to understanding accessibility is the symmetric product associated with the affine connection ∇: (X : Y) = ∇_XY + ∇_YX.
- Controllability is harder; sufficient conditions 2 can be derived from the work of Sussmann. 3
- Slide 8
- The lowest-order obstructions to controllability come in the form of the symmetric products ⟨Y_a : Y_a⟩, a ∈ {1,...,m}.
 - → These should be neutralised by lower-order symmetric products, in this case, just the input vector fields themselves.
 - $^1\mathrm{L/Murray},$ SIAM J. Control Optim., $\mathbf{35}(3),$ 766–790, 1997. $^2\mathrm{Ibid}.$
 - ³Sussmann, SIAM J. Control Optim., **25**(1), 158–194, 1987.

Low-order controllability results

- These revolve around vector-valued quadratic forms.
- For ℝ-vector spaces V and W, let TS²(V; W) be the collection of symmetric bilinear maps B: V × V → W.
- For $B \in \mathsf{TS}^2(V; W)$ and $\lambda \in W^*$ define

Slide 9 $\lambda B(w_1, w_2) = \langle \lambda; B(w_1, w_2) \rangle \in \mathbb{R}.$

Definition $B \in \mathrm{TS}^2(V; W)$ is

- (i) *indefinite* if for each $\lambda \in W^* \setminus \operatorname{ann}(\operatorname{image}(B))$, λB is neither positive nor negative-semidefinite and is
- (ii) *definite* if there exists $\lambda \in W^*$ so that λB is positive-definite.

Some newer results^{1,2}

• For $q \in \mathsf{Q}$ define $B_{\mathcal{Y}}(q) \in \mathsf{TS}^2(\mathcal{Y}_q; \mathsf{T}_q\mathsf{Q}/\mathcal{Y}_q)$ by

 $B_{\mathcal{Y}}(q)(v_1, v_2) = \pi_{\mathcal{Y}_q}(\langle V_1 : V_2 \rangle(q)),$

where V_1 and V_2 are vector fields extending $v_1, v_2 \in \mathcal{Y}_q$.

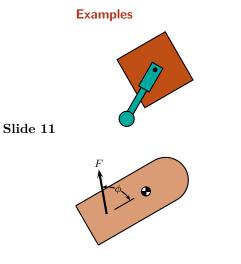
Theorem Let $\Sigma_{aff} = (\mathbb{Q}, \nabla, \mathcal{D}, \mathcal{Y})$. If $q_0 \in \mathbb{Q}$ is a regular point of \mathcal{Y} then Σ_{aff} is

Slide 10

(i) not STLCC from q_0 if $B_{\mathcal{Y}}(q_0)$ is definite.

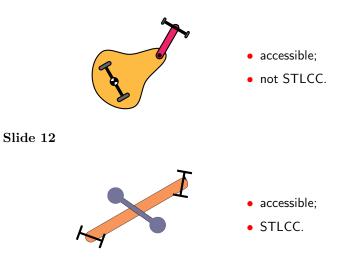
Assume that $\operatorname{Sym}^{(\infty)}(\mathfrak{Y})_{q_0}$ is generated by symmetric products of degree at most three. If $B_{\mathfrak{Y}}(q_0)$ is indefinite then $\Sigma_{\operatorname{aff}}$ is

- (ii) STLC from q_0 if it is accessible from q_0 , and is
- (iii) STLCC from q_0 if it is configuration accessible from q_0 .



- not accessible but configuration accessible;
- STLCC.
- accessible with φ fixed or variable (but not fixed at 0 or π),
- STLCC if ϕ variable;
- not STLCC if ϕ fixed.

¹Hirschorn/L, Proceedings of 40th IEEE CDC, 4216–4221, Dec. 2001. ²Basto-Gonçalves, Systems Control Lett., **35**(5), 287–290, 1998.



Application to motion planning

- Think of $B_{\mathcal{Y}}$ as a bundle mapping on all of Q.
- A vector field X is a decoupling vector field for Σ_{aff} if one can follow any reparameterisation of any integral curve of X with a controlled trajectory of Σ_{aff} .

Theorem¹ X is a decoupling vector field if and only if $X \in \Gamma(\mathcal{Y})$ and Slide 13 $B_{\mathcal{Y}}(X, X) = 0.$

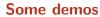
Theorem If there exists generators $\mathcal{Y} = \{Y_1, \ldots, Y_m\}$ for \mathcal{Y} that are all decoupling vector fields, then $B_{\mathcal{Y}}(q)$ is indefinite for each $q \in Q$. (If $\operatorname{codim}(\mathcal{Y}) = 1$ then the converse is also true.)

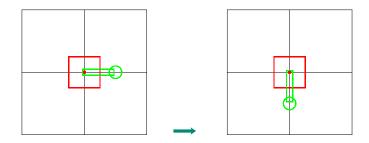
 The notion of a decoupling vector field can be generalised to driftless systems of rank greater than one, leading to the notion of a kinematic reduction.

¹Bullo/Lynch, IEEE Trans. Robotics and Autom., **17**(4), 402–412, 2001.

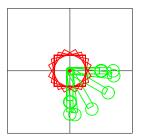
Definition An affine connection control system $(Q, \nabla, \mathcal{D}, \mathcal{Y})$ is *kinematically controllable* if \mathcal{Y} possesses generators that are decoupling vector fields.

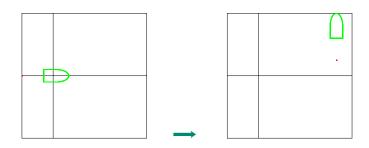
Slide 14

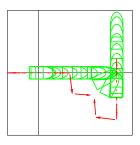


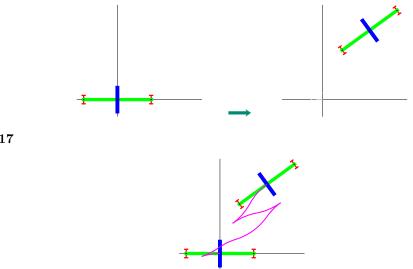


Slide 15









Work to be done

• Higher-order controllability.

Slide 18

- Connections between decoupling vector fields and extremals for optimal control problems?
- Effects of potential and dissipative forces.