Affine connection control systems with interesting controllability properties

Andrew D. Lewis* David R. Tyner[†]

04/10/2003

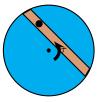
Slide 0

*Department of Mathematics and Statistics, Queen's University Email: andrew.lewis@queensu.ca

[†]Department of Mathematics and Statistics, Queen's University Email: dtyner@mast.queensu.ca

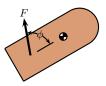
Some illustrative "real" examples

• Shen/Sanyal/McClamroch, MTNS02.



Slide 1

- Controllable only from configurations where ball is at centre of disk.
- Simple hovercraft model.



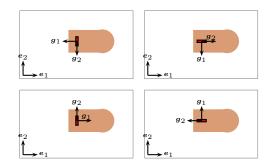
• Controllable from all configurations.

URL: http://penelope.queensu.ca/~andrew/

• Slightly more realistic hovercraft model.

• Only controllable from these configurations:

Slide 2



A too quick overview of controllability

• The methods we use for answering this question are based on low-order controllability results of Hirschorn/L, Bullo/L, and Tyner/L.

The setup

- Affine connection control system: $(Q, \nabla, D, \mathcal{Y})$ where
 - 1. Q is the configuration manifold,

Slide 3

- 2. $\ensuremath{\mathcal{D}}$ is a regular distribution on Q,
- 3. ∇ is an affine connection on Q which restricts to $\nabla,$ and
- 4. $\mathcal{Y} = \{Y_1, \dots, Y_m\}$ are vector fields taking values in \mathcal{D} .
- All data analytic.
- Governing equations:

$$\nabla_{\gamma'(t)}\gamma'(t) = \sum_{a=1}^m u^a(t)Y_a(\gamma(t)).$$

- This can be used to model mechanical systems described by
 - 1. a kinetic energy Lagrangian,
 - 2. (possibly) nonholonomic constraints,
 - 3. input forces whose directions vary only with position,
 - 4. no non-control external forces.
- The question: If Q_c denotes the configurations from which the system is controllable, and Q_u denotes the configurations from which the system is uncontrollable, what can these sets look like?
 - For example, for the two example systems, Q_c is a strict analytic subset of Q¹, i.e., Q_c is extremely small.

Vector-valued quadratic forms

- Let $\mathsf{TS}^2(\mathsf{V};\mathsf{U})$ be the set of symmetric bilinear maps from $\mathsf{V}\times\mathsf{V}$ to $\mathsf{U}.$
- For $\lambda \in U^*$ and $B \in TS^2(V; U)$ let $\lambda B \in TS^2(V; \mathbb{R})$ be defined by $\lambda B(v_1, v_2) = \langle \lambda; B(v_1, v_2) \rangle$.

Slide 5 • $B \in \mathsf{TS}^2(\mathsf{V};\mathsf{U})$ is

- 1. definite if there exists $\lambda \in U^*$ so that λB is positive-definite, is
- semidefinite if there exists λ ∈ U* so that λB is positive-semidefinite (but nonzero), and is
- **3**. **indefinite** if for each $\lambda \in U^*$, λB is not semidefinite.

¹An *analytic subset* is one that is locally the intersection of the zeros of a finite number of analytic functions.

A vector-valued quadratic form for controllability

- $(\mathbf{Q}, \nabla, \mathcal{D}, \mathcal{Y})$ an affine connection control system.
- Let \mathcal{Y} be the distribution generated by the vector fields \mathcal{Y} .
- Define the symmetric product: $\langle X : Y \rangle = \nabla_X Y + \nabla_Y X$.
- For $q \in \mathsf{Q}$ define $B_{\mathfrak{Y}_q} \in \mathsf{TS}^2(\mathfrak{Y}_q; \mathsf{T}_q\mathsf{Q}/\mathfrak{Y}_q)$ by

$$B_{\mathcal{Y}_q}(u,v) = \pi_{\mathcal{Y}_q}(\langle U:V\rangle(q)),$$

Slide 6

where U and V are vector fields extending $u, v \in \mathcal{Y}_q$, and $\pi_{\mathcal{Y}_q} \colon \mathsf{T}_q \mathsf{Q} \to \mathsf{T}_q \mathsf{Q}/\mathcal{Y}_q$ is the canonical projection.

- Intuition: $B_{\mathcal{Y}_q}$ encodes information about the "lowest-order good and bad symmetric products." ¹
- $B_{\mathcal{Y}_a}$ indefinite \iff "good" \iff "controllable"
- $B_{\mathcal{Y}_q}$ definite \longleftrightarrow "bad" \longleftrightarrow "uncontrollable"

- For precise statement of quadratic form controllability results, see papers by Bullo/Hirschorn/L. 1

Relation to motion planning primitives

 A vector field X on Q is a decoupling vector field for an affine connection control system Σ = (Q, ∇, D, Y) if every reparameterisation of every integral curve of X can be followed by a trajectory of Σ.²

• *Intuition*: Given enough decoupling vector fields, one can steer the system between configurations by following suitable concatenations of decoupling vector fields.

- ----> decoupling vector fields are good (actually, they are "good").
- Fact: X is decoupling if and only if X is \mathcal{Y} -valued and $B_{\mathcal{Y}}(X, X) = 0$.
- wector-valued quadratic form gives relationship between controllability and motion planning algorithms.

Slide 7

¹As per Sussmann, SIAM J. Control Optim., **25**(1), 158–194, 1987.

¹Hirschorn/L, *CDC Proceedings*, 4216–4221, 2001, and Bullo/L, submitted to *SIAM J. Control Optim.*, Jan. 2003.

²Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.

Some answers to "The question"

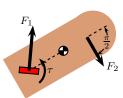
The single-input case $(\dim(Q) > 1)$

- For $\lambda \in \Gamma(\operatorname{ann}(\mathfrak{Y}))$ define a function $f_{\lambda}(q) = \langle \lambda(q); \langle Y_1 : Y_1 \rangle(q) \rangle$.
- Slide 8
- The controllability results say that the system is controllable at q only if f_λ(q) = 0 for every λ ∈ Γ(ann(𝔅)).
- System is analytic
 the system is controllable from at most a strict analytic subset of Q.
- This covers the Shen/Sanyal/McClamroch example.

The (n-1)-input case

- Strong relationship between controllability and motion planning.
- Fact: If B_y is indefinite at every point, then there are n − 1 decoupling vector fields. This is affine connection control system heaven.
- Back to hovercraft model, and add an input:

Slide 9



- Now $\dim(\mathbf{Q}) = 4$ and $\operatorname{rank}(\mathcal{Y}) = 3$.
- One can compute directly that By is indefinite at every point in Q → there are three decoupling vector fields.
- What are they? Dave Tyner found them by fiddling with quadratic forms!

The two-input case ($\dim(Q) > 2$)

- Let us categorise by number of decoupling vector fields.
- 1. No decoupling vector fields.
 - (a) System can be controllable everywhere ($Q_c = Q$). Take

$$\begin{aligned} \ddot{x}_1 &= u_1 \\ \ddot{x}_2 &= u_2 \\ \ddot{x}_3 &= -\dot{x}_1^2 + \dot{x}_2^2 \\ \ddot{x}_4 &= 2\dot{x}_1\dot{x}_2. \end{aligned}$$

Slide 10

(Open problem: How to do motion planning for this system.)

(b) System can be controllable nowhere ($Q_u = Q$). Take

$$\begin{aligned} \dot{x}_1 &= u_1 \\ \ddot{x}_2 &= u_2 \\ \ddot{x}_3 &= \dot{x}_1^2 + \dot{x}_2^2. \end{aligned}$$

(c) Q_c can be a strict analytic subset. Take

$$\ddot{x}_1 = u_1$$
$$\ddot{x}_2 = u_2$$
$$\ddot{x}_3 = \dot{x}_1^2 + x_2 \dot{x}_2^2.$$

Slide 11 (d) Q_c and Q_u can both have nonempty interior. Take

$$\begin{split} \ddot{x}_1 &= u_1 \\ \ddot{x}_2 &= u_2 \\ \ddot{x}_3 &= 2\dot{x}_1\dot{x}_2 \\ \ddot{x}_4 &= x_1\dot{x}_1^2 + x_2\dot{x}_2^2. \end{split}$$

- 2. One decoupling vector field.
 - (a) Q_c is a strict analytic subset of Q^1 (this covers the 4DOF hovercraft with two inputs).
- 3. Two decoupling vector fields.
 - (a) Controllable (more generally, basis of decoupling vector fields → controllable).
- Slide 12 The "transition" cases where $B_{\mathcal{Y}}$ is semidefinite have to be considered "by hand."
 - A higher-order theory would cover these.
 - An interesting observation: in all cases, Q_c is closed.
 - Is this always the case?

¹This is a result of Tyner/L.