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Affine connection control systems

• An affine connection control system is a 4-tuple (Q,∇,D,Y ) where

1. Q is the configuration manifold,

2. ∇ is an affine connection on Q,

3. D is a constant rank distribution on Q that in invariant under ∇, and

4. Y = {Y1, . . . , Ym} are D-valued vector fields on Q.

• The control equations are

∇γ′(t)γ
′(t) =

m∑

a=1

ua(t)Ya(γ(t)).

• These equations model mechanical systems with a kinetic energy

Lagrangian, nonholonomic constraints modelled by D, and an external

force that is a user-specified linear combination of the vector fields in Y .
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• For unconstrained systems take

1. D = TQ,

2. ∇ =
G

∇, the Levi-Civita connection for the kinetic energy metric G,

and

3. Ya = G♯(F a), a ∈ {1, . . . ,m}, where F 1, . . . , Fm are the physical

forces.

• For constrained systems take

1. D ( TQ,

2. ∇ is the affine connection

∇XY =
G

∇XY − (
G

∇XPD
⊥

)(Y ),

where PD
⊥

is the orthogonal projection onto D⊥, and

3. Ya = PD(G♯(F a)), a ∈ {1, . . . ,m}, where PD is the orthogonal

projection onto D.
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Controllability

• For systems and problems of the type we are considering, the

controllability problem is fundamental. . .

q0q0

big excursions
not allowed

q0

Local configuration accessibility Local configuration controllability

∇γ′(t)γ
′(t) =

m∑

a=1

ua(t)Ya(γ(t))
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Accessibility

• For studies of controllability for general nonlinear systems of the form

ξ̇(t) = f0(ξ(t)) +

m∑

a=1

ua(t)fa(ξ(t)),

the Lie brackets of the vector fields {f0, f1, . . . , fm} play a fundamental

rôle.

• For mechanical systems, the interaction of the Lie bracket and the

system geometry (i.e., the affine connection) is very attractive. This

gives nice accessibility results.1,2,3

• An important rôle in these results is played by the symmetric product

associated with ∇:

〈X : Y 〉 = ∇XY +∇Y X.

1L/Murray, SIAM Review, 41(3), 555–574, 1999
2L/Murray Systems Control Lett., 31(4), 199–205, 1997
3L, Rep. Math. Phys., 42(1/2), 135–164, 1998
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Controllability

• L/Murray give sufficient conditions involving symmetric products and

based on work of Sussmann.1

• These sufficient conditions lead to a class of control algorithms for

certain systems that rely on specially constructed periodic inputs.2

• Problems treated include the steering problem, the point stabilisation

problem, and the trajectory tracking problem.

• The conditions of L/Murray are not entirely satisfactory since there are

systems that fail the conditions but are (trivially) controllable.

1SIAM J. Control Optim., 25(1), 158–194, 1987
2Bullo/Leonard/L, IEEE Trans. Automat. Control , 45(8), 1437–1454, 2000
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Low-order controllability1,2

• These revolve around vector-valued quadratic forms.

• For R-vector spaces V and W , let TS2(V ;W ) be the collection of

symmetric bilinear maps B : V × V → W .

• For B ∈ TS2(V ;W ) and λ ∈ W ∗ define λB(w1, w2) = 〈λ;B(w1, w2)〉 ∈ R.

Definition 1 B ∈ TS2(V ;W ) is

(i) indefinite if for each λ ∈ W ∗, λB is neither positive nor

negative-semidefinite and is

(ii) definite if there exists λ ∈ W ∗ so that λB is positive-definite.

1Hirschorn/L, Proceedings of 40th IEEE CDC , 4216-4221, Dec. 2001.
2Bullo/L, Submitted to SIAM J. Control Optim., Jan. 2003.
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• For q ∈ Q define BY(q) ∈ TS2(Yq ;TqQ/Yq) by

BY(q)(v1, v2) = πYq (〈V1 : V2〉(q)),

where V1 and V2 are vector fields extending v1, v2 ∈ Yq.

Theorem 1 Let Σaff = (Q,∇,Y ). If q0 ∈ Q is a regular point of Y

then Σaff is

(i) not configuration controllable from q0 if BY(q0) is definite.

Assume that Sym(∞)(Y)q0 is generated by symmetric products of degree

at most two. Then Σaff is

(ii) controllable from 0q0 if Sym(∞)(Y)q0 = Tq0Q and if BY(q0) is

indefinite, and is

(iii) configuration controllable from q0 if Lie(∞)(Sym(∞)(Y))q0 = Tq0Q

and if BY(q0) is indefinite.
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An example

• Let’s consider an example:

F

φ

F

π

2

◦ accessible

◦ controllable (“easy”)

◦ accessible

◦ not controllable (not so “easy”)
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• Add more stuff to the model:

F

τ

• Controllability now goes from “not so easy” to “requiring new

techniques.”

• One can prove a general result concerning two-input systems which

states that a large class of two-input systems are either controllable in a

nice way or only controllable on an analytic set.

• The model above is of the latter sort.
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• Add another input:

F1

F2

π

2

τ

• The quadratic form low-order controllability results may be used to

predict that the system is controllable.

• This really appears to need the sophisticated quadratic form methods.
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So your system is controllable?

Kinematic controllability

• It turns out that for many systems, satisfaction of the low-order

controllability results leads to simple motion planning strategies.

• These are based on the notion of a decoupling vector field,1 which is a

vector field all of whose integral curves can be followed with an arbitrary

reparameterisation.

• The idea is that given a rich enough class of decoupling vector fields,

one solves the motion planning problem by concatenating their integral

curves.

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
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• There is a nontrivial connection between the vector-valued quadratic

form used in controllability and the notion of a decoupling vector field:

Theorem 1 X is a decoupling vector field if and only if X is Y-valued

and BY(X,X) = 0.

Theorem 2 If there exists generators Y = {Y1, . . . , Ym} for Y that are

all decoupling vector fields, then BY(q) is indefinite for each q ∈ Q.

(If codim(Y) = 1 then the converse is also true.)

Planar body example

F

φ

◦ Controllable, as we have seen.

◦ Possible to find enough decou-

pling vector fields.

◦ There are two. What are they?

1Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
2Bullo/L, Submitted to SIAM J. Control Optim., Jan. 2003.
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More complicated planar body example

• What about the more complicated model?

• It is not controllable, so it needs one more input:

F1

F2

π

2

τ

• The theory predicts there are enough decoupling vector fields to do

motion planning.

• A month ago Dave Tyner found them.
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A constrained example

φ

φ
ψ

θ

l

• accessible.

• controllable.

• The system also possess enough decoupling vector fields to do motion

planning.

• This can be done explicitly!
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