The category of affine connection control systems

Andrew D. Lewis*

15/08/2002

Slide 0

*MATHEMATICS & STATISTICS, QUEEN'S UNIVERSITY EMAIL: ANDREW.LEWIS@QUEENSU.CA URL: http://www.mast.queensu.ca/~andrew/

The category CAS

- We first consider a more standard class of system, following V. I. Elkin, *Reduction of Nonlinear Control Systems. A Differential Geometric Approach*, Kluwer, 1999.
- An *object* in CAS is a pair $\Sigma = (M, \mathscr{F} = \{f_0, f_1, \dots, f_m\})$ where \mathscr{F} is a family of vector fields on the manifold M (think $\dot{x}(t) = f_0(x(t)) + u^a(t)f_a(x(t)))$.

- A morphism sending $\Sigma = (M, \mathscr{F} = \{f_0, f_1, \dots, f_m\})$ to $\tilde{\Sigma} = (\tilde{M}, \tilde{\mathscr{F}} = \{\tilde{f}_0, \tilde{f}_1, \dots, \tilde{f}_{\tilde{m}})\}$ is a triple $(\psi, \lambda_0, \Lambda)$ where $\psi \colon M \to \tilde{M}, \lambda_0 \colon M \to \mathbb{R}^{\tilde{m}}$, and $\Lambda \colon M \to L(\mathbb{R}^m; \mathbb{R}^{\tilde{m}})$ are smooth maps satisfying
 - 1. $T_x\psi(f_a(x)) = \Lambda^{\alpha}_a(x)\tilde{f}_{\alpha}(\psi(x)), a \in \{1, \dots, m\}$ and
 - **2.** $T_x \psi(f_0(x)) = \tilde{f}_0(\psi(x)) + \lambda_0^{\alpha} \tilde{f}_{\alpha}(\psi(x)).$

• This corresponds to a change of state-input by

 $(x, u) \mapsto (\psi(x), \lambda_0(x) + \Lambda(x)u).$

- Elkin discusses equivalence, inclusion, and factorisation in the category CAS.
- He successfully considers local equivalence for various classes of system:
 - 1. single-input systems;

Slide 2

- systems with involutive input distributions;
 systems with three states and two inputs.
- The notions of factorisation are related to, but not the same as, the abstractions of Pappas, Lafferriere, and Sastry.
- *Punchline:* For control-affine systems, the category theoretic language is useful for organising a means of attack on various important control theoretic issues. We hope to do the same for affine connection control systems.

What are affine connection control systems?

- They model a fairly general class of Lagrangian control systems:
 - a configuration manifold Q;
 - a Riemannian metric g on Q (kinetic energy);
 - a collection of input forces $\{F^1, \ldots, F^m\}$;
 - o possibly nonholonomic constraints, linear in velocity.
- The Lagrangian is kinetic energy: $L(v_q) = \frac{1}{2}g(v_q, v_q)$.
- Even with constraints, the equations of motion for these systems have the general form

$$\nabla_{c'(t)}c'(t) = u^a(t)Y_a(c(t)),$$

where ∇ is an affine connection on Q (the Levi-Civita connection when constraints are not present) and where the Y's are "related to" the F's.

The category ACCS

- An *object* in the category of affine connection control systems (ACCS) is a triple Σ_{aff} = (Q, ∇, 𝒴 = {Y₁,..., Y_m}).
- An ACCS *morphism* sending $\Sigma_{aff} = (Q, \nabla, \mathcal{Y})$ to $\tilde{\Sigma}_{aff} = (\tilde{Q}, \tilde{\nabla}, \tilde{\mathcal{Y}})$ is a triple (ϕ, S, Λ) where

- 1. $\phi \colon Q \to \tilde{Q}$ is a smooth mapping,
- 2. S is a smooth section of $\mathbb{R}_Q^{\tilde{m}} \otimes \mathsf{TS}^2(TQ)$ and $\Lambda \colon Q \to \mathsf{L}(\mathbb{R}^m; \mathbb{R}^{\tilde{m}})$ is a smooth map, together satisfying
- (a) $T_q\phi(Y_a(q)) = \Lambda^{\alpha}_a(q) (\tilde{Y}_{\alpha}(\phi(q)))$ and
- (b) $T_q \phi(\nabla_X Y)_q = (\tilde{\nabla}_{\tilde{X}} \tilde{Y})_{\phi(q)} + S_q^{\alpha}(X(q), Y(q))\tilde{Y}_{\alpha}(\phi(q)),$
- where \tilde{X} and \tilde{Y} are ϕ -related to X and Y.

- What does an ACCS morphism really do?
- The map ϕ sends controlled trajectories for Σ_{aff} to controlled trajectories for $\tilde{\Sigma}_{aff}.$
- If (γ, u) is a controlled trajectory for $\Sigma_{\rm aff}$, then $(\phi \circ \gamma, \tilde{u})$ is a controlled trajectory for $\tilde{\Sigma}_{\rm aff}$ with

$$\tilde{u}(t) = \Lambda(\gamma(t))u(t) - S^{\alpha}(\gamma'(t), \gamma'(t))Y_{\alpha}(\gamma(t)).$$

- Conversely, if ϕ sends every controlled trajectory for $\Sigma_{\rm aff}$ to a controlled trajectory for $\tilde{\Sigma}_{\rm aff}$, then there exists S and Λ so that (ϕ, S, Λ) is an ACCS morphism.
- Have notions of *isomorphism* (equivalence), *epimorphism* (projection or quotient), and *monomorphism* (subobjects).

$\mathsf{ACCS} \subset \mathsf{CAS}$

- To render an object $\Sigma_{\rm aff}=(Q,\nabla,\mathscr{Y})$ in ACCS an object $\Sigma=(M,\mathscr{F})$ in CAS, take
 - 1. M = TQ,
 - 2. f_0 is the geodesic spray for ∇ (a second-order vector field on TQ), and
 - **3**. f_a is the "vertical lift" of Y_a .

Slide 6

- To an ACCS morphism (ϕ, Λ) one associates a CAS morphism $(\psi, \lambda_0, \Lambda)$ with $\psi = T\phi$ and $\lambda_0(v_q) = S(v_q, v_q)$.
- *Question:* Is the collection of morphisms for ACCS simply the collection of morphisms for CAS restricted to systems in ACCS?

Decompositions of ACCS morphisms

- An ACCS morphism (φ, S, Λ) is a morphism over controls (a CACCS morphism) if Q ⊂ Q̃ and φ: Q → Q̃ is the inclusion.
- CACCS morphisms are simply algebraic Q-dependent transformations of the control (if $\tilde{Q} = Q$, think "partial feedback linearisation").
- An ACCS morphism (φ, S, Λ) is a morphism over configurations

 (a QACCS morphism) if S = 0 and Λ(q) = id_{ℝ^m}.

- QACCS morphisms leave alone the controls, and are simply coordinate mappings. One can show that for a QACCS morphism, $\phi \colon Q \to \tilde{Q}$ must satisfy
 - 1. ϕ maps geodesics of ∇ to geodesics of $\tilde{\nabla}$ (ϕ is *totally geodesic*) and
 - the control vector field Y
 _a must be φ-related to the control vector field Y_a, a = 1,...,m.

Proposition: An isomorphism in ACCS is the composition of a QACCS morphism with a CACCS morphism.

• One should be able to put together tools from the theory of distributions and from affine differential geometry to obtain some equivalence results for affine connection control systems.

Slide 8

- *This has not even been started.* Of all the equivalence classes is CAS determined by Elkin, *none* of the representatives are affine connection control systems!
- ---- Lots of stuff to do for the equivalence problem.

Factor systems

- $\tilde{\Sigma}_{aff} = (\tilde{Q}, \tilde{\nabla}, \tilde{\mathscr{Y}})$ is a *factor system* for $\Sigma_{aff} = (Q, \nabla, \mathscr{Y})$ if there is an ACCS morphism (ϕ, S, Λ) so that $\phi \colon Q \to \tilde{Q}$ is a surjective submersion.
- Factor systems are interesting for several reasons, including
- Slide 9
- 1. reduction in the presence of symmetry can often be thought of as factorisation in ACCS,
- Factor systems that are fully actuated seem to come up fairly often (i.e., fully actuated base space, in the case of reduction).

Proposition: Under some assumptions, if $\tilde{\Sigma}_{aff} = (\tilde{Q}, \tilde{\nabla}, \tilde{\mathcal{Y}})$ is a factor system for $\Sigma_{aff} = (Q, \nabla, \mathcal{Y})$ then for every controlled trajectory $(\tilde{\gamma}, \tilde{u})$ for $\tilde{\Sigma}_{aff}$ there is a controlled trajectory (γ, u) for Σ_{aff} so that $\tilde{\gamma} = \phi \circ \gamma$.

• QACCS factor systems are "simple."

Proposition: $\tilde{\Sigma}_{aff} = (\tilde{Q}, \tilde{\nabla}, \tilde{\mathcal{Y}})$ is a factor system for $\Sigma_{aff} = (Q, \nabla, \mathcal{Y})$ via a QACCS morphism if and only if

(i) $\nabla_X X$ is ϕ -projectable for all ϕ -projectable vector fields X and

Slide 10 (ii) the vector fields \mathcal{Y} are ϕ -projectable.

• As with isomorphisms, we may decompose factorisations.

Proposition: (Roughly), if $\Sigma_{\text{aff}} = (Q, \nabla, \mathcal{Y})$ factors to $\tilde{\Sigma}_{\text{aff}} = (\tilde{Q}, \tilde{\nabla}, \tilde{\mathcal{Y}})$ by an ACCS morphism, then one can render $\tilde{\Sigma}_{\text{aff}}$ a QACCS factor system by the pre-application of a CACCS morphism.

Wrap up

- This has been a rambling, barely coherent presentation of a loosely organised collection of ideas.
- Slide 11 With some significant effort, it is possible that this will one day come together to produce a collection of significant results.
 - It is also possible that with some significant effort, nothing will happen because problems such as system equivalence are intrinsically extremely difficult.