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Affine connection control systems

e An affine connection control system is a 4-tuple (Q,V,D, %) where
1. Q is the configuration manifold,
2. V is an affine connection on Q,
3. D is a constant rank distribution on Q that in invariant under V, and

4. Y ={Y1,...,Yy} are D-valued vector fields on Q.
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e The control equations are
Vo (8) =D u()Ya((8)).
a=1

e These equations model mechanical systems with a kinetic energy
Lagrangian, nonholonomic constraints modelled by D, and an external
force that is a user-specified linear combination of the vector fields in %
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e For unconstrained systems take

1. D=TQ,
G
2. V =V, the Levi-Civita connection for the kinetic energy metric G,
and
3. Y, =G!F%,ac{l,...,m}, where F1 ... F™ are the physical
forces.
Slide 2 ° For constrained systems take
1. DCTQ,
2. V is the affine connection
G G pi
VxY =VxY — (VxP~ )(Y),
where PP is the orthogonal projection onto D+, and
3. Y, = PP(G¥(F®)), a € {1,...,m}, where PP is the orthogonal
projection onto D.
Controllability
e For systems and problems of the type we are considering, the
controllability problem is fundamental. ..
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Local configuration accessibility Local configuration controllability

V.Y/(t)’}/(t) = Z Uq (t)Ya (v(?))
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Accessibility

e For studies of controllability for general nonlinear systems of the form

m

§(1) = fol6() + Y_u(t) fal€(t)),
a=1
the Lie brackets of the vector fields { fo, f1,.-., fm} play a fundamental

role.

e For mechanical systems, the interaction of the Lie bracket and the
Slide 4 system geometry (i.e., the affine connection) is very attractive. This

gives nice accessibility results.}?3

e An important rdle in these results is played by the symmetric product
associated with V:

(X : Y> =VxY +VyX.

1L/Murray, SIAM Review, 41(3), 555-574, 1999
2L /Murray Systems Control Lett., 31(4), 199-205, 1997
3L, Rep. Math. Phys., 42(1/2), 135-164, 1998

Controllability

e L/Murray give sufficient conditions involving symmetric products and

based on work of Sussmann.!

e These sufficient conditions lead to a class of control algorithms for
certain systems that rely on specially constructed periodic inputs.?

Slide 5 problems treated include the steering problem, the point stabilisation

problem, and the trajectory tracking problem.

e The conditions of L/Murray are not entirely satisfactory since there are
systems that fail the conditions but are (trivially) controllable.

1SIAM J. Control Optim., 25(1), 158-194, 1987
2Bullo/Leonard/L, IEEE Trans. Automat. Control, 45(8), 1437-1454, 2000
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Low-order controllability}?
e These revolve around vector-valued quadratic forms.

e For R-vector spaces V and W, let TS*(V; W) be the collection of
symmetric bilinear maps B: V x V — W.

e For B€ TS*(V; W) and A € W* define AB(w1,w2) = (\; B(wy,ws)) € R.

Slide 6 hy finition 1 B € TS2(V: W) is

(i) indefinite if for each A\ € W*, AB is neither positive nor
negative-semidefinite and is

(i) definite if there exists A € W* so that AB is positive-definite.

1Hirschorn/L, Proceedings of 40th IEEE CDC, 4216-4221, Dec. 2001.
2Bullo/L, Submitted to STAM J. Control Optim., Jan. 2003.

e For g € Q define By(q) € TS*(Y,; T,Q/Y,) by

By(q)(v1,v2) = my, ((V1 : Va)(q)),

where V7 and V3 are vector fields extending vy, v2 € Y,.

Theorem 1 Let Y5 = (Q,V,¥). If qo € Q is a regular point of Y
then Y. is

Slide 7 (%) not configuration controllable from qo if By(qo) is definite.

Assume that Sym(oo)(lé)qo is generated by symmetric products of degree
at most two. Then Y.g is

(i1) controllable from Og, if Sym(oo)(lé)qo = T4 Q and if By(qo) is
indefinite, and is

(iii) configuration controllable from qo if Lie(oo)(Sym(oo)(H))qo =T¢Q
and if By(qo) is indefinite.
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An example

e Let's consider an example:

P
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o accessible o accessible
o controllable (“easy") o not controllable (not so “easy”)
e Add more stuff to the model:
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e Controllability now goes from “not so easy” to “requiring new
techniques.”

e One can prove a general result concerning two-input systems which
states that a large class of two-input systems are either controllable in a
nice way or only controllable on an analytic set.

e The model above is of the latter sort.
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e Add another input:
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e The quadratic form low-order controllability results may be used to
predict that the system is controllable.

e This really appears to need the sophisticated quadratic form methods.

So your system is controllable?

Kinematic controllability

e It turns out that for many systems, satisfaction of the low-order
controllability results leads to simple motion planning strategies.

Slide 11 ° These are based on the notion of a decoupling vector field,* which is a
vector field all of whose integral curves can be followed with an arbitrary

reparameterisation.

e The idea is that given a rich enough class of decoupling vector fields,
one solves the motion planning problem by concatenating their integral

curves.

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402-412, 2001.
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e There is a nontrivial connection between the vector-valued quadratic
form used in controllability and the notion of a decoupling vector field:

Theorem ! X is a decoupling vector field if and only if X is Y-valued
and By(X,X) =0.

Theorem ? If there exists generators % = {Y1,..., Y} forY that are
all decoupling vector fields, then By(q) is indefinite for each q € Q.
(If codim(Y) = 1 then the converse is also true.)
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Planar body example
F
o Controllable, as we have seen.
@ . .
)» o Possible to find enough decou-
pling vector fields.
o There are two. What are they?
1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402-412, 2001.
2Bullo/L, Submitted to SIAM J. Control Optim., Jan. 2003.
—
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More complicated planar body example
e What about the more complicated model?

e |t is not controllable, so it needs one more input:

F?
1 /’7‘;
. D \(
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e The theory predicts there are enough decoupling vector fields to do
motion planning.

e A month ago Dave Tyner found them.

SN
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A constrained example

e accessible.
e controllable.
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e The system also possess enough decoupling vector fields to do motion
planning.
e This can be done explicitly!
< -
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