# The role of controllability in motion planning for affine connection control systems

Andrew D. Lewis\*

Collaborators: Francesco Bullo, Theo Coombs, Jorge Cortés, Ron Hirschorn, Kevin Lynch, Sonia Martínez, David Tyner

Slide 0

19/06/2003



\*DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY EMAIL: ANDREW.LEWIS@QUEENSU.CA URL: http://www.mast.queensu.ca/~andrew/

# Affine connection control systems

- An affine connection control system is a 4-tuple  $(Q, \nabla, \mathcal{D}, \mathcal{Y})$  where
  - 1. Q is the configuration manifold,
  - 2.  $\nabla$  is an affine connection on Q,
  - 3.  ${\mathfrak D}$  is a constant rank distribution on Q that in invariant under  $\nabla,$  and

4.  $\mathcal{Y} = \{Y_1, \dots, Y_m\}$  are  $\mathcal{D}$ -valued vector fields on Q.

Slide 1

• The control equations are

$$\nabla_{\gamma'(t)}\gamma'(t) = \sum_{a=1}^{m} u^a(t)Y_a(\gamma(t)).$$

 These equations model mechanical systems with a kinetic energy Lagrangian, nonholonomic constraints modelled by D, and an external force that is a user-specified linear combination of the vector fields in Y.

- For unconstrained systems take
  - 1.  $\mathcal{D} = \mathsf{TQ},$
  - 2.  $\nabla=\overset{\rm G}{\nabla},$  the Levi-Civita connection for the kinetic energy metric G, and
  - 3.  $Y_a = \mathbb{G}^{\sharp}(F^a)$ ,  $a \in \{1, \ldots, m\}$ , where  $F^1, \ldots, F^m$  are the physical forces.
- For constrained systems take

**1**.  $\mathcal{D} \subsetneq \mathsf{TQ}$ ,

2.  $\nabla$  is the affine connection

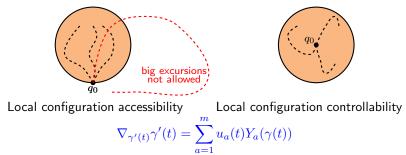
$$\nabla_X Y = \overset{\mathbf{G}}{\nabla}_X Y - (\overset{\mathbf{G}}{\nabla}_X P^{\mathcal{D}^{\perp}})(Y),$$

where  $P^{\mathcal{D}^{\perp}}$  is the orthogonal projection onto  $\mathcal{D}^{\perp},$  and

3.  $Y_a = P^{\mathcal{D}}(\mathbb{G}^{\sharp}(F^a)), a \in \{1, \ldots, m\}$ , where  $P^{\mathcal{D}}$  is the orthogonal projection onto  $\mathcal{D}$ .

## Controllability

• For systems and problems of the type we are considering, the controllability problem is fundamental...



### Accessibility

• For studies of controllability for general nonlinear systems of the form

$$\dot{\xi}(t) = f_0(\xi(t)) + \sum_{a=1}^m u^a(t) f_a(\xi(t)),$$

the Lie brackets of the vector fields  $\{f_0, f_1, \ldots, f_m\}$  play a fundamental rôle.

Slide 4

• For mechanical systems, the interaction of the Lie bracket and the system geometry (i.e., the affine connection) is very attractive. This gives nice accessibility results.<sup>123</sup>

 An important rôle in these results is played by the symmetric product associated with ∇:

$$\langle X:Y\rangle = \nabla_X Y + \nabla_Y X.$$

#### Controllability

- L/Murray give sufficient conditions involving symmetric products and based on work of Sussmann.  $^{1}\,$
- These sufficient conditions lead to a class of control algorithms for certain systems that rely on specially constructed periodic inputs.<sup>2</sup>

- Problems treated include the steering problem, the point stabilisation problem, and the trajectory tracking problem.
- The conditions of L/Murray are not entirely satisfactory since there are systems that fail the conditions but are (trivially) controllable.

<sup>&</sup>lt;sup>1</sup>L/Murray, SIAM Review, **41**(3), 555–574, 1999

<sup>&</sup>lt;sup>2</sup>L/Murray Systems Control Lett., **31**(4), 199–205, 1997

<sup>&</sup>lt;sup>3</sup>L, Rep. Math. Phys., **42**(1/2), 135–164, 1998

<sup>&</sup>lt;sup>1</sup>SIAM J. Control Optim., **25**(1), 158–194, 1987 <sup>2</sup>Bullo/Leonard/L, *IEEE Trans. Automat. Control*, **45**(8), 1437–1454, 2000

#### Low-order controllability<sup>12</sup>

- These revolve around vector-valued quadratic forms.
- For ℝ-vector spaces V and W, let TS<sup>2</sup>(V; W) be the collection of symmetric bilinear maps B: V × V → W.
- For  $B \in \mathsf{TS}^2(V; W)$  and  $\lambda \in W^*$  define  $\lambda B(w_1, w_2) = \langle \lambda; B(w_1, w_2) \rangle \in \mathbb{R}$ .

Slide 6 Definition 1  $B \in TS^2(V; W)$  is

- (i) *indefinite* if for each  $\lambda \in W^*$ ,  $\lambda B$  is neither positive nor negative-semidefinite and is
- (ii) *definite* if there exists  $\lambda \in W^*$  so that  $\lambda B$  is positive-definite.

• For  $q \in \mathsf{Q}$  define  $B_{\mathfrak{Y}}(q) \in \mathsf{TS}^2(\mathfrak{Y}_q; \mathsf{T}_q\mathsf{Q}/\mathfrak{Y}_q)$  by

$$B_{\mathcal{Y}}(q)(v_1, v_2) = \pi_{\mathcal{Y}_q}(\langle V_1 : V_2 \rangle(q)),$$

where  $V_1$  and  $V_2$  are vector fields extending  $v_1, v_2 \in \mathcal{Y}_q$ .

**Theorem 1** Let  $\Sigma_{aff} = (Q, \nabla, \mathcal{Y})$ . If  $q_0 \in Q$  is a regular point of  $\mathcal{Y}$  then  $\Sigma_{aff}$  is

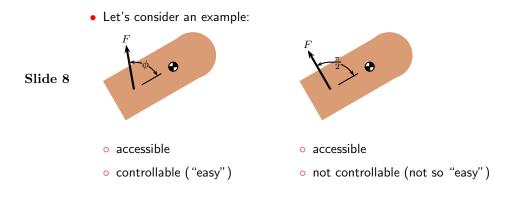
Slide 7 (i) not configuration controllable from  $q_0$  if  $B_{\mathcal{Y}}(q_0)$  is definite.

Assume that  $\operatorname{Sym}^{(\infty)}(\mathfrak{Y})_{q_0}$  is generated by symmetric products of degree at most two. Then  $\Sigma_{\operatorname{aff}}$  is

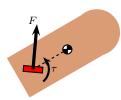
- (ii) controllable from  $0_{q_0}$  if  $\operatorname{Sym}^{(\infty)}(\mathfrak{Y})_{q_0} = \mathsf{T}_{q_0}\mathsf{Q}$  and if  $B_{\mathfrak{Y}}(q_0)$  is indefinite, and is
- (iii) configuration controllable from  $q_0$  if  $\operatorname{Lie}^{(\infty)}(\operatorname{Sym}^{(\infty)}(\mathfrak{Y}))_{q_0} = \mathsf{T}_{q_0}\mathsf{Q}$ and if  $B_{\mathfrak{Y}}(q_0)$  is indefinite.

<sup>&</sup>lt;sup>1</sup>Hirschorn/L, *Proceedings of 40th IEEE CDC*, 4216-4221, Dec. 2001. <sup>2</sup>Bullo/L, Submitted to *SIAM J. Control Optim.*, Jan. 2003.



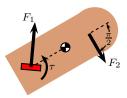


• Add more stuff to the model:



- Controllability now goes from "not so easy" to "requiring new techniques."
- One can prove a general result concerning two-input systems which states that a large class of two-input systems are either controllable in a nice way or only controllable on an analytic set.
- The model above is of the latter sort.

• Add another input:



Slide 10

- The quadratic form low-order controllability results may be used to predict that the system is controllable.
- This really appears to need the sophisticated quadratic form methods.

## So your system is controllable?

#### Kinematic controllability

- It turns out that for many systems, satisfaction of the low-order controllability results leads to simple motion planning strategies.
- These are based on the notion of a decoupling vector field,<sup>1</sup> which is a vector field all of whose integral curves can be followed with an arbitrary reparameterisation.
  - The idea is that given a rich enough class of decoupling vector fields, one solves the motion planning problem by concatenating their integral curves.

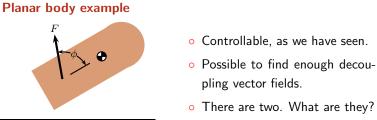
<sup>&</sup>lt;sup>1</sup>Bullo/Lynch, IEEE Trans. Robotics and Autom., **17**(4), 402–412, 2001.

• There is a nontrivial connection between the vector-valued quadratic form used in controllability and the notion of a decoupling vector field:

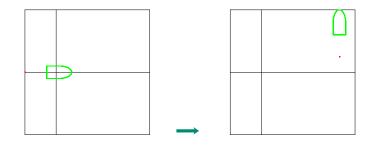
**Theorem**<sup>1</sup> X is a decoupling vector field if and only if X is  $\mathcal{Y}$ -valued and  $B_{\mathcal{Y}}(X, X) = 0$ .

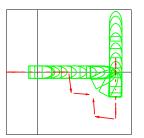
**Theorem**<sup>2</sup> If there exists generators  $\mathcal{Y} = \{Y_1, \ldots, Y_m\}$  for  $\mathcal{Y}$  that are all decoupling vector fields, then  $B_{\mathcal{Y}}(q)$  is indefinite for each  $q \in \mathbb{Q}$ . (If  $\operatorname{codim}(\mathcal{Y}) = 1$  then the converse is also true.)

#### Slide 12



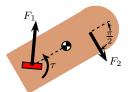
<sup>1</sup>Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
<sup>2</sup>Bullo/L, Submitted to SIAM J. Control Optim., Jan. 2003.





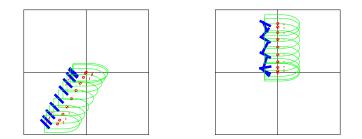
## More complicated planar body example

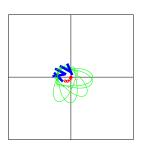
- What about the more complicated model?
- It is not controllable, so it needs one more input:

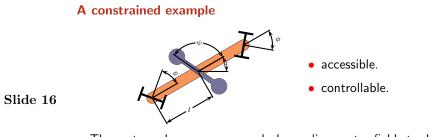


Slide 14

- The theory predicts there are enough decoupling vector fields to do motion planning.
- A month ago Dave Tyner found them.







- The system also possess enough decoupling vector fields to do motion planning.
- This can be done explicitly!

