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What are we interested in?

• Broadly, a general methodology that encompasses modelling, analysis,

and design.

• More specifically, for one of the example systems, or any system “like”

them,

◦ can we model it in a unified manner that is conducive to the further

objectives of analysis and design?

◦ can one describe its reachable set?

◦ if given a suitable cost function, can one analyse the corresponding

extremals of the optimal control problem?

◦ are there simple collections of trajectories that are sufficiently rich to

do motion planning?
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Modelling

• For us, a simple mechanical control system consists of a 6-tuple

(Q,g, V, F,D,F = {F 1, . . . , Fm}) where

1. Q is a finite-dimensional configuration manifold,

2. g is a Riemannian metric on Q,

3. V is a potential function on Q,

4. F represents all non-potential forces that are not controlled

(e.g., dissipative forces),

5. D is a distribution on Q modelling linear velocity constraints,

6. F is a collection of one-forms on Q, each representing a force over

which we have control.

• In this talk assume all data are analytic.
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• We generally simplify to the situation where V = 0 and F = 0, although

potential forces have received some attention,1 as have dissipative

forces.2

• With these simplifications, the problem is reduced to an affine

connection control system which is described by a 4-tuple

Σaff = (Q,∇,D,Y = {Y1, . . . , Ym}) with

1. Q as before,

2. ∇ an affine connection (which is not generally Levi-Civita),

3. D a distribution to which ∇ restricts,

4. Y a collection of vector fields on Q (these are related to the

one-forms F ).

1L/Murray, SIAM J. Control Optim., 35(3), 766–790, 1997.
2Cortés/Mart́ınez/Bullo, IEEE Trans. Automat. Control , submitted, July 2001.
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• When D = TQ then ∇ is the Levi-Civita affine connection
g

∇ associated

with g.

• When D ( TQ then ∇ is defined by

∇XY =
g

∇XY − (
g

∇XP )(Y ),

where P is the orthogonal projection onto D⊥.

• The equations of motion for such systems are

∇γ̇(t)γ̇(t) =

m∑

a=1

ua(t)Ya(γ(t))

for a controlled trajectory (γ, u) satisfying γ̇(t) ∈ Dγ(t) for some (and

hence all) t.
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Summary of approach

• Find a way to reduce the motion planning problem for the system

∇γ̇(t)γ̇(t) =
m∑

a=1

ua(t)Ya(γ(t))

to that for a system

γ̇(t) =
k∑

α=1

vα(t)Xα(γ(t)).

i.e., reduce to motion planning for driftless systems.

• This is generally impossible.

• However, for many interesting physical systems, our objective is

achievable.

• The key is that the systems are “controllable at low-order,” and a key

ingredient in tying everything together is a certain vector-valued

quadratic form.
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Controllability analysis

• Suppose that the controls u : [0, T ] → U ⊂ Rm are measurable and take

their values in a compact set U for which 0 ∈ int(conv(U)).

• For q0 ∈ Q and T > 0 let RTQ(q0,≤ T ) ⊂ TQ be the set of states

reachable from 0q0 in time at most T and let

RQ(q0,≤ T ) = τQ(RTQ(q0,≤ T )).

Definition Σaff = (Q,∇,D,Y ) is

(i) accessible from q0 if intD(RTQ(q0,≤ T )) 6= ∅ for all sufficiently

small T , is

(ii) configuration accessible from q0 if int(RQ(q0,≤ T )) 6= ∅ for all

sufficiently small T , is

(iii) small-time locally controllable (STLC) from q0 if

0q0 ∈ intD(RTQ(q0,≤ T )) for all sufficiently small T , and is

(iv) small-time locally configuration controllable (STLCC) from

q0 if q0 ∈ int(RQ(q0,≤ T )) for all sufficiently small T .
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The state of current results

• Accessibility of all flavours is understood1 by virtue of Sussmann and

Jurdjevic.

• Key to understanding accessibility is the symmetric product associated

with the affine connection ∇: 〈X : Y 〉 = ∇XY +∇Y X .

• Controllability is harder; sufficient conditions2 can be derived from the

work of Sussmann.3

• The lowest-order obstructions to controllability come in the form of the

symmetric products 〈Ya : Ya〉, a ∈ {1, . . . ,m}.

These should be neutralised by lower-order symmetric products, in

this case, just the input vector fields themselves.

1L/Murray, SIAM J. Control Optim., 35(3), 766–790, 1997.
2Ibid.
3Sussmann, SIAM J. Control Optim., 25(1), 158–194, 1987.
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Low-order controllability results

• These revolve around vector-valued quadratic forms.

• For R-vector spaces V and W , let TS2(V ;W ) be the collection of

symmetric bilinear maps B : V × V → W .

• For B ∈ TS2(V ;W ) and λ ∈ W ∗ define

λB(w1, w2) = 〈λ;B(w1, w2)〉 ∈ R.

Definition B ∈ TS2(V ;W ) is

(i) indefinite if for each λ ∈ W ∗ \ ann(image(B)), λB is neither

positive nor negative-semidefinite and is

(ii) definite if there exists λ ∈ W ∗ so that λB is positive-definite.
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Some newer results1,2

• For q ∈ Q define BY(q) ∈ TS2(Yq ;TqQ/Yq) by

BY(q)(v1, v2) = πYq
(〈V1 : V2〉(q)),

where V1 and V2 are vector fields extending v1, v2 ∈ Yq.

Theorem Let Σaff = (Q,∇,D,Y ). If q0 ∈ Q is a regular point of Y

then Σaff is

(i) not STLCC from q0 if BY(q0) is definite.

Assume that Sym(∞)(Y)q0 is generated by symmetric products of degree

at most three. If BY(q0) is indefinite then Σaff is

(ii) STLC from q0 if it is accessible from q0, and is

(iii) STLCC from q0 if it is configuration accessible from q0.

1Hirschorn/L, Proceedings of 40th IEEE CDC , 4216–4221, Dec. 2001.
2Basto-Gonçalves, Systems Control Lett., 35(5), 287–290, 1998.
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Examples

• not accessible but configuration ac-

cessible;

• STLCC.

F

φ

• accessible with φ fixed or variable

(but not fixed at 0 or π),

• STLCC if φ variable;

• not STLCC if φ fixed.
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• accessible;

• not STLCC.

• accessible;

• STLCC.
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Application to motion planning

• Think of BY as a bundle mapping on all of Q.

• A vector field X is a decoupling vector field for Σaff if one can follow

any reparameterisation of any integral curve of X with a controlled

trajectory of Σaff.

Theorem 1 X is a decoupling vector field if and only if X ∈ Γ(Y) and

BY(X,X) = 0.

Theorem If there exists generators Y = {Y1, . . . , Ym} for Y that are all

decoupling vector fields, then BY(q) is indefinite for each q ∈ Q. (If

codim(Y) = 1 then the converse is also true.)

• The notion of a decoupling vector field can be generalised to driftless

systems of rank greater than one, leading to the notion of a kinematic

reduction.

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
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Definition An affine connection control system (Q,∇,D,Y ) is

kinematically controllable if Y possesses generators that are

decoupling vector fields.

• Each of the example systems that is STLCC is also kinematically

controllable! it is possible to consider motion control strategies for

driftless systems rather than for mechanical systems.
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Some demos
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Work to be done

• Higher-order controllability.

• Connections between decoupling vector fields and extremals for optimal

control problems?

• Effects of potential and dissipative forces.


