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Some sample systems
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Problems we think about

1. Describe the configurations reachable from a given point (the

controllability problem).

2. Steer from point A at rest to point B at rest (the motion planning

problem).

3. Design the forces, perhaps as functions of configuration, velocity, and

time, so that a desired operating point is rendered stable (point

stabilisation problem).

4. Follow a desired path in configuration space, possibly with a specific

parameterisation (trajectory tracking problem).

5. Perform one of the above tasks in a manner that minimises some cost

function (optimal control).
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Something to think about while I prattle on

• Here’s a nontrivial problem:

F

π

2

• Starting from rest, is it possible to reach an open set of configurations?

(answer “standard”)

• Starting from rest, is it possible to reach a neighbourhood of the initial

configuration while not undergoing large deviations? (answer quite

difficult)

• Is it possible to steer from rest in one configuration to rest in another

configuration? (I do not know)
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General system description

• We consider “simple mechanical systems, possibly with constraints:”

1. a configuration manifold Q;

2. kinetic energy, defining a Riemannian metric G on Q;

3. potential energy (a function V on Q);

4. possibly velocity constraints that allow rolling, but not slipping (a

distribution D on Q);

5. a collection of forces whose direction and magnitude may be

controlled (a collection Y = {Y1, . . . , Ym} of vector fields).1

• Control system properties (consider zero potential case):

1. inherently nonlinear;

2. linearisations are badly behaved (linear methods not applicable);

3. none of the “standard” nonlinear methods generally apply.

1Not really.
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System geometry

• The mechanical systems described above are very “structured.”

• The Euler-Lagrange equations (no external forces) for the Lagrangian

L(q, q̇) = 1
2Gij(q)q̇

iq̇j :

d

dt

( ∂L

∂q̇i

)

− ∂L

∂qi
= Gij

[

q̈j + gjk
(∂Gkℓ

∂qm
− 1

2

∂Gℓm

∂qk

)

q̇ℓq̇m
]

= Gij

[

q̈j +
G

Γj
ℓmq̇ℓq̇m

︸ ︷︷ ︸

geodesic equations
for the Levi-Civita
affine connection

]

G

∇γ′(t)γ
′(t) = 0.

• Even for systems with constraints, the unforced equations are geodesic.1

1Synge, Math. Ann., 99, 738–751, 1928
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• This makes us think that the geometry of the affine connection may be

important.

• It is in fact extremely important, and meshes beautifully with the control

problems.

• Turns out that we may as well consider a general affine connection as

modelling the unforced dynamics.

• The effects of external forces are modelled by adding linear combinations

of Y to the right-hand side:

∇γ′(t)∇γ′(t)
︸ ︷︷ ︸

acceleration

=

m∑

a=1

ua(t)Ya(γ(t))

︸ ︷︷ ︸
force

mass

• Leads to so-called affine connection control systems: Σaff = (Q,∇,Y ).
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Tools for analysis and design

• For systems of the type we are considering, the controllability problem is

fundamental. . .

q0q0

big excursions
not allowed

q0

Local configuration accessibility Local configuration controllability

∇γ′(t)γ
′(t) =

m∑

a=1

ua(t)Ya(γ(t))
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• Accessibility analysis is “standard:” Consider the following simple

control system:

ẋ = u1f1(x) + u2f2(x).

• Apply the control

u(t) =







(1, 0), 0 ≤ t < T
4

(0, 1), T
4 ≤ t < T

2

(−1, 0), T
2 ≤ t < 3T

4

(0,−1), 3T
4 ≤ t ≤ T.

• Where does x(T ) end up?
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• We determine that

x(T ) = x(0)+
√
T [f1, f2](x(0))+ h.o.t., [f1, f2] =

∂f2
∂x

f1 −
∂f1
∂x

f2.

• [f1, f2] is the Lie bracket of f1 and f2.

• More generally, we may consider a control system like

ẋ(t) = f0(x(t)) +

m∑

a=1

ua(t)fa(x(t)).

• By applying suitable controls, one may move in the directions

f0, f1, . . . , fm,

[fa, fb], a, b = 0, . . . ,m,

[fa, [fb, fc]], a, b, c = 0, . . . ,m,

etc.
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A simple exhibition of the Lie bracket

[f1, f2]
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Some controllability results for mechanical systems

Accessibility

• For mechanical systems, the interaction of the Lie bracket and the

system geometry (i.e., the affine connection) is very attractive. This

gives nice accessibility results.1,2,3

• Associated with ∇ define the symmetric product:

〈X : Y 〉 = ∇XY +∇Y X.

• Let Y be the distribution generated by Y .

• Let Sym(∞)(Y) be the distribution generated by Y under symmetric

product.

• Let Lie(∞)(V ) be the distribution generated by a family of vector fields

V under Lie bracket.
1L/Murray, SIAM Review, 41(3), 555–574, 1999
2L/Murray Systems Control Lett., 31(4), 199–205, 1997
3L, Rep. Math. Phys., 42(1/2), 135–164, 1998
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• For q0 ∈ Q and T > 0 let RTQ(q0,≤ T ) ⊂ TQ be the set of states reachable

from 0q0 in time at most T and let RQ(q0,≤ T ) = τQ(RTQ(q0,≤ T )).

Definition 1 Σaff = (Q,∇,Y ) is

(i) accessible from 0q0 if int(RTQ(q0,≤ T )) 6= ∅ for all sufficiently small T

and is

(ii) configuration accessible from q0 if int(RQ(q0,≤ T )) 6= ∅ for all

sufficiently small T .

Theorem 1 Σaff = (Q,∇,Y ) is

(i) accessible from 0q0 if and only if Sym(∞)(Y)q0 = Tq0Q and is

(ii) configuration accessible from q0 if and only if

Lie(∞)(Sym(∞)(Y))q0 = Tq0Q.
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Controllability

Definition 2 Σaff = (Q,∇,Y ) is

(i) small-time locally controllable (STLC) from 0q0 if

0q0 ∈ int(RTQ(q0,≤ T )) for all sufficiently small T , and is

(ii) small-time locally configuration controllable (STLCC) from

q0 if q0 ∈ int(RQ(q0,≤ T )) for all sufficiently small T .

• L/Murray give sufficient conditions involving symmetric products and

based on work of Sussmann.1

• These sufficient conditions lead to a class of control algorithms for

certain systems that rely on specially constructed periodic inputs.2

• Problems treated include the steering problem, the point stabilisation

problem, and the trajectory tracking problem.

• Movies

1SIAM J. Control Optim., 25(1), 158–194, 1987
2Bullo/Leonard/L, IEEE Trans. Automat. Control , 45(8), 1437–1454, 2000
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Low-order controllability results1,2

• These revolve around vector-valued quadratic forms.

• For R-vector spaces V and W , let TS2(V ;W ) be the collection of

symmetric bilinear maps B : V × V → W .

• For B ∈ TS2(V ;W ) and λ ∈ W ∗ define λB(w1, w2) = 〈λ;B(w1, w2)〉 ∈ R.

Definition 3 B ∈ TS2(V ;W ) is

(i) indefinite if for each λ ∈ W ∗, λB is neither positive nor

negative-semidefinite and is

(ii) definite if there exists λ ∈ W ∗ so that λB is positive-definite.

1Hirschorn/L, Proceedings of 40th IEEE CDC , 4216-4221, Dec. 2001.
2Bullo/L, Submitted to SIAM J. Control Optim., Jan. 2003.
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• For q ∈ Q define BY(q) ∈ TS2(Yq ;TqQ/Yq) by

BY(q)(v1, v2) = πYq (〈V1 : V2〉(q)),

where V1 and V2 are vector fields extending v1, v2 ∈ Yq.

Theorem 2 Let Σaff = (Q,∇,Y ). If q0 ∈ Q is a regular point of Y

then Σaff is

(i) not STLCC from q0 if BY(q0) is definite.

Assume that Sym(∞)(Y)q0 is generated by symmetric products of degree

at most two. Then Σaff is

(ii) STLC from 0q0 if Sym(∞)(Y)q0 = Tq0Q and if BY(q0) is indefinite,

and is

(iii) STLCC from q0 if Lie(∞)(Sym(∞)(Y))q0 = Tq0Q and if BY(q0) is

indefinite.
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Application to motion planning

• A vector field X is a decoupling vector field for Σaff if one can follow

any reparameterisation of any integral curve of X with a controlled

trajectory of Σaff.

• Think of BY as a bundle mapping on all of Q.

Theorem 3 1 X is a decoupling vector field if and only if X ∈ Γ∞(Y)

and BY(X,X) = 0.

• If there exists generators Y = {Y1, . . . , Ym} for Y that are all

decoupling vector fields, then BY(q) is indefinite for each q ∈ Q. (If

codim(Y) = 1 then the converse is also true.)

• For each of the example systems that is STLCC, Y possesses a collection

of decoupling generators!

• Movies

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
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