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Some illustrative “real” examples

• Shen/Sanyal/McClamroch, MTNS02.
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• Controllable only from configurations where ball is at centre of disk.

• Simple hovercraft model.
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• Controllable from all configurations.
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• Slightly more realistic hovercraft model.
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• Only controllable from these configurations:
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A too quick overview of controllability

• The methods we use for answering this question are based on low-order

controllability results of Hirschorn/L, Bullo/L, and Tyner/L.

The setup

• Affine connection control system: (Q,∇,D,Y ) where

1. Q is the configuration manifold,

2. D is a regular distribution on Q,

3. ∇ is an affine connection on Q which restricts to ∇, and

4. Y = {Y1, . . . , Ym} are vector fields taking values in D.

• All data analytic.

• Governing equations:

∇γ′(t)γ
′(t) =

m∑

a=1

ua(t)Ya(γ(t)).
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• This can be used to model mechanical systems described by

1. a kinetic energy Lagrangian,

2. (possibly) nonholonomic constraints,

3. input forces whose directions vary only with position,

4. no non-control external forces.

• The question: If Qc denotes the configurations from which the system is

controllable, and Qu denotes the configurations from which the system

is uncontrollable, what can these sets look like?

• For example, for the two example systems, Qc is a strict analytic subset

of Q,1 i.e., Qc is extremely small.

1An analytic subset is one that is locally the intersection of the zeros of a finite

number of analytic functions.
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Vector-valued quadratic forms

• Let TS2(V;U) be the set of symmetric bilinear maps from V × V to U.

• For λ ∈ U∗ and B ∈ TS2(V;U) let λB ∈ TS2(V;R) be defined by

λB(v1, v2) = 〈λ;B(v1, v2)〉.

• B ∈ TS2(V;U) is

1. definite if there exists λ ∈ U∗ so that λB is positive-definite, is

2. semidefinite if there exists λ ∈ U∗ so that λB is

positive-semidefinite (but nonzero), and is

3. indefinite if for each λ ∈ U∗, λB is not semidefinite.
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A vector-valued quadratic form for controllability

• (Q,∇,D,Y ) an affine connection control system.

• Let Y be the distribution generated by the vector fields Y .

• Define the symmetric product: 〈X : Y 〉 = ∇XY +∇Y X .

• For q ∈ Q define BYq
∈ TS2(Yq;TqQ/Yq) by

BYq
(u, v) = πYq

(〈U : V 〉(q)),

where U and V are vector fields extending u, v ∈ Yq, and

πYq
: TqQ → TqQ/Yq is the canonical projection.

• Intuition: BYq
encodes information about the “lowest-order good and

bad symmetric products.”1

• BYq
indefinite “good” “controllable”

• BYq
definite “bad” “uncontrollable”

1As per Sussmann, SIAM J. Control Optim., 25(1), 158–194, 1987.
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• For precise statement of quadratic form controllability results, see papers

by Bullo/Hirschorn/L.1

Relation to motion planning primitives

• A vector field X on Q is a decoupling vector field for an affine

connection control system Σ = (Q,∇,D,Y ) if every reparameterisation

of every integral curve of X can be followed by a trajectory of Σ.2

• Intuition: Given enough decoupling vector fields, one can steer the

system between configurations by following suitable concatenations of

decoupling vector fields.

• decoupling vector fields are good (actually, they are “good”).

• Fact: X is decoupling if and only if X is Y-valued and BY(X,X) = 0.

• vector-valued quadratic form gives relationship between

controllability and motion planning algorithms.

1Hirschorn/L, CDC Proceedings, 4216–4221, 2001, and Bullo/L, submitted to

SIAM J. Control Optim., Jan. 2003.
2Bullo/Lynch, IEEE Trans. Robotics and Autom., 17(4), 402–412, 2001.
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Some answers to “The question”

The single-input case (dim(Q) > 1)

• For λ ∈ Γ(ann(Y)) define a function fλ(q) = 〈λ(q); 〈Y1 : Y1〉(q)〉.

• The controllability results say that the system is controllable at q only if

fλ(q) = 0 for every λ ∈ Γ(ann(Y)).

• System is analytic the system is controllable from at most a strict

analytic subset of Q.

• This covers the Shen/Sanyal/McClamroch example.
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The (n − 1)-input case

• Strong relationship between controllability and motion planning.

• Fact: If BY is indefinite at every point, then there are n− 1 decoupling

vector fields. This is affine connection control system heaven.

• Back to hovercraft model, and add an input:

F1

F2

π

2

τ

• Now dim(Q) = 4 and rank(Y) = 3.

• One can compute directly that BY is indefinite at every point in Q

there are three decoupling vector fields.

• What are they? Dave Tyner found them by fiddling with quadratic

forms!
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The two-input case (dim(Q) > 2)

• Let us categorise by number of decoupling vector fields.

1. No decoupling vector fields.

(a) System can be controllable everywhere (Qc = Q). Take

ẍ1 = u1

ẍ2 = u2

ẍ3 = − ẋ2
1 + ẋ2

2

ẍ4 = 2ẋ1ẋ2.

(Open problem: How to do motion planning for this system.)

(b) System can be controllable nowhere (Qu = Q). Take

ẍ1 = u1

ẍ2 = u2

ẍ3 = ẋ2
1 + ẋ2

2.
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(c) Qc can be a strict analytic subset. Take

ẍ1 = u1

ẍ2 = u2

ẍ3 = ẋ2
1 + x2ẋ

2
2.

(d) Qc and Qu can both have nonempty interior. Take

ẍ1 = u1

ẍ2 = u2

ẍ3 = 2ẋ1ẋ2

ẍ4 = x1ẋ
2
1 + x2ẋ

2
2.
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2. One decoupling vector field.

(a) Qc is a strict analytic subset of Q1 (this covers the 4DOF

hovercraft with two inputs).

3. Two decoupling vector fields.

(a) Controllable (more generally, basis of decoupling vector fields

controllable).

• The “transition” cases where BY is semidefinite have to be considered

“by hand.”

• A higher-order theory would cover these.

• An interesting observation: in all cases, Qc is closed.

• Is this always the case?

1This is a result of Tyner/L.
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