Some mechanical systems are difficult to control

Andrew D. Lewis*

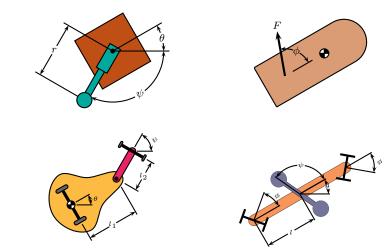
Collaborators: Francesco Bullo, Theo Coombs, Jorge Cortés, Ron Hirschorn, Kevin Lynch, Sonia Martínez, David Tyner

Slide 0

25/04/2003

*DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY EMAIL: ANDREW.LEWIS@QUEENSU.CA URL: http://www.mast.queensu.ca/~andrew/

Some sample systems



Problems we think about

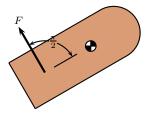
- 1. Describe the configurations reachable from a given point (the controllability problem).
- 2. Steer from point A at rest to point B at rest (the motion planning problem).

Slide 2

- Design the forces, perhaps as functions of configuration, velocity, and time, so that a desired operating point is rendered stable (point stabilisation problem).
 - Follow a desired path in configuration space, possibly with a specific parameterisation (trajectory tracking problem).
 - 5. Perform one of the above tasks in a manner that minimises some cost function (optimal control).

Something to think about while I prattle on

• Here's a nontrivial problem:



- Starting from rest, is it possible to reach an open set of configurations? (answer "standard")
- Starting from rest, is it possible to reach a neighbourhood of the initial configuration while not undergoing large deviations? (answer quite difficult)
- Is it possible to steer from rest in one configuration to rest in another configuration? (I do not know)

General system description

- We consider "simple mechanical systems, possibly with constraints:"
 - 1. a configuration manifold Q;
 - 2. kinetic energy, defining a Riemannian metric \mathbb{G} on \mathbb{Q} ;
 - **3**. potential energy (a function V on Q);
 - 4. possibly velocity constraints that allow rolling, but not slipping (a distribution \mathcal{D} on Q);

Slide 4

- 5. a collection of forces whose direction and magnitude may be controlled (a collection $\mathcal{Y} = \{Y_1, \ldots, Y_m\}$ of vector fields).¹
- Control system properties (consider zero potential case):
 - 1. inherently nonlinear;
 - 2. linearisations are badly behaved (linear methods not applicable);
 - 3. none of the "standard" nonlinear methods generally apply.

¹Not really.

System geometry

- The mechanical systems described above are very "structured."
- The Euler-Lagrange equations (no external forces) for the Lagrangian $L(q, \dot{q}) = \frac{1}{2} G_{ij}(q) \dot{q}^i \dot{q}^j$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^{i}} \right) - \frac{\partial L}{\partial q^{i}} = \mathbf{G}_{ij} \begin{bmatrix} \ddot{q}^{j} + g^{jk} \left(\frac{\partial \mathbf{G}_{k\ell}}{\partial q^{m}} - \frac{1}{2} \frac{\partial \mathbf{G}_{\ell m}}{\partial q^{k}} \right) \dot{q}^{\ell} \dot{q}^{m} \end{bmatrix}$$

$$= \mathbf{G}_{ij} \begin{bmatrix} \frac{\ddot{q}^{j} + \mathbf{\Gamma}_{\ell m}^{\mathbf{G}} \dot{q}^{\ell} \dot{q}^{m}}{\int_{\text{for the Levi-Civita}}} \end{bmatrix}$$

$$\xrightarrow{\mathbf{G}}_{\gamma'(t)} \gamma'(t) = 0.$$

Slide 5

• Even for systems with constraints, the unforced equations are geodesic.¹

¹Synge, Math. Ann., **99**, 738–751, 1928

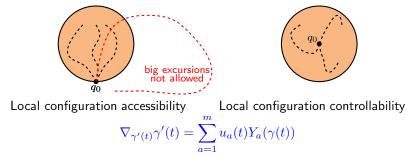
- This makes us think that the geometry of the affine connection may be important.
- It is in fact *extremely* important, and meshes beautifully with the control problems.
- Turns out that we may as well consider a general affine connection as modelling the unforced dynamics.
- Slide 6 The effects of external forces are modelled by adding linear combinations of $\mathscr Y$ to the right-hand side:

$$\underbrace{\nabla_{\gamma'(t)} \nabla_{\gamma'(t)}}_{\text{acceleration}} = \underbrace{\sum_{a=1}^{m} u^a(t) Y_a(\gamma(t))}_{\frac{\text{force}}{\text{mass}}}$$

• Leads to so-called affine connection control systems: $\Sigma_{aff} = (Q, \nabla, \mathcal{Y}).$

Tools for analysis and design

• For systems of the type we are considering, the controllability problem is fundamental...



• Accessibility analysis is "standard:" Consider the following simple control system:

$$\dot{x} = u_1 f_1(x) + u_2 f_2(x).$$

• Apply the control

Slide 8

$$u(t) = \begin{cases} (1,0), & 0 \le t < \frac{T}{4} \\ (0,1), & \frac{T}{4} \le t < \frac{T}{2} \\ (-1,0), & \frac{T}{2} \le t < \frac{3T}{4} \\ (0,-1), & \frac{3T}{4} \le t \le T. \end{cases}$$

• Where does x(T) end up?

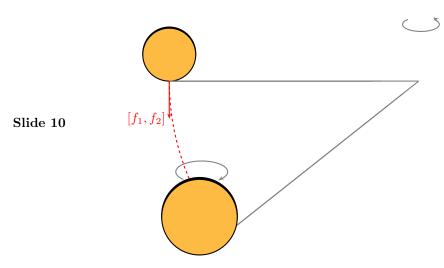
• We determine that

$$x(T) = x(0) + \sqrt{T} [f_1, f_2](x(0)) + \text{h.o.t.}, \qquad [f_1, f_2] = \frac{\partial f_2}{\partial x} f_1 - \frac{\partial f_1}{\partial x} f_2.$$

- $[f_1, f_2]$ is the Lie bracket of f_1 and f_2 .
- More generally, we may consider a control system like

$$\dot{x}(t) = f_0(x(t)) + \sum_{a=1}^m u_a(t) f_a(x(t)).$$

- By applying suitable controls, one may move in the directions
 - $\begin{array}{ll} f_{0}, \ f_{1}, \ldots, f_{m}, \\ [f_{a}, f_{b}], & a, b = 0, \ldots, m, \\ [f_{a}, [f_{b}, f_{c}]], & a, b, c = 0, \ldots, m, \\ \text{etc.} \end{array}$



A simple exhibition of the Lie bracket

Some controllability results for mechanical systems

Accessibility

- For mechanical systems, the interaction of the Lie bracket and the system geometry (i.e., the affine connection) is very attractive. This gives nice accessibility results.¹²³
- Associated with ∇ define the symmetric product:

$\langle X:Y\rangle = \nabla_X Y + \nabla_Y X.$

- Slide 11
- Let $\mathcal Y$ be the distribution generated by $\mathcal Y.$
- Let $\mathrm{Sym}^{(\infty)}(\mathfrak{Y})$ be the distribution generated by \mathscr{Y} under symmetric product.
- Let ${\rm Lie}^{(\infty)}(\mathscr{V})$ be the distribution generated by a family of vector fields $\mathscr V$ under Lie bracket.

¹L/Murray, *SIAM Review*, **41**(3), 555–574, 1999

²L/Murray Systems Control Lett., **31**(4), 199–205, 1997

³L, Rep. Math. Phys., **42**(1/2), 135–164, 1998

• For $q_0 \in \mathbb{Q}$ and T > 0 let $\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T) \subset \mathsf{TQ}$ be the set of states reachable from 0_{q_0} in time at most T and let $\mathcal{R}_{\mathsf{Q}}(q_0, \leq T) = \tau_{\mathsf{Q}}(\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T))$.

Definition 1 $\Sigma_{aff} = (Q, \nabla, \mathcal{Y})$ is

- (i) *accessible* from 0_{q_0} if $int(\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T)) \neq \emptyset$ for all sufficiently small T and is
- Slide 12 (ii) configuration accessible from q_0 if $int(\mathcal{R}_Q(q_0, \leq T)) \neq \emptyset$ for all sufficiently small T.

Theorem 1 $\Sigma_{\text{aff}} = (\mathbf{Q}, \nabla, \mathbf{\mathscr{Y}})$ is

- (i) accessible from 0_{q_0} if and only if $\operatorname{Sym}^{(\infty)}(\mathfrak{Y})_{q_0} = \mathsf{T}_{q_0}\mathsf{Q}$ and is
- (ii) configuration accessible from q_0 if and only if $\operatorname{Lie}^{(\infty)}(\operatorname{Sym}^{(\infty)}(\mathfrak{Y}))_{q_0} = \mathsf{T}_{q_0}\mathsf{Q}.$

Controllability

Definition 2 $\Sigma_{aff} = (Q, \nabla, \mathcal{Y})$ is

- (i) small-time locally controllable (STLC) from 0_{q_0} if $0_{q_0} \in int(\mathcal{R}_{\mathsf{TQ}}(q_0, \leq T))$ for all sufficiently small T, and is
- (ii) small-time locally configuration controllable (STLCC) from q_0 if $q_0 \in int(\mathcal{R}_Q(q_0, \leq T))$ for all sufficiently small T.
- L/Murray give sufficient conditions involving symmetric products and based on work of Sussmann.¹
- These sufficient conditions lead to a class of control algorithms for certain systems that rely on specially constructed periodic inputs.²
- Problems treated include the steering problem, the point stabilisation problem, and the trajectory tracking problem.
- Movies

¹SIAM J. Control Optim., **25**(1), 158–194, 1987

²Bullo/Leonard/L, IEEE Trans. Automat. Control, 45(8), 1437–1454, 2000

Low-order controllability results¹²

- These revolve around vector-valued quadratic forms.
- For ℝ-vector spaces V and W, let TS²(V; W) be the collection of symmetric bilinear maps B: V × V → W.
- For $B \in \mathsf{TS}^2(V; W)$ and $\lambda \in W^*$ define $\lambda B(w_1, w_2) = \langle \lambda; B(w_1, w_2) \rangle \in \mathbb{R}$.

Slide 14 Definition 3 $B \in TS^2(V; W)$ is

- (i) *indefinite* if for each $\lambda \in W^*$, λB is neither positive nor negative-semidefinite and is
- (ii) *definite* if there exists $\lambda \in W^*$ so that λB is positive-definite.

• For $q \in \mathsf{Q}$ define $B_{\mathfrak{Y}}(q) \in \mathsf{TS}^2(\mathfrak{Y}_q; \mathsf{T}_q\mathsf{Q}/\mathfrak{Y}_q)$ by

$$B_{\mathcal{Y}}(q)(v_1, v_2) = \pi_{\mathcal{Y}_q}(\langle V_1 : V_2 \rangle(q)),$$

where V_1 and V_2 are vector fields extending $v_1, v_2 \in \mathcal{Y}_q$.

Theorem 2 Let $\Sigma_{aff} = (\mathbb{Q}, \nabla, \mathcal{Y})$. If $q_0 \in \mathbb{Q}$ is a regular point of \mathcal{Y} then Σ_{aff} is

Slide 15 (i) not STLCC from q_0 if $B_{\mathcal{Y}}(q_0)$ is definite.

Assume that $\operatorname{Sym}^{(\infty)}(\mathfrak{Y})_{q_0}$ is generated by symmetric products of degree at most two. Then $\Sigma_{\operatorname{aff}}$ is

- (ii) STLC from 0_{q_0} if $\operatorname{Sym}^{(\infty)}(\mathfrak{Y})_{q_0} = \mathsf{T}_{q_0}\mathsf{Q}$ and if $B_{\mathfrak{Y}}(q_0)$ is indefinite, and is
- (iii) STLCC from q_0 if $\operatorname{Lie}^{(\infty)}(\operatorname{Sym}^{(\infty)}(\mathfrak{Y}))_{q_0} = \mathsf{T}_{q_0}\mathsf{Q}$ and if $B_{\mathfrak{Y}}(q_0)$ is indefinite.

¹Hirschorn/L, *Proceedings of 40th IEEE CDC*, 4216-4221, Dec. 2001. ²Bullo/L, Submitted to *SIAM J. Control Optim.*, Jan. 2003.

Application to motion planning

- A vector field X is a decoupling vector field for Σ_{aff} if one can follow any reparameterisation of any integral curve of X with a controlled trajectory of Σ_{aff}.
- Think of $B_{\mathcal{Y}}$ as a bundle mapping on all of Q.

Theorem 3¹ X is a decoupling vector field if and only if $X \in \Gamma^{\infty}(\mathfrak{Y})$ Slide 16 and $B_{\mathfrak{Y}}(X, X) = 0$.

- If there exists generators 𝒴 = {Y₁,...,Y_m} for 𝔅 that are all decoupling vector fields, then B_𝔅(q) is indefinite for each q ∈ Q. (If codim(𝔅) = 1 then the converse is also true.)
- For each of the example systems that is STLCC, \mathcal{Y} possesses a collection of decoupling generators!
- Movies

¹Bullo/Lynch, IEEE Trans. Robotics and Autom., **17**(4), 402–412, 2001.