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Some sample systems

θ

ψ

r

F

φ

l1

l2

θ

ψ

φ

φ
ψ

θ

l

Andrew D. Lewis Queen’s University, Mathematics & Statistics



Slide 2

What are we interested in?

• Broadly, a general methodology that encompasses modelling, analysis,

and design.

• More specifically, for one of the example systems, or any system “like”

them,

◦ can we model it in a unified manner that is conducive to the further

objectives of analysis and design?

◦ can one describe its reachable set?

◦ if given a suitable cost function, can one analyse the corresponding

extremals of the optimal control problem?

◦ are there simple collections of trajectories that are sufficiently rich to

do motion planning?
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Modelling

• For us, a simple mechanical control system consists of a 6-tuple

(Q,G, V, F,D,F = {F 1, . . . , Fm}) where

1. Q is a finite-dimensional configuration manifold,

2. G is a Riemannian metric on Q,

3. V is a potential function on Q,

4. F represents all non-potential forces that are not controlled

(e.g., dissipative forces),

5. D is a distribution on Q modelling linear velocity constraints,

6. F is a collection of one-forms on Q, each representing a force over

which we have control.

• The equations of motion are the Euler-Lagrange equations with

Lagrangian L(vq) =
1
2G(vq , vq)− V (q), with external force

F +
∑m

a=1 uaF
a, and subject to the nonholonomic constraints specified

by D.
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• We generally simplify to the situation where V = 0 and F = 0, although

potential forces have received some attention,1 as have dissipative

forces.2

• With these simplifications, the problem is reduced to an affine

connection control system which is described by a 4-tuple

Σaff = (Q,∇,D,Y = {Y1, . . . , Ym}) with

1. Q as before,

2. ∇ an affine connection (which is not generally Levi-Civita),

3. D a distribution to which ∇ restricts,

4. Y a collection of vector fields on Q (these are related to the

one-forms F ).

1L/Murray, SIAM J. Control Optim., 35(3), 766–790, 1997.
2Cortés/Mart́ınez/Bullo, IEEE Trans. Automat. Control , submitted, July 2001.
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• When D = TQ then ∇ is the Levi-Civita affine connection
G

∇ associated

with G.

• When D ( TQ then ∇ is defined by

∇XY =
G

∇XY − (
G

∇XP )(Y ),

where P is the orthogonal projection onto D⊥.

• The equations of motion for such systems are

∇γ̇(t)γ̇(t) =

m∑

a=1

ua(t)Ya(γ(t))

for a controlled trajectory (γ, u) satisfying γ̇(t) ∈ Dγ(t) for some (and

hence all) t.
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Controllability

• Questions: Starting from rest at q0 ∈ Q does the set of reachable

configurations

1. have a nonempty interior? (accessibility)

2. contain q0 in its interior? (controllability)

• Accessibility is “easy” and beautiful (combine Sussmann/Jurdjevic with

affine differential geometry)1.

• Controllability is quite difficult. Preliminary (and quite unsatisfactory)

results were found by L/Murray.2

• It is possible to show that any (analytic) single-input system will be

controllable only on a strict analytic subset.

1L/Murray, SIAM Review, 41(3), 555–574, 1999
2Ibid.

Slide 7

• Let’s consider an example:
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◦ accessible

◦ controllable (“easy”)

◦ accessible

◦ not controllable (not so “easy”)
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• Add more stuff to the model:

F

τ

• Controllability now goes from “not so easy” to “requiring new

techniques.”1,2

• The new techniques involve the vector-valued quadratic form

BY(q0) : Yq0 × Yq0 → Tq0Q/Yq0

(v1, v2) 7→ πYq (〈V1 : V2〉(q0)),

where

〈V1 : V2〉 = ∇V1
V2 +∇V2

V1

is the symmetric product.
1Hirschorn/L, Proceedings of 40th IEEE CDC , 4216–4221, Dec. 2001.
2Bullo/L, submitted to SIAM J. Control Optim., January 2003.
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• Using the vector-valued quadratic form ideas one can prove a general

result for two-input affine connection control systems which says,

roughly, that they are either controllable in a very nice way, or they are

controllable only on an analytic set.1

• The hovercraft with the fan dynamics is of the “only controllable on an

analytic set” sort.

• Is there some sort of measure of “robustness” of controllability?

1Tyner/L, submitted to CDC03.
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Motion planning

• Question: If a system is controllable, is it possible to steer from rest at

q1 ∈ Q to rest at q2 ∈ Q?

• The approach is to find a collection of “motion primitives” that are rich

enough to allow one to solve the motion planning problem by

concatenation of primitives.

• What sort of primitives should one look for?

• We consider decoupling vector fields. These are vector fields on Q

whose integral curves, and any reparameterisation of them, can be

followed by trajectories of the mechanical system.

• The idea is that given a rich enough class of decoupling vector fields,

one solves the motion planning problem by concatenating their integral

curves.
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• There is a nontrivial connection between the vector-valued quadratic

form used in controllability and the notion of a decoupling vector field:

Theorem 1 X is a decoupling vector field if and only if X is Y-valued

and BY(X,X) = 0.

“Theorem” If dim(Y) = dim(Q)− 1 then the existence of enough

decoupling vector fields for motion planning can be decided using BY.

• What about our example?

F

φ

◦ Controllable, as we have seen.

◦ Possible to find enough decou-

pling vector fields.

◦ There are two. What are they?

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
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• What about the more complicated model?

• It is not controllable, so it needs one more input:

F1

F2

π

2

τ

• The theory predicts there are enough decoupling vector fields to do

motion planning.

• Last week Dave Tyner found them.

• Are they simple enough to do anything with?
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A not so easy example
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• accessible.

• controllable.

• The system also possess enough decoupling vector fields to do motion

planning.

• This can be done explicitly!
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What else?

• We have an actual hovercraft, and the open-loop motion planning

primitives work extremely poorly.

• Linearise around trajectories to stabilise them in closed-loop.

• Understand non-ideal model effects (friction, actuator magnitude and

rate constraints, etc.)
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